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Abstract: In this paper, we use a new technique called a domain decomposition Sumudu transform method (ADSTM) to solve
generalized nonlinear fractional Fokker-Planck equation. We show that the new technique finds solution without any discretization
or restrictive assumptions and avoids the round-off errors. The new technique shows that the approach is very efficient,simple and can
be applied to other nonlinear problems.
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1 Introduction

Most of phenomena in nature are described by nonlinear
differential equations. Different analytical methods have
been applied to find a solution to them. For example,
Adomian has presented and developed a so-called
decomposition method for solving differential equations
[1]. The Fokker-Planck equation was first introduced by
Fokker and Planck to describe the Brownian motion of
particles [2]. This equation has been used in different
fields in natural sciences such as quantum optics, solid
state physics, chemical physics, theoretical biology and
circuit theory. Fokker-Planck equations describe the
erratic motions of small particles that are immersed in
fluids, fluctuations of the intensity of laser light, velocity
distributions of fluid particles in turbulent flows and the
stochastic behavior of exchange rates [3]. It is a more
general form of linear one which has also been applied in
vast areas such as plasma physics, surface physics,
astrophysics, the physics of polymer fluids and particle
beams, nonlinear hydrodynamics, theory of
electronic-circuitry and laser arrays, engineering,
biophysics, population dynamics, human movement
sciences, neurophysics, psychology and marketing [4,5,6,
7,8] in this paper, we introduce a new approximate
method, namely a domain decomposition Sumudu

transform method (ADSTM) for solving the nonlinear
differential equations.

2 Definition and Preliminaries

In this section, we give some definitions and lemmas
which are used in this paper.
Definition 2.1. In early 90’s, Watugala [9] introduced a
new integral transform, named the Sumudu transform
which applied to the solution of ordinary differential
equation in control engineering problems. The Sumudu
transform is defined over the set of functions:

A=
{

f (t) : ∃M,τ1,τ2 > 0, | f (t) |< Me| t |/τ j , i f t ∈ (−1) j × [0,∞)
}

.

By the following formula:

G(u) = S[ f (t);u] =
∫ ∞

0
f (ut)e−tdt,u∈ (−τ1,,τ2).

Definition 2.2.Sumudu transform of the Caputo fractional
derivative is defined as follows [3]:

S[Dα
t f (t)]= u−α S[ f (t)]−

m−1

∑
k=0

u−α+k f (k)(0+),(m−1<α ≤m).

Definition 2.3. The Mittage-Leffler functionEα(z)with
α > 0 is defined by the following series representation,
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valid in the whole complex plane [10] :

Eα(z) =
∞

∑
k=0

zk

Γ (αk+1)
.

Definition 2.4. Some properties of the Sumudu transform
and its derivatives found in [11,12]

3 A domain Decomposition Method

The adomian decomposition method was introduced and
developed by George Adomian [1]. A considerable
amount of research work has been invested recently in
applying this method to a wide class of linear and
nonlinear ordinary differential equations, partial
differential equations and integral equations. The
Adomian decomposition method consists of decomposing
the unknown functionu(x,y) of any equation into a sum
of an infinite number of components defined by the
decomposition series:

u(x,y) =
∞

∑
n=0

un(x,y). (1)

where the componentsun(x,y),n≥ 0 are to be determined
in a recursive manner. The decomposition method
concerns itself with finding the componentsu0,u1,u2, ..
individually. As will be seen through the text, the
determination of these components can be achieved in an
easy way through a recursive relation that usually involve
simple integrals. To give a clear overview of Adomian
decomposition method, we first consider the linear
differential equation written in an operator form by:

Lu+Ru= g. (2)

where Lis, mostly, the lower order derivative which is
assumed to be invertible,R is other linear differential
operator, andg is a source term. We next apply the inverse
operatorL−1 to both sides of equation (2) and using the
given condition to obtain:

u= f −L−1(Ru) (3)

where the functionf represents the terms arising from
integrating the source termgand from using the given
conditions that are assumed to be prescribed. As indicated
before, Adomian method defines the solutionuby an
infinite series of components given by:

u=
∞

∑
n=0

un (4)

where the componentu0,u1,u2, .. are usually recurrently
determined. Substituting (4) into both sides of (3) leads to:

∞

∑
n=0

un = f −L−1(R(
∞

∑
n=0

un)) (5)

For simplicity, Equation (5) can be rewritten as:

u0+u1+u2+ ..........= f −L−1(R(u0+u1+u2+ ....))
(6)

To construct the recursive relation needed for the
determination of the componentsu0,u1,u2, .... It is
important to note that Adomian method suggests that the
zeroth componentf is usually defined by the functionu0
described above, i.e. by all terms, that are not included
under the inverse operatorL−1, which arise from the
initial data and from integrating the inhomogeneous term.
Accordingly, the formal recursive relation is defined by:

uk+1 =−L−1(R(uk)),k≥ 0,
u0 = f

(7)

or equivalently

u0 = f
u1 =−L−1(R(u0))
u2 =−L−1(R(u1))

(8)

It is clearly seen that the relation (8) reduced the
differential equation under consideration into an elegant
determination of computable components. Having
determined these components, we then substitute it into
(4) to obtain the solution in a series form.

4 Fokker-Planck equation

The general form of Fractional Fokker-Plank equation is :

∂ αU
∂ tα = [−

∂
∂x

A(x)+
∂ 2

∂x2 B(x)]U (9)

With initial condition :

u(x,0) = f (x),x∈ R

whereu(x,y)is an unknown function,A(x) and B(x)are
called diffusion and drift coefficients such that. The
diffusion and drift coefficients in equation (9) can be
functions of x and t as well as:

∂ αU
∂ tα = [−

∂
∂x

A(x, t)+
∂ 2

∂x2 B(x, t)]U.

Equation (9) is also well known as a forward Kolmogorov
equation. There exists another type of this equation is
called a backward one as [2]:

∂ αU
∂ tα = [−A(x, t)

∂
∂x

+B(x, t)
∂ 2

∂x2 ]U.

A generalization of equation (9) to N-variables of
x1,x2,x3, ...,xN, yields to

∂ αU
∂ tα = [−

n

∑
i=1

∂
∂xi

Ai(x)+
N

∑
i, j=1

∂ 2

∂xi∂x j
BI ,J(x)]U.
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with the initial condition:

U(x,0) = f (x),x= (x1,x2, .........,xN) ∈ RN.

The nonlinear form of the Fokker-Planck equation can be
expressed in the following form:

∂ αU
∂ tα = [−

∂
∂x

A(x, t,U)+
∂ 2

∂x2 B(x, t,U)]U (10)

A generalization of equation(10) to N-variables of
x1,x2,x3, ......,xN, yields to

∂ αU
∂ tα = [−

N

∑
i−1

∂
∂xi

Ai(x, t,U)+
N

∑
i, j=1

∂ 2

∂xi∂x j
Bi, j(x, t.U)]U.

5 A domain Decomposition Sumudu
Transform Method (ADSTM)

We consider the general inhomogeneous nonlinear
equation with initial conditions given below [2]:

LU +RU+NU = h(x, t)

whereLis the lowest order derivative which is assumed to
be easily invertible,R is a linear differential operator of
order less thanL, NU represents the nonlinear terms and
h(x, t) is the source term. First we explain the main idea of
SDM: the method consists of applying Sumudu transform
:

S[LU ]+S[RU]+S[NU]= S[h(x, t)]

Using the differential property of Sumudu transform and
initial conditions we get:

S[h(x, t)] =
1
un S[U(x, t)]−

1
unU(x,0)−

1
un−1U

′
(x,0)

− ...−
U (n−1)(x,0)

u
+S[RU]+S[NU].

By arrangement we have:

S[U(x, t)] = U(x,0)+uU
′
(x,0)+ .....

+ un−1Un−1(x,0)−unS[RU]

− unS[NU]+unS[h(x, t)]. (11)

The second step in Sumudu decomposition method is that
we represent solution as an infinite series:

U(x, t) =
∞

∑
i=0

Ui(x, t) (12)

and the nonlinear term can be decomposed as:

NU(x, t) =
∞

∑
i=0

Ai (13)

whereAi are Adomian polynomial ofU0,U1,U2, .....,Un
and it can be calculated by formula:

Ai =
1
i!

di

dλ i [N(
∞

∑
i=0

λ iUi)]λ=0, i = 0,1,2,3, ...

Substitution of (13) and (12) into (11) yields:

S[
∞

∑
i=0

Ui(x, t)] = U(x,0)+uU
′
(x,0)+ ...

+ un−1U (n−1)(x,0)−unS[RU(x, t)]

− unS[
∞

∑
i=0

Ai ]+unS[h(x, t)]. (14)

On comparing both sides of (14) and using standard ADM
we have :

S[U0(x, t)] = U(x,0)+uU
′
(x,0)+ ....+un−1U (n−1)(x,0)

+ unS[h(x, t)] =Y(x,u). (15)

Then it follow that:

S[U1(x, t)] =−unS[RU0(x, t)]−unS[A0],

S[U2(x, t)] =−unS[RU1(x, t)]−unS[A1].

In more general, we have:

S[Ui+1(x, t)] =−unS[RUi(x, t)]−unS[Ai], i ≥ 0 (16)

On applying the inverse Sumudu transform to (15) and
(16), we get:

U0(x, t) = K(x, t),

Ui+1(x, t) =−S−1[unS[RUi(x, t)]+unS[A1]], i ≥ 0.

whereK(x, t)represents the term that is arising from
source term and prescribed initial conditions. On using
the inverse Sumudu transform toh(x, t) and using the
given condition we get:

Ψ = Φ +S−1[h(x, t)]

where the functionsΨ , obtained from a term by using the
initial condition is given by

Ψ =Ψ0+Ψ1+Ψ2+ .........+Ψn.

The termsΨ0,Ψ1,Ψ2, .........,Ψn appears while applying the
inverse Sumudu transform on the source termh(x, t)and
using the given conditions. We define:

U0 =Ψk+ ..............+Ψk+r

where k = 0,1,2,3, ... ,n, r = 0,1,2, ...,n− k. Then we
verify thatU0 satisfies the original equation.

6 Application

In this section, we use the ADSTM to solve linear and
nonlinear Fokker–Plank equations.
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6.1 Application 1

Consider the following linear Fokker-Planck equation:

∂ αU
∂ tα =

∂U
∂x

+
∂ 2U
∂x2 ,0≺ α ≤ 1 (17)

With the initial condition:

U(x,0) = x

We can write equation (17) in the operator form as the
following :

LU = Lx(U)+Lxx(U) (18)

Where l = ∂
∂ tα

α
,Lx = ∂

∂x ,Lxx =
∂ 2

∂x2 . By taking Sumudu
transform for (18) and using initial condition we obtain:

S[U ] = x+uαS[LxU +LxxU ]

By applying the inverse Sumudu transform from the above
equation, we get:

U(x, t) = x+S−1[uαS[LxU +LxxU ]] (19)

which assumes a series solution of the functionU(x, t)and
is given by:

U(x, t) =
∞

∑
n=0

Un(x, t) (20)

Using (19), (20) we get:

∞

∑
n=0

Un(x, t) = x+S−1[uαS[∂x(
∞

∑
n=0

Un(x, t))

+ ∂xx(
∞

∑
n=0

Un(x, t))]]

From above we get:

U0(x, t) = x,Uk+1 = S−1[uαS[Ukx+Ukxx]],

U1 = S−1[uα ] =
tα

Γ (α +1)
,U2 = 0,U3 = 0.

Hence,

U(x, t) =
∞

∑
n=0

Un(x, t) =U0+U1+U2+U3+ ...

= x+
tα

Γ (α +1)

See Figures (1,2). Atα → 1we haveU(x, t) = x+ t.
Which is the exact solution of the standard form obtained
by ADM [13], VIM [ 14] and HPM [15].

6.2 Application 2

Consider the following linear Fokker-Plank equation:

∂ αU
∂ tα =−

∂
∂x

A(x, t)U +
∂ 2

∂x2 B(x, t)U, (21)

A(x, t) = et cothxcoshx+et sinhx− cothx,

B(x, t) = et coshx (22)

With the initial condition:

U(x,0) = sinhx, x∈ R

According to the ADSTM, by taking Sumudu transform
for (21)and using (22) we obtain:

S[U ] = sinhx+uαS[−Lx(AU)+Lxx(BU)]. (23)

By applying the inverse Sumudu transform for (23) we
obtain:

U(x, t) = sinhx+S−1[uαS[Lxx(BU)−Lx(AU)]]. (24)

According to ADM, we assume a series solution of the
functionU(x, t)and is given by:

U(x, t) =
∞

∑
n=0

Un(x.t). (25)

Using(24)and (25) we get :

∞

∑
n=0

Un(x, t) = sinhx+S−1[uαS[∂xx(B(
∞

∑
n=0

Un(x, t)))

− ∂x(A(
∞

∑
n=0

Un(x, t)))]].

From above we get:

U0(x, t) = sinhx,

Uk+1(x, t) = S−1[uαS[∂xx(B(
∞

∑
n=0

Un(x, t)))

− ∂x(A(
∞

∑
n=0

Un(x, t)))]],

U1(x, t) =
tα

Γ (α +1)
sinhx,U2 =

t2α

Γ (2α +1)
sinhx, ...

hence,
U(x, t) = sinhxEα(t

α).

See Figures (3,4). Atα → 1 we haveU(x, t) = et sinhx,
which is the exact solution of the standard form obtained
by ADM [13], VIM [ 14] and HPM [15].
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6.3 Application 3

Consider the Backward Kolmogorov equation:

∂ αU
∂ tα = [−A(x, t)

∂U
∂x

+B(x, t)
∂ 2U
∂x2 ], (26)

A(x, t) =−(x+1),B(x, t) = x2et (27)

With the initial condition:

U(x, t) = x+1,x∈ R

First we take Sumudu transform to (26) and using(27) we
obtain:

S[U ] = (x+1)+uαS[(x2et)LxxU +(x+1)LxU ].

Applying the inverse Sumudu transform, we have

U(x, t) = (x+1)+S−1[uαS[(x2et)LxxU +(x+1)LxU ]].
(28)

According to ADM, we assume a series solution of the
functionU(x, t)and is given by:

U(x, t) =
∞

∑
n=0

Un(x.t), (29)

Using (28) and (29) we get:

∞

∑
n=0

Un(x, t) = (x+1)+S−1[uαS[(x2et)∂xx(
∞

∑
n=0

Un(x, t))

+ (x+1)∂x(
∞

∑
n=0

Un(x, t))]]

The formal recursive relation is defined by:

U0(x, t) = (x+1),

Uk+1(x, t) = S−1[uαS[(x2et)∂xx(
∞

∑
n=0

Uk(x, t))

+ (x+1)∂x(
∞

∑
n=0

Uk(x, t))]

Then

U1 = tα

Γ (α+1)(x+1), U2 =
t2α

Γ (2α+1)(x+1),

U3 = t3α

Γ (3α+1)(x+1),

U(x, t) = (x+1)
∞

∑
n=0

(tα)k

Γ (αk+1)

Hence,
U(x, t) = (x+1)Eα(t

α).

Where Eα(tα) = ∑∞
k=0

(tα )k

Γ (αk+1) is the famous
Mittag–Leffler function. See Figures (5,6) Atα → 1, we
haveU(x, t) = (x+ 1)et . Which is the exact solution of
the standard form obtained by ADM [13], VIM [ 14] and
HPM [15].

6.4 Application 4

Consider the following nonlinear Fokker–Planck equation:

∂ αU
∂ tα = [−

∂
∂x

A(x, t,U)+
∂

∂x2

2

B(x, t)]U (30)

A(x, t) =
4
x
U −

x
3
, B(x, t,U) =U.

Then equation (30) becomes :

∂ αU
∂ tα =

∂
∂x

(
xU
3

−
4
x
U2)+

∂ 2

∂x2 (U
2), (31)

Subject to initial condition

U0(x, t) = x2,x∈ R (32)

According to ADSTM by applying Sumudu transform of
both sides of equation (31) and using (32) we get:

S[U ] = x2+uαS[∂x(
xU
3

−
4
x
U2)+ ∂xx(U

2)]

The second step in Sumudu decomposition method is that
we represent solution as an infinite series:

U(x, t) =
∞

∑
n=0

Un(x, t)

hence,

S[
∞

∑
n=0

Un(x, t)] = x2+uαS[∂x(
x
3
(

∞

∑
n=0

Un(x, t)))

− ∂x(
4
x
(

∞

∑
n=0

Ai)+ ∂xx(
∞

∑
n=0

Bi)].

Then recursive relations are:

U0(x, t) = x2,

Uk+1 = S−1[uαS[∂x(
x
3

∞

∑
k=0

Uk(x, t))

− ∂x(
4
x

∞

∑
k=0

Ak)+ ∂xx(
∞

∑
k=0

Bk)]

And nonlinear terms can be decomposed as:

N1U(x, t) =
∞

∑
k=0

Ak,N2U(x, t) =
∞

∑
k=0

Bk,U0,U1, ....,Uk

are A domain polynomials of [10] , and they can calculated
by formulaAk, Bk:

Ai(Bi) =
1
i!

di

dλ i [N
∞

∑
i=0

λ iUi ]
2
λ=0, i = 0,1,2,3, ...

A0(B0) = U0, A1(B1) = 2U0U1, ...

Then we get:

U1 = x2 tα

Γ (α +1)
, U2 = x2 tα

Γ (α +1)
, ...
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Hence
U(x, t) = x2Eα(t

α).

See Figures (7,8). Atα → 1 we haveU(x, t) = x2et .
Which is the exact solution of the standard form obtained
by ADM [13], VIM [ 14] and HPM [15].

7 Conclusion

The present paper develops the Adomian decomposition
Sumudu transform method (ADSTM) for solving
fractional nonlinear problems. Figures (1-8) show the
numerical results of the probability density
functionU(x, t)for different time-fractional Brownian
motions α. We also show that, whenα=1, the
approximate solution obtained by the present method is
the exact solution of the standard form. It is evident that
the proposed technique has shown to computationally
efficient in these examples that are important to
researchers in the field of applied sciences. It is worth
mentioning that the method is capable of reducing the
volume of the computational work as compared to the
classical methods while still maintaining the high
accuracy of the numerical result amounts to an
improvement of the performance of the approach. In
conclusion, the (ADSTM) may be considered as a nice
refinement in existing numerical techniques and may
cover the wide applications.

(a)

(b)

(c)

Fig. 1: The behavior of theU(x, t), x andt are obtained when (a)
α = 0.75, (b)α = 0.90, (c)α=1 which is the exact solution.
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(d)

Fig. 2: Plots ofU(x, t) versust at x = 1 for different values ofα,
{(- - -) α = 0.75, (— —)α = 0.90, (——)α = 1. }

(a)

(b)

(c)

Fig. 3: The behavior of theU(x, t), x andt are obtained when (a)
α = 0.75, (b)α = 0.90, (c)α=1 which is the exact solution.

(d)

Fig. 4: Plots ofU(x, t) versust at x = 1 for different values ofα,
{(- - -) α = 0.75, (— —)α = 0.90, (——)α = 1. }
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(a)

(b)

(c)

Fig. 5: The behavior of theU(x, t), x andt are obtained when (a)
α = 0.75, (b)α = 0.90, (c)α =1which is the exact solution.

(d)

Fig. 6: Plots ofU(x, t) versust at x = 1 for different values ofα,
{(- - -) α = 0.75, (— —)α = 0.90, (——)α = 1. }

(a)

(b)
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(c)

Fig. 7: The behavior of theU(x, t), x andt are obtained when (a)
α = 0.75, (b)α = 0.90, (c)α =1which is the exact solution.

(d)

Fig. 8: Plots ofU(x, t) versust at x = 1 for different values ofα,
{(- - -) α = 0.75, (— —)α = 0.90, (——)α = 1. }
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