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Abstract: The aim of this paper is to introduce and study two subclasses of multivalentfunctions involving generalized Sălăgean
operator. Our classesM m,σ

p,n (γ;η) andN m,σ
p,n (α ,β ;η) unify the standard classes of multivalent starlike functions of orderη , multivalent

convex functions of orderη , and Bazilevíc functions. Some connections between our classes are obtained and several consequences of
main results are discussed.
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1 Introduction

Let U = {z∈C : |z|< 1} be the unit disk and letA (p,n)
be the class of all analytic functions inU of the form

f (z) = zp+
∞

∑
k=p+n

akz
k
, (p,n∈ N) (1)

and let denoteA := A (1,1).
A function f ∈ A (p,n) is said to be multivalent

starlike functions of orderα in U , if it satisfies the
following inequality

Re
z f′(z)
f (z)

> α, z∈ U , (0≤ α < p, p∈ N)

and we denote this class byS∗p,n(α). A function
f ∈ A (p,n) is said to be multivalent convex functions of
orderα in U , if it satisfies the following inequality

Re

(

1+
z f′′(z)
f ′(z)

)

> α, z∈ U , (0≤ α < p, p∈ N)

and we denote this class byCp,n(α).
A function f ∈ A (p,n) is said to be multivalent

close-to-convex functions of orderα in U , if it satisfies

the following inequality

Re
f ′(z)
zp−1 > α, z∈ U , (0≤ α < p, p∈ N)

and we denote this class byKp,n(α).
In the recent paper of Aouf et al. [1], the authors

introduced the subclassK λ
p (α) of A (p) := A (p,1),

consisting on the functionsf ∈ A (p) that satisfy the
inequality

Re
[λ + p(1−λ ]z f′(z)+λz2 f ′(z)

(1−λ )p f(z)+λz f′(z)
> α, z∈ U ,

with 0≤ λ ≤ 1; 0≤ α < p, p∈ N.
For a functionf in A (p,n), we define the following

generalized S̆alăgean differential operator:

D0
σ f (z) = f (z) (2)

D1
σ f (z) = (1−σ) f (z)+

σ
p

z f′(z) = Dσ f (z),σ ≥ 0 (3)

Dm
σ f (z) = Dσ

(

Dm−1 f (z)
)

, (m∈ N) (4)
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If f is given by(1), then from(3) and(4), we see that

Dm
σ f (z) = zp+

∞

∑
k=p+n

[

1+

(

k
p
−1

)

σ
]m

akz
k (5)

For σ = p= 1, we get the well-known S̆alăgean operator
[16].
Motivated by the subclassK λ

p (α) due to Aouf et al. [1]

and two subclassesM λ
p,n(γ;β ) andN λ

p,n(µ ,η ;δ ) due to
Goswami et al. [4], we introduce the next two new
subclasses ofA (p,n) .

Definition 1. Let M m,σ
p,n (γ;η) be the class of functions

f ∈ A (p,n) that satisfy the condition

Re
[

(1− γ) z(Dm
σ f (z))′

Dm
σ f (z) + γ

(

1+ z(Dm
σ f (z))′′

(Dm
σ f (z))′

)]

> η , z∈ U ,

(0≤ σ ≤ 1;0≤ η < p;γ ∈ R;m, p∈ N)

and letN m,σ
p,n (α,β ;η) be the class of functionsf ∈

A (p,n) that satisfy the conditions

(Dm
σ f (z))(Dm

σ f (z))′

zp 6= 0,z∈ U \{0}

and

Re

[

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
]

> δ , z∈ U

(α,β ∈ R;0≤ δ < 1;m, p∈ N)

From above definition, the following subclasses of the
classesA (p,n) and A (n) = A (1,n) emerge from the
families of the functionsM m,σ

p,n (γ;η) andN m,σ
p,n (α,β ;η):

M 0,σ
p,n (0;η) = N 0,σ

p,n (−1,1;η) = S ∗
p,n(η)(0≤ η < p) ;

M 0,σ
1,n (0;η) = N 0,σ

1,n (−1,1;η) = S ∗
1,n(η)

= S ∗
n (η)(0≤ η < 1) ;

M 1,1
p,n(0;η) = Cp,n(η)(0≤ η < p) ;

M 1,1
1,n (0;η) = C1,n(η) =: Cn(η)(0≤ η < 1) ;

M 1,σ
p,n (0;η) = K σ

p (η)(0≤ η < p) ;

N 1,1
1,n (1,β ;η) =: Bn(β ;η)(β ≥−1,0≤ η < 1)

Note thatS ∗
p,n(η), Cp,n(η), S ∗

n (η), Cn(η) andBn(β ;η)
are said to be the classes of multivalent starlike functions
of order η , multivalent convex functions of orderη ,
univalent starlike functions of orderη , univalent convex
functions of order η , and a subclass of Bazilević
functions, respectively. Further, form = 1, we get the
subclassesM λ

p,n(γ;η) andN λ
p,n(α,β ;η) which is similar

to the classes studied recently by Goswami et al. [4]

Also let denote byH [a,n] the class

H [a,n] = {p∈ H (U ) : p(z) = a+anzn+ ...,z∈ U } .

For studies related to multivalent functions, (see, e.g.
[5]-[8],[12],[14]). Singh and Singh [17] obtained several
interesting conditions for functionsf ∈ A satisfying
inequalities involvingf ′(z) andz f′′(z) to be univalent or
starlike inU . Owa et al. [15] generalized the results of
Singh and Singh [17] and also obtained several sufficient
conditions for close-to-convexity, starlikeness and
convexity of function f ∈ A . Further, Lee et al. [10]
extended the results obtained by Owa et al. [15] for
f ∈ A (p,n). Also, Goswami et al. [4] have obtained
similar type of results.

In this paper we will extend the results of Irmak et al.
[9] and Goswami et al. [4] for multivalent functions, by
defining the differential operator
J m,σ

p,n (α,β ) : Ap,n → H [(α +β ), p+n] ,

J m,σ
p,n (α,β ) f (z) = α

z(Dm
σ f (z))′

Dm
σ f (z)

+β
(

1+
z(Dm

σ f (z))′′

(Dm
σ f (z))′

)

and further find its relationship withN m,σ
p,n (α,β ;η).

In our proposed investigation of the classA (p,n), we
need the following lemmas:

Lemma 1.1..(See [13]). Let the (nonconstant) function
w(z) be analytic inU with w(0) = 0. If |w(z)| attains its
maximum value on the circle|z| = r < 1 at a point
z0 ∈ U , then

z0w′(z0) = mw(z0)

wherem is a real number andm≥ n wheren≥ 1.

Lemma 1.2.. (See [11]) Let h(z) be analytic inU with
h(0) 6= 0 (z∈U ). Further suppose thatµ ,ν ∈R

+ = (0,∞)
and

∣

∣arg
(

h(z)+νzh′(z)
)∣

∣<
π
2

(

µ +
2
π

arctan(νµ)
)

then
|argh(z)|<

π
2

µ , z∈ U

2 Main Results

Theorem 2.1.. Let the function f∈ A (p,n), satisfies the
inequality

Re
[

J m,σ
p,n (α,β ) f (z)

]

>
[2(α+β )p−n]+λ [2(α+β )p+n]

2(1+λ )
(6)

then

Re

[

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
]

>
1+λ

2
(7)

where(α,β ∈ R; 0≤ λ < 1; p,n∈ N).
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Proof. Let the functionw be defined by

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
=

1+λw(z)
1+w(z)

(8)

Then, clearly,w is analytic inU with w(0) = 0. We also
find from (8) that

α
z(Dm

σ f (z))′

Dm
σ f (z)

+β
(

1+
z(Dm

σ f (z))′′

(Dm
σ f (z))′

)

= p(α +β )+
λzw′(z)

1+λw(z)
−

zw′(z)
1+w(z)

, z∈ U . (9)

Suppose there exists a pointz0 ∈ U such that|w(z0)| = 1
and|w(z)|< 1, when|z|< |z0|.

Then, by applying Lemma 1.1, there existsm≥ n such
that

z0w′(z0)=mw(z0),
(

m≥ n≥ 1;w(z0) = eiθ ;θ ∈ R

)

.

(10)
Using (9) and (10), it follows that

Re

[

α
z(Dm

σ f (z0))
′

Dm
σ f (z0)

+β
(

1+
z(Dm

σ f (z0))
′′

(Dm
σ f (z0))′

)]

= p(α +β )+Re

(

λmeiθ

1+λeiθ

)

−Re

(

meiθ

1+eiθ

)

= p(α +β )+
λm(λ +cosθ)

1+λ 2+2λ cosθ
−

m
2

= p(α +β )−
m(1−λ 2)

2(1+λ 2+2λ cosθ)

≤ p(α +β )−
n
2

(

1−λ
1+λ

)

≤
[2(α +β )p−n]+λ [2(α +β )p+n]

2(1+λ )
which contradicts the given hypothesis. Hence|w(z)|< 1,
for all z∈ U , which implies

∣

∣

∣

∣

∣

∣

∣

1−
(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
−λ

∣

∣

∣

∣

∣

∣

∣

< 1, z∈ U , (11)

or equivalently

Re

[

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
]

>
1+λ

2
, z∈ U ,

and this completes the proof of the theorem.
Settingα = 0,β = 1,m= 0 in above theorem, we get:
Corollary 2.2.. If the function f∈ A (p,n) satisfies the

inequality

Re

(

1+
z f′′(z)
f ′(z)

)

>
(2p−n)+λ (2p+n)

2(1+λ )
, z∈ U ,

then

Re
f ′(z)
pzp−1 >

1+λ
2

, z∈ U ,

which is the result obtained earlier by Lee et al. [10] .
Settingp= n= 1 in above corollary, the result reduces to:
Corollary 2.3.. If the function f ∈ A satisfies the

inequality

Re

(

1+
z f′′(z)
f ′(z)

)

>
1+3λ

2(1+λ )
, z∈ U ,

then

Ref ′(z)>
1+λ

2
, z∈ U ,

which is the same result obtained earlier by Owa et al.
[15] .
Settingα = 1,β = 0,m= 0, Theorem 2.1 gives
Corollary 2.4.. Let the function f∈ A (p,n), satisfies the

inequality

Re
z f′(z)
f (z)

>
(2p−n)+λ (2p+n)

2(1+λ )
, z∈ U ,

then

Re
f (z)
zp >

1+λ
2

, z∈ U .

Settingp= n= 1 in corollary 2.4, the result reduces to

Corollary 2.5.. Let the function f∈ A , satisfies the
inequality

Re
z f′(z)
f (z)

>
1+3λ

2(1+λ )
, z∈ U ,

then

Re
f (z)
z

>
1+λ

2
, z∈ U .

Settingm= 0,α = 1− γ andβ = γ in above theorem, we
obtain the following special case:
Corollary 2.6.. Let the function f∈ A (p,n), satisfies the

inequality
Re

[

(1− γ) z f′(z)
f (z) + γ

(

1+ z f′′(z)
f ′(z)

)]

> p+ n
2

(

λ−1
λ+1

)

, z∈ U ,

then

Re

[

(

f (z)
zp

)1−γ ( f ′(z)
pzp−1

)γ
]

>
1+λ

2
, z∈ U .

Theorem 3.1. Let the function f∈ A (p,n), satisfies the

inequality

Re
[

J m,σ
p,n (α,β ) f (z)

]

<
{(α+β )p+n}λ+{2p(α+β )+n}

λ+2 , z∈ U ,

(12)
then

∣

∣

∣

∣

∣

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
−1

∣

∣

∣

∣

∣

< 1+λ , z∈ U ,

(13)
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where(α,β ∈ R; 0≤ λ < 1; p,n∈ N).

Proof. Let the functionw be defined by

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
= (1+λ )w(z)+1. (14)

Then, clearly,w is analytic inU with w(0) = 0,
and using the logarithmic differentiation(14) yields

α
z(Dm

σ f (z))′

Dm
σ f (z)

+β
(

1+
z(Dm

σ f (z))′′

(Dm
σ f (z))′

)

= p(α +β )+
(1+λ )zw′(z)

1+(1+λ )w(z)
, z∈ U . (15)

Suppose there exists a pointz0 ∈ U such that|w(z0)| = 1
and|w(z)|< 1, with |z|< |z0|

Then by applying Lemma 1.1, there existsm≥ n such
that

z0w′(z0) = mw(z0),
(

m≥ n≥ 1;w(z0) = eiθ ;θ ∈ R

)

(16)
Then by using(15) and(16), it follows that

Re

[

α
z(Dm

σ f (z0))
′

Dm
σ f (z0)

+β
(

1+
z(Dm

σ f (z0))
′′

(Dm
σ f (z0))′

)]

= (α +β ) p+Re

(

(1+λ )z0w′(z0)

(1+λ )w(z0)+1

)

= (α +β ) p+Re

(

(1+λ )meiθ

(1+λ )eiθ +1

)

= (α +β ) p+

(

m(1+λ )(1+λ +cosθ)
1+(1+λ )2+2(1+λ )cosθ

)

≥
{(α +β )p+n}λ +{2p(α +β )+n}

λ +2
, z∈ U

which contradicts the hypothesis(12). It follows that
|w(z)|< 1, z∈ U , that is

∣

∣

∣

∣

∣

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
−1

∣

∣

∣

∣

∣

< 1+λ , z∈ U .

This evidently completes the proof of the theorem.
Settingα = 0,β = 1,m= 0 in above theorem, we get
Corollary 3.2. If the function f∈ A (p,n) satisfies the

inequality

Re

[

1+
z f′′(z)
f ′(z)

]

<
(p+n)λ +(2p+n)

λ +2
, z∈ U ,

then
∣

∣

∣

∣

f ′(z)
pzp−1 −1

∣

∣

∣

∣

< 1+λ , z∈ U ,

which is the result obtained earlier by Lee et al. [10] .
Settingp= n= 1 in above corollary, the result reduces to

Corollary 3.3. If the function f ∈ A satisfies the

inequality

Re

(

1+
z f′′(z)
f ′(z)

)

<
2λ +3
λ +2

, z∈ U ,

then
∣

∣ f ′(z)−1
∣

∣< 1+λ , z∈ U ,

which is the same result obtained earlier by Owa et al.
[15] .
Settingα = 1,β = 0,m= 0, the above theorem gives
Corollary 3.4. Let the function f∈ A (p,n), satisfies the

inequality

Re
z f′(z)
f (z)

<
(p+n)λ +(2p+n)

λ +2
, z∈ U ,

then
∣

∣

∣

∣

f (z)
zp −1

∣

∣

∣

∣

< 1+λ , z∈ U .

Settingp= n= 1 in corollary 3.4, the result reduces to:
Corollary 3.5. Let the function f∈ A , satisfies the

inequality

Re
z f′(z)
f (z)

<
3+2λ
2+λ

, z∈ U ,

then
∣

∣

∣

∣

f (z)
z

−1

∣

∣

∣

∣

< 1+λ , z∈ U .

For the next result, we assume thatα,β ∈ R s.t. α +
β > 0

Theorem 4.1. Let the function f∈ A (p,n), satisfies the
inequality

∣

∣

∣

∣

∣

∣

arg





(

Dm
σ f (z)
zp

)α (

Dm
σ f (z))′

pzp−1

)β
×

{

α
p(α+β )

z(Dm
σ f (z))′

Dm
σ f (z) + β

p(α+β )

(

1+ z(Dm
σ f (z))′′

(Dm
σ f (z))′

)}





∣

∣

∣

∣

∣

∣

<
π
2

[

γ +
2
π

arctan

(

γ
p(α +β )

)]

, z∈ U ,

whereγ > 0, then
∣

∣

∣

∣

∣

arg

{

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
}∣

∣

∣

∣

∣

<
π
2

γ , z∈ U .

Proof. If we define the function

h(z) =

(

Dm
σ f (z)
zp

)α (

(Dm
σ f (z))′

pzp−1

)β
(17)

then h(z) = 1+ c1z+ ... is analytic inU and h(0) = 1,
h′(0) 6= 0.
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Differentiating (17) logarithmically with respect to z
and by simple calculation, we get

zh′(z) = h(z)

[

α
z(Dm

σ f (z))′

Dm
σ f (z)

+β
(

1+
z(Dm

σ f (z))′′

(Dm
σ f (z))′

)

− p(α +β )
]

Thus,

h(z)+
1

p(α +β )
zh′(z)

=
h(z)

p(α +β )

[

α
z(Dm

σ f (z))′

Dm
σ f (z)

+β
(

1+
z(Dm

σ f (z))′′

(Dm
σ f (z))′

)]

and by using lemma(1.2), we obtain the desired result.
Settingα = 1,β = 0,m= 0 in Theorem 4.1, we obtain the
following corollary:

Corollary 4.2. If f ∈ A (p,n) satisfies the inequality
∣

∣

∣

∣

arg

(

f ′(z)
pzp−1

)∣

∣

∣

∣

<
π
2

[

γ +
2
π

arctan

(

γ
p

)]

, z∈ U ,

then
∣

∣

∣

∣

arg

(

f (z)
zp

)∣

∣

∣

∣

<
π
2

γ , z∈ U .

Setting p = 1 in above corollary 4.2, we obtain the
following corollary:

Corollary 4.3. If f ∈ A (1,n) satisfies the inequality

∣

∣arg
(

f ′(z)
)∣

∣<
π
2

[

γ +
2
π

arctan(γ)
]

, z∈ U ,

then
∣

∣

∣

∣

arg

(

f (z)
z

)∣

∣

∣

∣

<
π
2

γ , z∈ U .

Settingα = 0, β = 1,m= 0 in Theorem 4.1, we obtain
the following corollary:

Corollary 4.4. If f ∈ A (p,n) satisfies the inequality
∣

∣

∣
arg

(

1
pzp−1 { f ′(z)+z f′′(z)}

)∣

∣

∣
<

π
2

(

γ + 2
π arctan

(

γ
p

))

, z∈ U ,

then
∣

∣

∣

∣

arg

{

f ′(z)
pzp−1

}∣

∣

∣

∣

<
π
2

γ , z∈ U .

Settingp= 1 in above corollary, we obtain

Corollary 4.5. If f ∈ A (1,n) satisfies the inequality

∣

∣arg
{

f ′(z)+z f′′(z)
}∣

∣<
π
2

(

γ +
2
π

arctanγ
)

, z∈ U ,

then
∣

∣arg f ′(z)
∣

∣<
π
2

γ , z∈ U .

Settingβ =m= 0, p= 1 in in Theorem 4.1, we obtain the
following corollary:

Corollary 4.6. f ∈ A (1,n) satisfies the inequality
∣

∣

∣

∣

arg

{

f ′(z)
(

z
f (z)

)1−α
}∣

∣

∣

∣

<
π
2

[

γ + 2
π arctan

( γ
α
)]

, z∈ U ,

then
∣

∣

∣

∣

arg

(

f (z)
z

)α ∣
∣

∣

∣

<
π
2

γ , z∈ U ,

which is the same result obtained earlier by Lashin [11] .
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