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Abstract: In this paper, we consider the place of action is an affine 3-space endowed with a metric which is well known by a centrally
symmetric, convex and smooth body B as a unit ball, such a space is called Minkowski normed space. We defined a semi-inner product
in M-space using the Cosine-Minkowski function. Finally, we redefine Bertrand curves and insert the concepts of Right and Left
involutes in Minkowski three dimensional space with new related theorems
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1 Introduction

Minkowski space is a real normed linear finite space
endowed with a metric based on a centrally symmetric
unit ball B. Such ”Minkowsi-spaces” are, in general, not
inner product spaces and therefore one has to modify the
classical concepts of orthogonality and angle measure [1].
There are many authors attempts to define Minkowski
orthogonality, most of them justified by and applied to
just a single geometric problem [2], [3]. Most commonly
used is ”Birkhoff-orthogonality” (B-orthogonality) with
the disadvantage of being a non-symmetric relation, see
Birkhoff [4], James [5,6,7] and Day [8].

Let B be a centrally symmetric (gauge) convex body
in an affine 3-space E3, then we can define a norm whose
unit ball is B, see [9]. In the following, we will consider
only Minkowski spaces with a strictly convex unit ball B,
that means the boundry ∂B contains no line segments.

If Mn
B is n-dimensional Minkowski space with unit

ball B, let x,y ∈ Mn
B, then we say that x is left orthogonal

(Birkhoff orthogonal) to y, (x ⊣ y), if ∥x+λy∥ ≥ ∥x∥ for
all λ in R. In Figure 1, we see the vector a passing
through the origin and its conjugate line a⊣ which is left
orthogonal to a in a Minkowski plane (M-plane) with the
unit ball B.

Fig. 1: a⊣ is a left-orthogonal line to a in a Minkowski
plane M2

B .

A. C. Thompson [10] introduce an angle measure
between two lines using Birkhoff orthogonal projection,
see Figure 2, and delivering an analogue to the cosine
function in the Euclidean case. It is called Cosine
Minkowski function which can be defined as follows:

If x1,x2 ∈ Mn
B,x2 ̸= 0, then,

cm(x1,x2) :=
f1(x2)

∥x2∥∥ f1∥
(1)

where, f1 is a unique linear functional attains its norm
at x1.

Thereby, cm(x1,x2) = 0 ⇔ x1 ⊣ x2 and cm(x1,x1) = 1.
Also, for x1 ̸= x2, |cm(x1,x2)| ≤ 1 with cm(x1,x2) = 1 iff
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the line segment [x1/∥x1∥,x2/∥x2∥]⊂ ∂B, for more details
see [10].

Fig. 2: Cosine-Minkowski cm(b,a) of an angle spanned
by an ordered pair of oriented lines a and b with another
unit ball B .

Definition 1.1 In Minkowski space Mn
B, we define the

Minkowski semi-inner product of two vectors x1,x2 ∈ Mn
B

as follows:

⟨x1,x2⟩M =
f1(x2)

f1(x1)
∥x1∥2. (2)

By substitute (1) into (2), we have

⟨x1,x2⟩M = ∥x1∥∥x2∥cm(x1,x2), (3)

which is a suitable definition of the Minkowski semi-inner
product of two vectors x1,x2 ∈ Mn

B, see [11,12].
The Minkowski semi-inner product ⟨., .⟩M has the

following properties:
i. ⟨x1,x2⟩M = 0 if and only if x1 ⊣ x2.
ii. In general, ⟨x1,x2⟩M ̸= ⟨x2,x1⟩M∀x1,x2 ∈ Mn

B , x1 ̸=
x2.

iii. ⟨x1,ax2 + bx3⟩M = a⟨x1,x2⟩M + b⟨x1,x3⟩M , for all
a,b ∈ R and all x1,x2,x3 ∈ Mn

B.
iv. ⟨cx1,x2⟩M = c⟨x1,x2⟩M and ⟨x1,dx2⟩M = d⟨x1,x2⟩M

for all x1,x2 ∈ Mn
B and c,d ∈ R.

v. ⟨x,x⟩M ≥ 0 and ⟨x,x⟩M = 0 if and only if x = 0.
vi. |⟨x1,x2⟩M|2 ≤ ∥x1∥2∥x2∥2∀x1,x2 ∈ Mn

B.
Dragomir [11] proof that, in each real normed linear

space Mn
B there exists at least one semi-inner product [., .]

which generates the norm ∥.∥ . That is, ∥x∥ = [., .]1/2 for
all x ∈ Mn

B , and it is unique if and only if Mn
B is smooth.

Therefore, definition (3) is unique which generate the
norm which is generate by the unit ball B.
Definition 1.2. Let x1,x2 are two vectors in a Minkowski
space M3

B such that ∥x1∥= ∥x2∥= 1, then this pair is called
mutually normal pair if x1 ⊣ x2 and x2 ⊣ x1.
Definition 1.3. (Thompson [10]), If B is the unit ball in
a Minkowski space then there exists a basis (x1,x2, ...,xd)
such that ∥xi∥= 1 and xi ⊣ x j for all i and j with i ̸= j ; i.e.
each pair of basis vectors is mutually normal.
Definition 1.4. (B-orthonormal frame in Mn

B ): Let
e1,e2, ...,en ∈ Mn

B, ∥ei∥ = 1∀i = 1,2, ...,n. If

e j ⊣ ek∀k = 1,2, ..., j − 1 then the ordered vector set
e1,e2, ...,en is called B-orthonormal frame in Mn

B.
In our work, we shall use the previous definitions to

introduce and modify some concepts of curve which
depend on left and right B-orthogonal, e.g. theorems
about Involute and Bertrand curves in three dimensional
M-space.

2 Involute.

2.1. In Euclidean space.

The tangent lines of a space curve c generate a surface
called the tangent ruled surface of c. A curve c∗ which lies
on the tangent ruled surface of c and intersects the tangent
lines orthogonally is called an involute of c.

If c is given by x = x(s), (where s is the arc length of
the curve c), and if x∗ is a point on an involute c∗, where
c∗ crosses the tangent line at x(s), then x∗ − x(s) is
proportional to t(s). Thus c∗ have a representation of the
form x∗ = x(s)+ k(s) t(s). Moreover, on an involute, the
tangent vector is given by

dx∗

ds
= (1+ k·) t+ k χ h, (4)

where, t and h and are the tangent and principal normal
vectors on c respectively. χ is the curvature of the curve c,
dx∗
ds is orthogonal to the tangent vector t on C; that is

dx∗

ds
· t = 1+ k· = 0 (5)

Integrating both sides of (5) gives k = −s+α , α =
constant. Thus there exists an infinity family of involute,
one for each α , x∗ = x+(α − s)t.

In the following subsection, we try to insert new
involute concepts in Minkowski space depend on left and
right-orthogonality.

2.2. In Minkowski space.

Definition 2.1 (left involute)
If c is a space curve with a parametric representation

x = x(s). Then, the corresponding space curve c∗1 is called
left involute of c if and only if for all points a ∈ x(s) there
exists x∗⊣ upon c∗1 such that the tangent line ta at a is B-

orthogonal to dx∗⊣
ds at the point of intersection, i.e., ta ⊣

dx∗⊣
ds

for all a ∈ x(s), see Figure 3.
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Fig. 3: Left and right involute in M-Space.

By the above definition we have

x∗ = x(s)+λ (s) t(s),

dx∗
ds = dx

ds +λ · t(s)+λ t·(s) .

From Frenet-Serret equations [1,12], we get

t·(s) = χM h(s), (6)

and,
dx∗
ds = (∥x·∥+λ ·) t+λ χM h

where χM is the M-curvature and t,h are the tangent
and M-principle normal vectors with respect to
B-orthogonality and the unit ball B.

Since, t = ta ⊣ dx∗
ds , then ⟨ta,

dx∗
ds ⟩M = 0, ∥x·∥+ λ · +

λ χM cm(ta,h) = 0, where cm(ta,h) = 0 because ta ⊣ h,
then,

∥x·∥+λ · = 0. (7)

Without loss of generality, we can take ∥x·∥= 1. Then
we get

1+λ · = 0. (8)

Integrating both sides of (8), we get λ (s) = −s + β
where β is a constant, we have

dx∗

ds
= χM(−s+β )h. (9)

Definition 2.2. (Right involute)
If c is a space curve given by the representation x =

x(s) then the corresponding space curve c∗2 is called right
involute of c if and only if for all points a∈ x(s) there exists
x∗⊢ upon c∗2 such that the tangent line ta is right-orthogonal

to dx∗⊢
ds at the point of intersection, i.e., ta ⊢

dx∗⊢
ds for all a ∈

x(s), see Figure 3. In the following theorem, we try to get
the condition that the two vectors dx∗⊣

ds and dx∗⊢
ds are mutually

normal at any point of the parameter s = s0. Also, if it is
valid for all points on all curves in the space, then the space
is Euclidean one.

Theorem 2.3
If c is a curve with a vector representation x = x(s) and

x∗⊣,x
∗
⊢ are the left and right involutes of x(s) respectively,

such that

dx∗⊣
ds

= ρ1
dx∗⊢
ds

at s = s0, (10)

where, ρ1 is a constant. Then dx
ds and dx∗⊣

ds are mutually
normal vectors at s = s0. If (10) is valid for all points a
belongs to a curve x(s) ∀ x(s) ∈ M3

B then, the space is
Euclidean space with ellipsoid unit ball B.
Proof. Since

dx∗⊣
ds = ρ1

dx∗⊢
ds ,

from the definition 2.1, dx∗⊣
ds ⊢ dx

ds . Therefore, ρ1
dx∗⊢
ds ⊢

dx
ds . Thus we get,

dx∗⊢
ds

⊥ dx
ds

, (11)

and hence dx
ds and dx∗⊣

ds are mutually normal vectors. �

3 Bertrand curves.

3.1. In Euclidean space.

An interesting problem in the theory of curves is whether
it is possible for several curves to share the same family
of tangents, principal normals or binormals. For the
tangents, the answer is easily seen to be negative: the
family of tangents uniquely determines the curve. For the
principle normals, the problem, was answered by Joseph
Bertrand, who discovered that, for an arbitrary curve, the
answer is negative. However, there are special curves for
which there might be, also, other curves with the same
family of principle normals. These curves are called
Bertrand curves.

Usually, for a Bertrand curve, there is only one curve
having the same principle normals. We will say that, the
two curves are Bertrand mates, or that they are
associated, or conjugated Bertrand curves. It turns out
that if a Bertrand curve has more than one Bertrand mate,
then it has an infinity and the curve (and all of its mates)
is a circular cylindrical helix.

We have the following results related to Bertrand
curves:

- The angle of the tangents of two associated Bertrand
curves at corresponding points is constant.

- A curve r is a Bertrand curve if and only if its torsion
and curvature verify a relation of the form

a · τ +b ·χ = 1 (12)

with constants vectors a and b.
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3.2. In Minkowski space.

Let r,r∗ be two Bertrand mates. We assume that the first
curve is parametrized with the arc length parameter s. The
second curve also depend on s of the first curve. We
assume that there exist a point, belongs to r∗, which is on
the Bertrand mate having the same Minkowski-principle
normal as the first one at s. The two points are called
corresponding Bertrand points,

r∗(s) = r(s)+λ1(s)h(s) ,

h(s) =±h∗(s) ,

then,

dr∗

ds
=

dr
ds

+λ1(s)
dh
ds

+
dλ1

ds
h. (13)

Using Frenet matrix [1], we get

dr∗

ds
= (1−λ1τ̄)t+

(
dλ1

ds
+λ1(τ̄ cm(h, t)+

τ̄1cm(h,b))

)
h−λ1τ̄1b, (14)

where τ̄, τ̄1 are given as functions of M-torsions, see
[1] and dr∗

ds is tangent to the second curve, therefore it is
B-orthogonal both on h and h∗.

Multiply both sides of (14) by h from left as a semi-
inner product, we get

dλ1

ds
= cm(h, t∗)

ds∗

ds
− cm(h, t). (15)

Since,
dr∗
ds = t∗ ds∗

ds ,

then we get,

t∗ = (1−λ1τ̄)t
ds
ds∗

+

(
cm(h, t∗)− ds

ds∗
(1−λ1τ̄)cm(h, t)+

ds
ds∗

λ1τ̄1cm(h,b)

)
h− ds

ds∗
λ1τ̄1b.

(16)

Multiply both sides of (16) by t from left we get,

cm(t, t∗) = (1−λ1τ̄) ds
ds∗ −

ds
ds∗ λ1τ̄1cm(t,b).

We say that the angle between t and t∗ is constant
with respect to Birkhoff orthogonality for first argument t
if cm(t, t∗) = const.

Then the condition of r and r∗ to be two Bertrand
mates is:

ds
ds∗

((1−λ1τ̄)−λ1τ̄1cm(t,b)) = const. (17)

Conclusion

For Bertrand curves in Minkowski space, we assume that
the angle between the tangents of two associated Bertrand
curves is constant when the Minkowski cosine is also
constant. We can improve result (17) by using Brauner’s
theorem (Angle measure in M-space) using the ideal
plane at the projective space.
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