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Abstract: In this paper, we consider a new class of pairs of generalized contractive type mappings defined in G−metric spaces. Some
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the literature.An example is presented to show the ectiveness of our results.
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1 Introduction and Preliminaries

Mustafa and Sims [5] introduced the notion of complete
G−metric spaces as a generalization of complete metric
spaces. For details on G−metric spaces, we refer to [5,6,
7,8]. The notion of a coupled fixed point in partially
ordered metric spaces has been introduced by Bhaskar
and Lakshmikantham in (2006)[9].
In this paper ,we prove a common coupled fixed point
theorem for two mappings in G−metric spaces.

Definition 1.[5] Let X be a nonempty set and G : X ×X ×
X −→ R+ a function satisfying the following properties:
(G1)G(x,y,z) = 0 if x = y = z = 0,
(G2)0 < G(x,x,y), for all x,y ∈ X with x ̸= y,
(G3)G(x,x,y)≤ G(x,y,z) for all x,y,z ∈ X with z ̸= y,
(G4)G(x,y,z) = G(x,z,y) = G(y,z,x) = ..., symmetry in all

three variables,
(G5)G(x,y,z)≤ G(x,a,a)+G(a,y,z) for all x,y,z,a ∈ X
Then the function G is called a generalized metric, or,
more specifically, a G−metric on X , and the pair (X ,G)
is called a G−metric space.

Definition 2.[5] Let (X ,G) be a G−metric space and (xn)
a sequence of points of X . A point x ∈ X is said to be the
limit of the sequence (xn), if limm,n−→∞ G(x,xn,xm) = 0,
and we say that the sequence (xn) is G−convergent to x or
that (xn) G−converges to x.
Thus, xn −→ x in a G−metric space (X ,G) if for any ε > 0,
there exists k ∈ N such that G(x,xn,xm)< ε for all m,n ≥
k.

Proposition 11[5] Let (X ,G) be a G−metric space. Then
the following are equivalent:
(1)(xn) is G−convergent to x.
(2)G(xn,xn,x)−→ 0 as n −→ ∞.
(3)G(xn,x,x)−→ 0 as n −→ ∞.
(4)G(xn,xm,x)−→ 0 as n,m −→ ∞.

Definition 3.[5] Let (X ,G) be a G−metric space, a
sequence (xn) is called G−Cauchy if for every ε > 0,
there is k ∈ N such that G(xn,xm,xl) < ε, for all
n,m, l ≥ k, that is G(xn,xm,xl)−→ 0 as n,m, l −→ ∞.

Proposition 12[5] Let (X ,G) be a G−metric space, then
the following statements are equivalent:
(1)The sequence (xn) is G−Cauchy.
(2)For every ε > 0, there is k ∈ N such that

G(xn,xm,xm)< ε, for all n,m ≥ k.

Definition 4.[5] A G−metric space (X ,G) is called
G−complete if every G−Cauchy sequence in (X ,G) is
G−convergent in (X ,G).

Proposition 13[5] Let (X ,G) be a G−metric space. Then,
the function G(x,y,z) is jointly continuous in all three of
its variables.

Example.[5] Let (R,d) be the usual metric space. Define
Gs by

Gs(x,y,z) = d(x,y)+d(y,z)+d(x,z)

for all x,y,z∈R. Then it is clear that (R,Gs) is a G−metric
space.
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Proposition 14[5] Let (X ,G) be a G−metric space. Then
T : X −→ X is G−continuous at x ∈ X if and only if it is
G−sequentially continuous at x,that is, whenever (xn) is
G−convergent to x, ( f (xn)) is G−convergent to f (x).

Definition 5.[4] Let (X ,G) be a G−metric space. A
mapping F : X ×X −→ X is said to be continuous if for
any two G−convergent sequences (xn) and (yn)
converging to x and y respectively, (F(xn,yn)) is
G−convergent to F(x,y).

Definition 6.[3] An element (x,y) ∈ X × X is called a
coupled fixed point of the mapping F : X ×X −→ X if

F(x,y) = x, F(y,x) = y.

Definition 7.[9] An element (x,y) ∈ X × X is called a
coupled coincidence point of a mapping F : X ×X −→ X
and a mapping g : X −→ X if

F(x,y) = gx, F(y,x) = gy.

Note that if g is the identity mapping, then Definition 1.7
reduces to Definition 1.6.

Definition 8.[1] An element x ∈ X is called a common
fixed point of a mapping F : X ×X −→ X and g : X −→ X
if

F(x,x) = gx = x.

Abbas et al. [1] introduced the concept of w−compatible
and w∗−compatible mappings and utilized this concept to
prove an interesting uniqueness theorem of a coupled fixed
point for mappings F and g in cone metric spaces.

Definition 9.[1] Mappings F : X ×X −→ X and g : X −→
X are called

(W1)w−compatible if g(F(x,y)) = F(gx,gy) whenever
gx = F(x,y) and gy = F(y,x).

(W2)w∗−compatible if g(F(x,x)) = F(gx,gx) whenever
gx = F(x,x).

Let X = R+, define F : X ×X −→ X and g : X −→ X by

F(x,y) =

 8, x = 1,y = 0,
10, x = 0,y = 1,
4 otherwise,

g(x) =


8, x = 1,
10, x = 0,
5, x = 4,
4, otherwise.

Then it is clear that F and g are w−compatible but not
w∗−compatible.

Definition 10.[9] Let X be a nonempty set and
F : X ×X −→ X and g : X −→ X . One says F and g are
commutative if for all x,y ∈ X,

F(gx,gy) = g(F(x,y)).

2 MAIN RESULTS

Our first result is the following.

Theorem 21Let (X ,G) be a G−metric space. Set T : X ×
X −→ X and g : X −→ X . Assume there exist a1,a2,a3 ≥ 0
with 2a1 +3a2 +3a3 < 2 such that

G(T (x,y),T (u,v),T (w,z))

≤ a1

2
[G(gx,gu,gw)+G(gy,gv,gz)]

+
a2

2
[G(gx,T (x,y),T (x,y))+G(gu,T (u,v),T (u,v))

+G(gy,gv,gz)]

+
a3

2
[G(gx,T (u,v),T (u,v))+G(gu,T (x,y),T (x,y))

+G(gy,gv,gz)],

(1)

for all x,y,u,v,w,z ∈ X. If T (X × X) ⊆ g(X), g(X) is a
G−complete subset of X, then T and g have a unique
common coupled coincidence point. Moreover, if T is
w∗−compatible with g, then T and g have a unique
common coupled fixed point.

Proof. Let x0 and y0 be in X . Since T (X × X) ⊆ g(X),
we can choose x1,y1 ∈ X such that gx1 = T (x0,y0) and
gy1 = T (y0,x0). Analogously, there exist x2,y2 ∈ X such
that gx2 = T (x1,y1) and gy2 = T (y1,x1). Continuing this
process, we can construct two sequences {xn} and {yn} in
X such that

gxn+1 = T (xn,yn) and gyn+1 = T (yn,xn) f or all n ≥ 0
(2)

From by (1), we have

G(gxn,gxn+1,gxn+1)

= G(T (xn−1,yn−1),T (xn,yn),T (xn,yn))

≤ a1

2
[G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)]

+
a2

2
[G(gxn−1,T (xn−1,yn−1),T (xn−1,yn−1))

+G(gxn,T (xn,yn),T (xn,yn))+

G(gyn−1,gyn,gyn)]+
a3

2
[G(gxn−1,T (xn,yn),T (xn,yn))

+G(gxn,T (xn−1,yn−1),T (xn−1,yn−1))+G(gyn−1,gyn,gyn)]

=
a1

2
[G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)]

+
a2

2
[G(gxn−1,gxn,gxn)+G(gxn,gxn+1,gxn+1)

+G(gyn−1,gyn,gyn)]

+
a3

2
[G(gxn−1,gxn+1,gxn+1)+G(gxn,gxn,gxn)

+G(gyn−1,gyn,gyn)].

Thus, we obtain

G(gxn,gxn+1,gxn+1)≤
a1 +a2 +a3

2−a2 −a3
[G(gxn−1,gxn,gxn)

+G(gyn−2,gyn−1,gyn−1)],
(3)
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and

G(gyn,gyn+1,gyn+1)

= G(T (yn−1,xn−1),T (yn,xn),T (yn,xn))

≤ a1

2
[G(gyn−1,gyn,gyn)+G(gxn−1,gxn,gxn)]

+
a2

2
[G(gyn−1,T (yn−1,xn−1),T (yn−1,xn−1))

+G(gyn,T (yn,xn),T (yn,xn))+

G(gxn−1,gxn,gxn)]+
a3

2
[G(gyn−1,T (yn,xn),T (yn,xn))

+G(gyn,T (yn−1,xn−1),T (yn−1,xn−1))+G(gxn−1,gxn,gxn)]

=
a1

2
[G(gyn−1,gyn,gyn)+G(gxn−1,gxn,gxn)]

+
a2

2
[G(gyn−1,gyn,gyn)+G(gyn,gyn+1,gyn+1)

+G(gxn−1,gxn,gxn)]

+
a3

2
[G(gyn−1,gyn+1,gyn+1)+G(gyn,gyn,gyn)

+G(gxn−1,gxn,gxn)].

Thus, we obtain

G(gyn,gyn+1,gyn+1)

≤ a1 +a2 +a3

2−a2 −a3
[G(gyn−1,gyn,gyn)+G(gxn−1,gxn,gxn)].

(4)

From (3) and (4), we have

G(gxn,gxn+1,gxn+1)+G(gyn,gyn+1,gyn+1)

≤ 2(a1 +a2 +a3)

2−a2 −a3
[G(gyn−1,gyn,gyn)+G(gxn−1,gxn,gxn)].

Set an = G(gxn,gxn+1,gxn+1)+G(gyn,gyn+1,gyn+1) and
λ = 2(a1+a2+a3)

2−a2−a3
, then the sequence {an} is decreasing as

0 ≤ an ≤ λan−1 ≤ λ 2an−2 ≤ ...≤ λ na0

which implies

lim
n−→∞

an

= lim
n−→∞

[G(gxn,gxn+1,gxn+1)+G(gyn,gyn+1,gyn+1)] = 0.

Thus,

lim
n−→∞

G(gxn,gxn+1,gxn+1) = 0,

lim
n−→∞

G(gyn,gyn+1,gyn+1)] = 0.
(5)

Next, let us prove that {gxn} and {gyn} are G−Cauchy
sequences. In fact, for m > n, we have

G(gxn,gxm,gxm)+G(gyn,gym,gym)

≤ G(gxn,gxn+1,gxn+1)+G(gyn,gyn+1,gyn+1)

+G(gxn+1,gxn+2,gxn+2)+G(gyn+1,gyn+2,gyn+2)

+ ...+G(gxm−1,gxm,gxm)+G(gym−1,gym,gym)

= an +an+1 + ...+am−1

≤ λ na0 +λ n+1a0 + ...+λ m−1a0 = (λ n +λ n+1 + ...+λ m−1)a0

≤ λ n

1−λ
a0.

Letting n,m −→ ∞, we have

lim
n,m−→∞

G(gxn,gxm,gxm)+G(gyn,gym,gym) = 0.

This imply that {gxn} and {gyn} are G−Cauchy sequences
in g(X). By G−completeness of g(X), there exists gx,gy∈
g(X) such that {gxn} and {gyn} converge to gx and gy,
respectively.
We claim that g(x) = T (x,y) and g(y) = T (y,x). Indeed,
from (1), we have

G(gxn+1,T (x,y),T (x,y)) = G(T (xn,yn),T (x,y),T (x,y))

≤ a1

2
[G(gxn,g(x),g(x))+G(gyn,g(y),g(y))]

+
a2

2
[G(gxn,T (xn,yn),T (xn,xn))+G(g(x),T (x,y),T (x,y))

+G(gyn,g(y),g(y))]+
a3

2
[G(gxn,T (x,y),T (x,y))

+G(g(x),T (xn,yn),T (xn,yn)+G(gyn,g(y),g(y)))]

Letting n −→ ∞, and using the fact that G is continuous on
its variables, we get that

G(g(x),T (x,y),T (x,y))≤ a2 +a3

2
G(g(x),T (x,y),T (x,y)).

Hence g(x) = T (x,y). Similarly, we may show that g(y) =
T (y,x). Then, (gx,gy) is a coupled point of coincidence of
mappings T and g.
Now we prove that gx = gy. By (1), we have

G(g(x),g(y),g(y)) = G(T (x,y),T (y,x),T (y,x))

≤ a1

2
[G(g(x),g(y),g(y))+G(g(y),g(x),g(x))]

+
a2

2
[G(g(x),T (x,y),T (x,y))+G(g(y),T (y,x),T (y,x))

+G(g(y),g(x),g(x))]

+
a3

2
[G(g(x),T (y,x),T (y,x))+G(g(y),T (x,y),T (x,y))

+G(g(y),g(x),g(x))]

=
a1 +a3

2
G(g(x),g(y),g(y))+

a1 +a2 +2a3

2
G(g(y),g(x),g(x)).

Similarly, we may show that

G(g(y),g(x),g(x))

≤ a1 +a2 +2a3

2
G(g(x),g(y),g(y))+

a1 +a3

2
G(g(y),g(x),g(x)).

Therefore

G(g(x),g(y),g(y))+G(g(y),g(x),g(x))

≤ 2a1 +a2 +3a3

2
[G(g(x),g(y),g(y))+G(g(y),g(x),g(x))]

< G(g(x),g(y),g(y))+G(g(y),g(x),g(x)).

which is a contradiction. So g(x) = g(y). We conclude
that T (x,y) = g(x) = g(y) = T (y,x). Thus, (g(x),g(x)) is
a coupled point of coincidence of mappings T and g.
Now, if there is another x1 ∈ X such that (g(x1),g(x1)) is
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a coupled point of coincidence of mappings T and g, then
G(g(x),g(x1),g(x1))

= G(T (x,x),T (x1,x1),T (x1,x1))

≤ a1

2
[G(g(x),g(x1),g(x1))+G(g(x),g(x1),g(x1))]

+
a2

2
[G(g(x),T (x,x),T (x,x))+G(g(x),T (x1,x1),T (x1,x1))

+G(g(x),g(x1),g(x1))]

+
a3

2
[G(g(x),T (x1,x1),T (x1,x1))

+G(g(x1),T (x,x),T (x,x))

+G(g(x),g(x1),g(x1))]

= (a1 +a2 +a3)G(g(x),g(x1),g(x1))

+
a3

2
G(g(x1),g(x),g(x)).

Similarly, we may show that
G(g(x1),g(x),g(x))≤ (a1 +a2 +a3)G(g(x1),g(x),g(x))

+
a3

2
G(g(x),g(x1),g(x1)).

Therefore
G(g(x),g(x1),g(x1))+G(g(x1),g(x),g(x))

≤ 2a1 +2a2 +3a3

2
[G(g(x),g(x1),g(x1))

+G(g(x1),g(x),g(x))].

It implies that
G(g(x),g(x1),g(x1)) = G(g(x1),g(x),g(x)) = 0 and so
g(x) = g(x1). Hence, (g(x),g(x)) is a unique coupled
point of coincidence of mappings T and g. Now, we show
that T and g have common coupled fixed point. For this,
let u = g(x). Then, we have u = g(x) = T (x,x). By w∗−
compatibility of T and g, we have

g(u) = g(g(x)) = g(T (x,x)) = T (g(x),g(x)) = T (u,u).

Then, (g(u),g(u)) is a coupled point of coincidence of
mappings T and g. By the uniqueness of coupled point of
coincidence, we have g(x) = g(u). Therefore, (u,u) is the
common coupled fixed point of T and g. To prove the
uniqueness, let v ∈ X with v ̸= u such that (v,v) is the
common coupled fixed point of T and g.
Then, using (1),
G(u,v,v) = G(T (u,u),T (v,v),T (v,v))

≤ a1

2
[G(gu,gv,gv)+G(gu,gv,gv)]

+
a2

2
[G(gu,T (u,u),T (u,u))+G(gv,T (v,v),T (v,v))

+G(gu,gv,gv)]

+
a3

2
[G(gu,T (v,v),T (v,v))+G(gv,T (u,u),T (u,u))

+G(gu,gv,gv)]

= (a1 +
a2

2
+a3)G(u,v,v)+

a3

2
G(v,u,u).

Similarly, we may show that

G(v,u,u)≤ (a1 +
a2

2
+a3)G(v,u,u)+

a3

2
G(u,v,v).

Hence,

G(u,v,v)+G(v,u,u)≤ 2a1 +a2 +3a3

2
[G(u,v,v)+G(v,u,u)].

Since 2a1+a2+3a3
2 < 1, so that G(u,v,v)=G(v,u,u)= 0 and

u = v. Thus T and g have a unique common coupled fixed
point. In Theorem 2.1, take w = u and z = v, to obtain the
following corollary.

Corollary 22Let (X ,G) be a G−metric space. Set T : X ×
X −→ X and g : X −→ X . Assume there exist a1,a2,a3 ≥ 0
with 2a1 +3a2 +3a3 < 2 such that

G(T (x,y),T (u,v),T (u,v))

≤ a1

2
[G(gx,gu,gu)+G(gy,gv,gv)]

+
a2

2
[G(gx,T (x,y),T (x,y))+G(gu,T (u,v),T (u,v))

+G(gy,gv,gv)]

+
a3

2
[G(gx,T (u,v),T (u,v))+G(gu,T (x,y),T (x,y))

+G(gy,gv,gv)],

(6)

for all x,y,u,v,w,z ∈ X. If T (X × X) ⊆ g(X), g(X) is a
G−complete subset of X, then T and g have a unique
common coupled coincidence point. Moreover, if T is
w∗−compatible with g, then T and g have a unique
common coupled fixed point.

Now, putting g = IX (the identity map of X)in the Theorem
2.1, we obtain

Corollary 23Let (X ,G) be a complete G−metric space.
Assume T : X ×X −→ X be a function satisfying (1)(with
g = IX )for all x,y,u,v,w,z ∈ X . Then T has a unique fixed
point.

By choosing a1,a2 and a3 suitably, one can deduce some
corollaries from Theorem 2.1.
For example, if a1 = 2k and a2 = a3 = 0 in Theorem 2.1,
then the following corollary is obtained which extends and
generalizes the comparable results of[10].

Corollary 24Let (X ,G) be a G−metric space. Set T : X ×
X −→ X and g : X −→ X . Assume there exist k ∈ [0, 1

2 )
such that

G(T (x,y),T (u,v),T (w,z))
≤ k[G(gx,gu,gw)+G(gy,gv,gz)],

(7)

for all x,y,u,v,w,z ∈ X. If T (X × X) ⊆ g(X), g(X) is a
G−complete subset of X, then T and g have a unique
common coupled coincidence point. Moreover, if T is
w∗−compatible with g, then T and g have a unique
common coupled fixed point.

Theorem 25Let (X ,G) be a complete G−metric space.
Assume that T : X × X −→ X and g : X −→ X are
continuous and there exists k ∈ [0, 2

3 ) and
h ∈ M(x,y,u,v,w,z) satisfying

G(T (x,y),T (u,v),T (w,z))≤ kh, (8)
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for all x,y,u,v,w,z ∈ X where

M(x,y,u,v,w,z) = {G(gx,gu,gw)+G(gy,gv,gz)
2

,

1
2

G(gx,T (x,y),T (x,y))+
1
2

G(gu,T (u,v),T (u,v))

+
1
2

G(gy,gv,gz),

1
2

G(gx,T (u,v),T (u,v))+
1
2

G(gu,T (x,y),T (x,y))

+
1
2

G(gy,gv,gz)}.

If T (X ×X)⊆ g(X) and g commutes with T , then T and g
have a coupled coincidence point.

Proof. Let gxn+1 = T (xn,yn) and gyn+1 = T (yn,xn) for all
n ≥ 0. For each n ∈ N, there exists

hn ∈ {G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
,

1
2

G(gxn−1,T (xn−1,yn−1),T (xn−1,yn−1))

+
1
2

G(gxn,T (xn,yn),T (xn,yn))

+
1
2

G(gyn−1,gyn,gyn),

1
2

G(gxn−1,T (xn,yn),T (xn,yn))

+
1
2

G(gxn,T (xn−1,yn−1),T (xn−1,yn−1))

+
1
2

G(gyn−1,gyn,gyn)}

= {G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
,

1
2

G(gxn−1,gxn,gxn)+
1
2

G(gxn,gxn+1,gxn+1)

+
1
2

G(gyn−1,gyn,gyn),

1
2

G(gxn−1,gxn+1,gxn+1)+
1
2

G(gxn,gxn,gxn)

+
1
2

G(gyn−1,gyn,gyn)},

such that

G(gxn,gxn+1,gxn+1)

= G(T (xn−1,yn−1),T (xn,yn),T (xn,yn))≤ khn.

Now, we consider three cases:

1.If hn =
G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2 , then

G(gxn,gxn+1,gxn+1)

≤ k
G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2

≤ 2k
2− k

G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
;

2.hn =
G(gxn−1,gxn,gxn)+G(gxn,gxn+1,gxn+1)+G(gyn−1,gyn,gyn)

2 ,
then

G(gxn,gxn+1,gxn+1)

≤ k
2

G(gxn,gxn+1,gxn+1)

+ k
G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
,

which gives that

G(gxn,gxn+1,gxn+1)

≤ 2k
2− k

G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
;

3.hn =
G(gxn−1,gxn+1,gxn+1)+G(gxn,gxn,gxn)+G(gyn−1,gyn,gyn)

2 ,
then by case 2, we also have

G(gxn,gxn+1,gxn+1)

≤ 2k
2− k

G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
;

since

G(gxn−1,gxn+1,gxn+1)

≤ G(gxn−1,gxn,gxn)+G(gxn,gxn+1,gxn+1).

Thus, we have

G(gxn,gxn+1,gxn+1)

≤ 2k
2− k

G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
, ∀n ∈ N.

By a similar proof, one can also show that

G(gyn,gyn+1,gyn+1)

≤ 2k
2− k

G(gxn−1,gxn,gxn)+G(gyn−1,gyn,gyn)

2
, ∀n ∈ N.

Then, we conclude that

G(gxn,gxn+1,gxn+1)

≤ (
2k

2− k
)n G(gx0,gx1,gx1)+G(gy0,gy1,gy1)

2
, ∀n ∈ N,

and

G(gyn,gyn+1,gyn+1)

≤ (
2k

2− k
)n G(gx0,gx1,gx1)+G(gy0,gy1,gy1)

2
, ∀n ∈ N.

It follows from 0 ≤ k < 2
3 that 0 ≤ 2k

2−k < 2
3 . Then,

analogously to the corresponding proof of Theorem 2.1,
{gxn} and {gyn} are G−Cauchy sequences in the
G−metric space (X ,G),which is complete. Then, there
are x,y ∈ X such that {gxn} and {gyn} are respectively
G−convergent to x and y. From Proposition 1.1, we have

lim
n−→∞

G(gxn,gxn,x) = lim
n−→∞

G(gxn,x,x) = 0, (9)

lim
n−→∞

G(gyn,gyn,y) = lim
n−→∞

G(gyn,y,y) = 0. (10)
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From (9), (10) and the continuity of g, we have

lim
n−→∞

G(g(gxn),g(gxn),g(x))

= lim
n−→∞

G(g(gxn),g(x),g(x)) = 0,

lim
n−→∞

G(g(gyn),g(gyn),g(y))

= lim
n−→∞

G(g(gyn),g(y),g(y)) = 0.

Since gxn+1 = T (xn,yn) and gyn+1 = T (yn,xn), the
commutativity of T and g yields that

g(gxn+1) = g(T (xn,yn)) = T (gxn,gyn) (11)

g(gyn+1) = g(T (yn,xn)) = T (gyn,gxn). (12)

By using (11), (12) and the continuity of T , we get
{g(gxn+1)} is G−convergent to T (x,y) and {g(gyn+1)} is
G−convergent to T (y,x). By uniqueness of the limit,we
have gx = T (x,y) and gy = T (y,x), and this ends the
proof.
Now, putting g = IX (the identity map of X)in the
previous result, we obtain

Corollary 26Let (X ,G) be a complete G−metric space.
Assume that T : X ×X −→X is continuous and there exists
k ∈ [0, 2

3 ) and h ∈ M(x,y,u,v,w,z) satisfying

G(T (x,y),T (u,v),T (w,z))≤ kh,

for all x,y,u,v,w,z ∈ X where

M(x,y,u,v,w,z) = {G(x,u,w)+G(y,v,z)
2

,

1
2

G(x,T (x,y),T (x,y))+
1
2

G(u,T (u,v),T (u,v))

+
1
2

G(y,v,z),

1
2

G(x,T (u,v),T (u,v))+
1
2

G(u,T (x,y),T (x,y))

+
1
2

G(y,v,z)}.

Then T has a coupled fixed point.

Now, we introduce an example to support the usability of
our results. Example.Let X = [0,1]. Define T : X ×X −→
X by T (x,y) = 1

16 x2y2 and define g : X −→ X by g(x) =
1
2 x2. Define a G−metric on X by G(x,y,z) = |x− y|+ |x−
z|+ |y− z| for all x,y,z ∈ X .
By routine calculations, the reader can easily verify that
the following assumptions hold:

(1)T (X ×X)⊆ g(X);
(2)g(X) is a G−complete subset of X ;
(3)T is w∗−compatible with g.

Here, we show only that T and g are condition (1) in
Theorem 2.1 is satisfied for all real numbers a1,a2,a3
with 0 ≤ 2a1 + 3a2 + 3a3 < 2. Since

|xy− uv| ≤ |x− u|+ |y− v| holds for all x,y,u,v ∈ X , we
have

G(T (x,y),T (u,v),T (w,z))

= G(
1
16

x2y2,
1
16

u2v2,
1

16
w2z2)

=
1
16

|x2y2 −u2v2|+ 1
16

|x2y2 −w2z2|

+
1
16

|u2v2 −w2z2|

≤ 1
16

[|x2 −u2|+ |y2 − v2|+ |x2 −w2|+ |y2 − z2|+ |u2 −w2|

+ |v2 − z2|]

≤ 1
16

[|x2 −u2|+ |y2 − v2|+ |x2 −w2|+ |y2 − z2|+ |u2 −w2|

+ |v2 − z2|

+ |x2 − 1
8

x2y2|+ |x2 − 1
8

u2v2|+ |u2 − 1
8

u2v2|+ |u2 − 1
8

x2y2|]

≤ 1
8
[|1

2
x2 − 1

2
u2|+ |1

2
x2 − 1

2
w2|+ |1

2
u2 − 1

2
w2|

+ |1
2

y2 − 1
2

v2|+ |1
2

y2 − 1
2

z2|+ |1
2

v2 − 1
2

z2|]

+
1
16

[
1
2

x2 − 1
16

x2y2|+ |1
2

u2 − 1
16

u2v2|+ |1
2

y2 − 1
2

v2|

+ |1
2

y2 − 1
2

z2|+ |1
2

v2 − 1
2

z2|]+ 1
16

[
1
2

x2 − 1
16

u2v2|

+ |1
2

u2 − 1
16

x2y2|+ |1
2

y2 − 1
2

v2|+ |1
2

y2 − 1
2

z2|

+ |1
2

v2 − 1
2

z2|]

≤
1
4
2
[G(gx,gu,gw)+G(gy,gv,gz)]

+
1
8
2
[G(gx,T (x,y),T (x,y))

+G(gu,T (u,v),T (u,v))+G(gy,gv,gz)]

+
1
8
2
[G(gx,T (u,v),T (u,v))

+G(gu,T (x,y),T (x,y))+G(gy,gv,gz)].

Thus, (1) is satisfied with a1 =
1
4 and a2 = a3 =

1
8 where

2a1+3a2+3a3 < 2. Hence, all the conditions of Theorem
2.1 are satisfied. Moreover, (0,0) is the unique common
coupled fixed point of T and g.
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