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Abstract: The aim of this paper is to introduce and study two subclasses of multiviaiections involving generalizedafagean
operator. Our classe#gy’ (v;n) and#pn’ (a, B; 1) unify the standard classes of multivalent starlike functions of andenultivalent
convex functions of orden, and Bazilevt functions. Some connections between our classes are obtainedraral sensequences of

main results are discussed.
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1 Introduction

Let% = {ze C: |z < 1} be the unit disk and let/ (p,n)
be the class of all analytic functions # of the form

f(z) =2+ aZ,
k=p+n

(p,neN) 1)

and let denote? := &7 (1,1).

A function f € &/ (p,n) is said to be multivalent
starlike functions of ordemr in %, if it satisfies the
following inequality

!
R zf(2)

f(@)

and we denote this class b, ,(a). A function
f € o/ (p,n) is said to be multivalent convex functions of
ordera in 7, if it satisfies the following inequality

>a,ze U, (0<a<ppeN)

zf"(2)
f'(2)
and we denote this class By n(a).

A function f € &/ (p,n) is said to be multivalent
close-to-convex functions of order in %, if it satisfies

Re(1+ >>a,ze%, (0<a<ppeN)

the following inequality

!
Re;%zl)>a7ze%, (0<a<ppeN)

and we denote this class By n(a).

In the recent paper of Aouf et all]} the authors
introduced the subclasszy! (a) of «7(p) := #/(p,1),
consisting on the functiong € «7(p) that satisfy the
inequality

A+p(l—A)zf'(2) + A 221 (2)

[
R A A 1227

>a,zev,

with0<A <1;0<a<p,peN.
For a functionf in &/ (p,n), we define the following
generalized 8lagean differential operator:

DS f(2) = f(2) )

DLf(2) = (1-0)f(2)+ %zf’(z) —Dof(z),0>0 (3)
DJf(z) =Dy (D™ f(2)),

(meN) (4)
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If fis given by(1), then from(3) and(4), we see that Also let denote byZ’[a, n| the class

DI (2) = 2P+ g [1+(k—1)arakzk 5) Hlan ={pec A (%) p2) =a+a? +...2e U}.

k=p+n For studies related to multivalent functions, (see, e.g.

Foro = p= 1, we get the well-known Hagean operator [5]-[8],[12],[14]). Singh and Singh7] obtained several
[16]. interesting conditions for functiond € & satisfying

Motivated by the Subda&%ﬂ\( a) due to Aouf et al. ] inequalities involvingf’(z) andzf”(z) to be univalent or

A fy starlike in%/. Owa et al. 15 generalized the results of
and two subclasses?y ,(y; B) and #gn(K,n;0) due 10 ginah and Singh1[7] and also obtained several sufficient
Goswami et al. 4], we introduce the next two new

conditions for close-to-convexity, starlikeness and
sub.czlgjssescxfi(p, n)n;g ' convexity of functionf € 7. Further, Lee et al. 1]
Definition 1. Let .#pn (y;n) be the class of functions extended the results obtained by Owa et 45 [for

f € o/ (p,n) that satisfy the condition f € o (p,n). Also, Goswami et al.4] have obtained
e similar type of results.
Re[(l Y) Z(*Bm% + V( %Ifﬂ)} >n,ze¥, In this paper we will extend the results of Irmak et al.
[9] and Goswami et al.4] for multivalent functions, by
(0<o<L0<n<pycRmpeN) defining the differential operator

Son (@,B): Apn— A [(a +B),p+1,

o __ZDYi() 2Dgf(2)"
e (@B)1(2) = a=ge = + B (H(E)%‘f(Z))’)

and let4pn° (a, B;n) be the class of function$ €
</ (p,n) that satisfy the conditions

DO'f DIf(2))
z and further find its relationship withtpn™~ (o, 8; ).
In our proposed investigation of the clasg(p,n), we

and need the following lemmas:
Lemma 1.1.(See L3)). Let the (nonconstant) function
R DMf(2)\“ / (DPf(2)) F 5 w w(z) be analytic inZ2 with w(0) = 0. If |w(z)] attains its
e 0 21 >0, 2¢€ maximum value on the circléz =r < 1 at a point
Zo € %, then
(a,BeR;0<d<1;mpeN) 2W (20) = MW(20)

From above definition, the following subclasses of theWwheremis a real number aneh > nwheren > 1.
classes« (p,n) and <7 (n ) ,Q%(l, n) emerge from the Lemma 1.2. (See L1]) Let h(z) be analytic in% with
families of the functions#Zgy’ (v;n) and A5 (a,B;n): h(0) #0(ze % ). Further suppose that v € R™ = (0, )

and
///8}?(0;'7) = Jl/p(.)ﬁa(—l,l;n) :y;n(n)mg n<p; \arg( (2)+vzH(2) )’ _ T (IH- Zarctar(vu)>
MY (0:0) = A5 (-1,10) = () e
:Y:(I‘I)(OSI’I<1), |al‘gh(Z)|<L2Tu7 %

M (0:) =Cpn(n) (0< N < p);
AE0in) = Cin(n) = Gn(n) (0< N < 1);
AMyT(0:n) =47 (N)(0<n < p); Theorem 2.1. Let the function fe <7 (p,n), satisfies the

11 inequality
M (LBin) = Zn(Bin) (B> -1,0<n <1)

m,o 2(a+B)p—nj+A[2(a+B)p+n
Note that, (1), €pn(1), 27 (1), Ga(n) andesn(Bin)  RELIPH (0,B)T(2)] > BRI g asbiom
are said to be the classes of multivalent starlike functions (6)
of order n, multivalent convex functions of orden, then
univalent starlike functions of ordey, univalent convex

functions of ordern, and a subclass of Bazilévi ReKD?f(Z))a((D?f(Z))’)B

2 Main Results

1+A
Y

functions, respectively. Further, fon = 1, we get the zP pzp-1
subclasses/} ,(y;n) and.#} (a, B;n) which is similar
to the classes studied recently by Goswami et4l. [ where(a,B € R;0< A <1;p,neN).
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Proof. Let the functiorw be defined by then
R f'(z2) _ 1+A Y
(D@f(z))“ ((D?}‘f(Z))’>B 1w o “op1” 2 ST
z° pz-1 1+w(z) which is the result obtained earlier by Lee et d0].
. _ . B Settingp=n= 1 in above corollary, the result reduces to:
Then, clearlyw is analytic in% with w(0) = 0. We also Corollary 2.3.. If the function fe & satisfies the
find from (8) that . )
inequality
2Dzt (2) ( Z(D?f(Z))”>
O—————+B |1+ zf"(2) 1+3A
D (z DM f(z)) Rel 1
07(2) (D3t (2) e(+f,(z)>>2(1+)\),ze%,
Azw w(z
— pla+pB)+-— @ _ W@ oy, (9)  then
1+Aw(z) 1+w(2)’ , 1+A
, , Ref'(z) > ,ZEYU,
Suppose there exists a poimte % such thajw(z)| = 1 2

and|w(z)| < 1, when|z| < |z].
Then, by applying Lemma.1, there existen > n such
that

20W (20) = MW(20),

Using (9) and (10), it follows that

aZ<D“o"f<Z°>>/+,3(1 gmffzo ﬂ
7f(20))

D& f (20)
Ame?
:p(a+B)+Re(l+Ae|9> (
m
2

(mznzl;w(zo):eie;eeR).
(10)

Re

)

Am(A +cosB)

=pla+p)+ 1+ A2+ 2A cosf
- m(1—A2)
= Pa+B) = 3 A2 22 cosB)

<pa+p)-5 (155 )
~ [2(a+B)p—n+A[2(a+pB)p+n]
= 2(1+ 1)

which contradicts the given hypothesis. Heheéz)| < 1,
for all ze 7%, which implies

() (B,

(11)
(Dg‘f(z))” ((D@?f(zw)ﬁ A
zP pzp—l
or equivalently
DM (2)\% /(DM (2)\P] 142
Rel( p 071 — ze v,

and this completes the proof of the theorem.
Settinga = 0,8 = 1,m= 0 in above theorem, we get:
Corollary 2.2.. If the function fe & (p,n) satisfies the

inequality

ef1 212

(2p—n)+A (2p+n)
2(1+2) ’

zZe U,

which is the same result obtained earlier by Owa et al.
[15).

Settinga = 1,8 =0,m= 0, Theorem 2L gives

Corollary 2.4.. Let the function fe < (p,n), satisfies the

inequality

/
R zf'(2)

(2p—n)+A (2p+n)
fa) ~

2(1+2) ’

€U,

then f2) 14
z +
Re—=
zP ~ 2
Settingp = n= 1 in corollary 24, the result reduces to
Corollary 2.5.. Let the function fe o7, satisfies the
inequality

L, ZEU.

zf'(z) _ 1+3A
RGW > m, FAS %,

then

1+A
2

Settingm=0,a = 1—yandf = yin above theorem, we

obtain the following special case:

Corollary 2.6.. Let the function fe <7 (p,n), satisfies the

inequality
Re[(l y) <)+V(1+ f,((>))]>p+ (A+1> ze ¥,

then
@ 1-y f/(2) y -
zP pzr-1
Theorem 3.1 Let the function fe < (p,n), satisfies the
inequality

ReLZZ)> LVZEU .

1+A
2

Re L ZEU.

Re[ 7Z; (a,B)f(2)] < {(0+B)P+n}§i£2p(a+ﬁ)+n}

,ZEU,
(12)
then

|(D?pr(z))“ ((DEZL(zl»’)ﬁ _

1l <1+A, ze %,
(13)
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where(a,B €R; 0<A <1;p,neN).
Proof. Let the functionw be defined by

(Dg"zfp(z))a((DEZL(Zl))')B:(1+/\)W(z)+1. (14)

Then, clearlyw is analytic in% with w(0) =0,
and using the logarithmic differentiatiqi4) yields

Z(D??f(z))”)
(DFf ()

(14+A)zw(2)
1+ (1+A)w(z)’
Suppose there exists a pomte % such thajw(z)| =1
andw(z)| < 1, with |7] < |zo|

Then by applying Lemma.1, there existsn > n such
that

z(Dgf(2))’
a SEHE) +B(1+

=pla+pB)+ ze%. (15)

20w (20) = MW(zo), (M= n> 1w(zo) =
Then by using 15) and(16), it follows that

2(DD1 (20)) 2D (20
Re[“ Dpf(zo) P <1 (DIt (z0))
:(a+B)p+Re( )

Nuiid
~—

)

<><20)
(14+2)wW(z0) +1
(1+A)me?

B m(1+A)(1+A +cosB)
=(a+B)p+ <1+(1+)\)2+2(1+,\)0039)
_ {(a+B)p+n}A +{2p(a+p)+n}
= A+2

which contradicts the hypothesid?2).
w(z)| < 1,z€ %, thatis

Dgf(2\" ((OFf @)\ _,
z° pzp-1
This evidently completes the proof of the theorem.

Settinga = 0,3 = 1,m= 0 in above theorem, we get
Corollary 3.2. If the function fe o (p,n) satisfies the

inequality

= ((H—ﬁ)p—i—Re(

L, ZEU

It follows that

<1l+A,ze¥%.

(p+n)A +(2p+n)

zf"(2)
Re[1+ f’(z)}< P VZEU,
then f2
z
pzpflfl <14A,ze¥,

which is the result obtained earlier by Lee et dl(].

Corollary 3.3. If the function fe & satisfies the
inequality
zf"(2) 2\ +3
Re( 1
e( * f’(z)) rvz L€
then

|f'(2) -1 <1+A,ze%,

which is the same result obtained earlier by Owa et al.

[19].
Settinga = 1,8 = 0,m= 0, the above theorem gives
Corollary 3.4. Let the function fe 7 (p,n), satisfies the

inequality

!
R zf(2) - (p+n)A +(2p+n), cw.
f(2) A+2
then ;
’(Z)—l <14+A,ze¥%.
ydY

Settingp = n= 1 in corollary 34, the result reduces to:
Corollary 3.5. Let the function fe &/, satisfies the

inequality

zf'(z)  3+2A

o) < 2+4 2%
then ;

’(22)—1‘<1+/\,Z€%.

For the next result, we assume that € R s.t.a +
B>0
Theorem 4.1 Let the function fe </ (p,n), satisfies the
inequality

glg °)" ()’
(G+B)

002y | B 2D (2))" ”
ofta + parp) (1+ (D’é‘f(Z))’)}

N

s 2 y
< 5 {y+narctan<p(a+ﬁ)>} ,ZEU,

wherey > 0, then

of (%) (%)

Proof. If we define the function

- (49" (o)

thenh(z) =

m
< Ey, zev.

17)

1+ c1z+ ... is analytic in% andh(0) = 1,

Settingp = n= 1 in above corollary, the result reduces to h'(0) # 0.

© 2014 NSP
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Differentiating (17) logarithmically with respect to z
and by simple calculation, we get

ZDgf ()"

2D (2))’
{“ (DIt (2)

D'f (z)

+B(1+

zH(2)

> - p(a+B)}

Thus,
1
p(a+pB)

b [ H05t0)
pla+p) |* g2

h(z) +

B (1

and by using lemma&1.2), we obtain the desired result.

Settinga = 1,3 =0,m=0in Theorem 41, we obtain the
following corollary:

Corollary 4.2. If f € 7 (p,n) satisfies the inequality
f'(2) i 2 y
arg(pzp_l> < > [y+narctan<p LZEU,

then
VAICAYIN.
g 2 5 Y,

Setting p = 1 in above corollary £, we obtain the
following corollary:

Corollary 4.3.1f f € &7 (1,

Z2eU.

n) satisfies the inequality

|arg(f’ {y+ arctar(y)} LZEU,

f
arg(iz))‘ < gy, zeU.

Settinga =0, 8 =1, m= 0 in Theorem 41, we obtain
the following corollary:

Corollary 4.4. If f € o/ (p,n) satisfies the inequality
‘arg(ng—l {f'(z)+2f~(z)})‘ < g(y+ %arctan<%>>7 e U,

then f2
z T
arg{ pzp—l} < EV’ zeU.

Settingp = 1 in above corollary, we obtain
Corollary 4.5. If f € 7 (1,n) satisfies the inequality

N \

then

larg{f'(2) +zf"(2)}| < Z<y+iarctan/) ,ZEU,

then

largf’(2)| < 7—2Ty, zev%.

SettingB =m=0,p=1inin Theorem 4L, we obtain the
following corollary:

Corollary 4.6. f ¢
1
araf 12) ()" "} | < 2 v+ Zarctar()] ze

then "
()

which is the same result obtained earlier by LasHid]]

€ o/ (1,n) satisfies the inequality

m
= 4
<V, ZEU,
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