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Abstract: The paper aims to study the consequences of using product of spacings (PS) as an alternative to the traditional likelihood
under Bayesian set up. For this purpose we have considered the problem of point estimation of the parameter of exponential distribution.
We have also obtained the asymptotic and HPD confidence intervals of the parameter. The proposed estimates have been compared
with those based on usual likelihood on the basis of simulated samples from exponential distribution.
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1 Introduction

Various classical estimation techniques such as the methodof moments, method of least square, method of chi square
and method of maximum likelihood estimation (MLE) etc. are discussed in statistical literature. Each of these are having
their own advantages and limitations but the most popular method of estimation among these is method of MLE, which
can be justified on the ground of its various useful properties like consistency, sufficiency, invariance, asymptotic
efficiency and above all its easy computation. The method of MLE works well if each of the contributions to the
likelihood function is bounded above. It is true with all discrete distributions, but for continuous distribution, it may not
be. Various authors have noted the limitations of MLE in different contexts. Its greatest limitation is that it can not work
for ‘heavy tailed’ continuous distribution with unknown location and scale parameters (Pitman, 1979 , p . 70). It also
creates problem in mixture of continuous distributions andin such cases MLE method can break down. It is well known
that often, MLE does not give satisfactory estimate for certain three parameter distributions, such as gamma, Weibull,
and log normal distributions. In all these cases, the major difficulty is that there are paths in the parameter space with
location parameter tending to smallest observation along which the likelihood becomes infinite. Unfortunately in such
situations estimates of other parameters becomes inconsistent; see Harter and Moore [4]. Further they reiterated the view
of Huzurbazar [21] that no stationary point (and hence no local maximum) can provide a consistent estimator, when the
concerned distribution is J-shape, as in the case of Weibulland gamma distribution when the shape parameter is less than
unity. Thus, whether a global or a local maximum is considered, MLE is bound to fail in some situations.

In order to overcome these shortcomings and having better applicability in such types of situations which possesses
properties similar to MLE, Cheng and Amin [1] introduced the Maximum Product of Spacings (MPS) method asan
alternative to MLE for the estimation of parameters of continuous univariate distributions. They proposed to replace the
likelihood function by product of spacings and claimed thatit retains most of the properties of the method of maximum
likelihood. Ranneby [2] independently developed the same method as an approximation to the Kullback-Leibler measure
of information. The approach of Cheng and Amin is more intuitively attractive and can, to some extent, be regarded as a
pragmatic solution to the problems linked with likelihood (Titterington, [11]), but that of Ranneby is more powerful
theoretically and allows the derivation of the properties of MPS estimators. It may be noted that MPS method is
especially suited to the cases where one of the parameter hasan unknown shifted origin, as it is the case in three
parameter lognormal, gamma and weibull distribution or to the distribution having J-shape.
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The above discussed problem related to likelihood function(LF) is not the matter of concern in classical paradigm
only, but it may create problem in the derivation of a posterior density function under Bayesian set up. It is well known
that the LF is the probability of observing the given sample.The principle of Maximum likelihood states that the MLE of
parameter is that value of parameter which maximizes the likelihood function i.e it is the value that makes the observed
data the “most probable”. In other words, MLE procedure adjusts the shape of the product of density by tuning the
parameter so that its value is maximized for the given samplevalues. In other words we try to maximize the product of
density based on each observation i.e the joint density, where as the principle of MPS is based on the product of
successive spacings of observations. It is the product of probabilities of a new observation falling between each of the
two neighbouring sample points . It may be noted here that both of these methods rely on joint probabilities of sample
observation i.e they work on almost similar principle. Therefore, it seems logical to use product spacing (PS) as an
alternative to traditional LF in Bayesian paradigm. It is worthwhile to mention here that under classical set up MPS
method provides the estimators which possess most of the large sample optimum properties like sufficiency, consistency
and asymptotic efficiency being possessed by MLE (for details see Cheng and Amin [1]).

In certain cases, it is possible to obtain the distributional behaviour of MPS estimator for all sample sizesn; e.g. for
the uniform distribution with unknown endpoints, the MPS estimator is precisely the minimum variance unbiased
(MVU) estimator and its distribution is known exactly. For ageneral distribution, however, the small sample behaviour
of MPS estimators, like ML estimators, is usually difficult to obtain. However, the asymptotic properties of consistency
and asymptotic efficiency are readily obtainable.

The consistency of MPS estimators have been discussed in detail by Cheng and Amin [16] and it is concluded that
MPS estimators, when exit are at least asymptotically as efficient as MLE . For distribution where the end points are
unknown and the density is J-shaped, the MLE is bound to fail,but MPS gives asymptotically efficient estimators. MPS
estimators may not necessarily be function of sufficient statistics in general. However, for the case when the support of
density functions are known, MPS estimator will show the same asymptotic properties as ML estimators including
asymptotic sufficiency. Through examples Cheng and Amin [1] and Nan Zhang [15] have illustrated unbiasedness,
consistency and efficiency properties of MPS. The invariance property of it is same as that of MLE, this is shown by
Coolen and Newby [13].

The objective of the present study is to propose the use of PS as an alternative to usual LF in Bayesian paradigm and
study the performance of the estimator thus obtained. For this purpose, we have considered the problem of point
estimation of the parameter of exponential distribution using PS.

The organisation of rest of the paper is as follows:
Section 2, discusses PS briefly. Estimation procedures are discussed in section 3. It includes the development of point
estimators and asymptotic confidence intervals based on PS under classical set up. Further, under Bayesian set-up, PS is
proposed as an alternative to traditional likelihood function and Bayes estimators have been obtained. A comparison of
the estimators based on simulation study is provided in section 4. Finally, the concluding remark is given in section 5.

2 Product of Spacings

Consider that a random samplex1,x2, · · · ,xn of size n is available from a univariate distribution F(x|θ ) with corresponding
probability density function f(x|θ ) and it is required to estimateθ . The density is assumed to be strictly positive in an
interval (a, b) and zero elsewhere, (a= -∞ andb=∞ may also be taken). Now F(x|θ ) and f(x|θ ) are equal to zero forx< a:,
but F(x|θ )=1. and f(x|θ )=0 for x> b . Let xi:n denote theith order statistics. The spacingsD′

isare defined as follows:
D1 = F(x1:n,θ ) , Dn+1 = 1−F(xn:n,θ ) , Di = F(xi:n,θ )−F(xi−1:n,θ ), i = 2,3, · · · ,n as the spacings of the sample.

Clearly the spacings sum to unity i.e∑Di = 1. The PS is defined as the product ofDi ’s i.e. S =∏n+1
i=1 Di . The average

spacing, denoted by G, can be measured by the geometric mean of the spacings i.e.G = (S)
1

n+1 . Naturally G will be
maximum if all Di ’s are equal i.e.F(xi:n) are equally spaced in the interval [0,1]. If sample in hand ismost probable
sample (as assumed in justifying the use of likelihood function), it is expected that spacings induced by the sample willbe
more or less equally spaced. MPS method chooses that value ofthe parameterθ as its estimate which makes the observed
spacings as uniform as possible. Thus one can choose a value of θ which provides the maximum for S or G. Cheng and
Amin [1] proposed maximizing G as a method of parameter estimation.It is expected to be as efficient as ML estimation.

If there are ties in the data an anticipated difficulty may arise in drawing inferences based on PS. In such situations,
theDi ’s corresponding the tied observations would be zero resulting into the corresponding G and S to be zero. One can
argue at this stage that at least theoretically there is no chance of ties in the data obtained from a continuous distribution
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but practically we often encounter with the data set which comprises of repetition of values in the data. But the problem
of ties poses no serious problem because it can be easily tackled as discussed below:

Suppose that among then observationsx1,x2, · · · ,xn there are m distinct values expressed in ascending order of their
magnitude asy j :m, j = 1,2, · · · ,m. Denote ’a’ byy0:m and ’b’ byym+1:m i.e.F(y0:m) = 0 andF(ym+1:m) = 1. Let l j denote

the number of observations in(y j−1:m,y j :m] i.e. exactlyl j out of n observations are equal toy j :m, naturally,
m
∑
j=1

l j = n. To get

rid of the problem of ties, one can suggest simply to drop the repeated observations use sample of distinct observations ,i.e.
usey j :m’s only. However, it will result into reduction of the samplesize from n to m, leading to the loss of information. In
order to retain the maximum information, we can use the method suggested by Shao and Hahn [16]. They argue that since
the observations are i.i.d., each of thel j tied observations has the same probability of occurrence. Thus, their contribution
to the product spacings should be equal i.e. corresponding to each of thel j observations, the contribution should be
F(yj:m)−F(yj−1:m)

l j
so that the sum of the contributions due to these observations remain

[

F(y j :m)−F(y j−1:m)
]

. Hence, the
sum of the contributions due to all the n observations remains equal to 1. In light of the above, the product spacing, in the
presence of ties, can now be easily modified and can be expressed in terms ofy j :m as the following (assuminglm+1 = 1):

S=
m+1

∏
j=1

[

F(y j :m)−F(y j−1:m)

l j

]l j

(1)

The other way to tackle this problem would be to consider thatall the equal observations are in fact unequal but differ
by the amount smaller than the least count of the measurementand hence noted as equal. Suppose two observations x and
y are equal, i.e. x=y. Then we may consider that actually the observations are x and x +dx (dx tending to zero). Hence,
such tied observation should contribute to the PS equal to limdx→0 (F(x+dx)−F(x)) which can be approximated by f(x)
where f(.) denotes the density function corresponding to F.Thus the modified PS can be given as follows:

S=
m+1

∏
j=1

[

F(y j :m)−F(y j−1:m)
]

[ f (y j :m)]
l j−1 (2)

It may be seen that ifl j = 1 for all j ′s, the above expressions reduce to the original expression.

3 Point estimation of the Parameter

In this section, we shall try to develop classical as well as Bayes estimators of the parameter of the exponential distribution.
The estimators thus obtained will be compared with each other.

3.1 Estimation under classical Paradigm

Under classical paradigm, a number of estimation procedureare available. But we shall be considering here only two of
such methods, namely MLE and MPS.

3.1.1 Maximum likelihood estimator

The likelihood function for a sample of size n, sayx1,x2, · · · ,xn, drawn from exponential distribution having pdf
f (x,θ )=θe−θx is given by

L(x,θ ) = θ ne
−θ

n
∑

i=1
xi
,x≥ 0 ,θ > 0 (3)

After differentiating the normal equation with respect to parameterθ and then equating it to zero, we get the well known
estimate ofθ as

θ̂ =
n

n
∑

i=1
xi

(4)
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3.1.2 Maximum Product of spacings estimator

The CDF of the exponential distribution isF(x)=1−e−θx and thus the, spacings can be defined as follows:

D1 = F(x1:n) =
[

1−e−θx1:n

]

D(n+1) = 1−F(xn:n) =
[

1−e−θxn:n
]

Di = F(xi:n)−F(xi−1:n) =
[

e−θxi−1:n −e−θxi:n
]

Such that∑Di = 1, MPS estimator choosesθ which maximizes the product of the spacings.

S(θ |x) =

(

n+1

∏
i=1

Di

)

= (1−e−θx1:n)(1−e−θx2:n) · · · (5)

Taking the logarithm of S we get,

G=
n+1

∑
i=1

lnDi (6)

G=

[

ln(1−e−θx1:n)+
n

∑
i=2

ln(e−θxi−1:n −e−θxi:n)−θxn:n

]

(7)

After differentiating the above equation with respect to parameterθ and then equating it to zero, we get the normal
equation as follow:

x1:ne−θx1:n

1−e−θx1:n
+

n

∑
i=2

xi:n(e−θxi:n)− xi−1:n(e−θxi−1:n)

(e−θxi−1:n −e−θxi:n)
− xn:n = 0 (8)

The above normal equations cannot be solved analytically. Therefore, we can use any iterative procedure. We propose to
use Newton-Rapson method.

3.2 Asymptotic confidence intervals

In this section, we propose the asymptotic confidence intervals using PS, as it was mentioned by Cheng and Amin [1],
Anatolyevin and Kosenok [14], Singh et.al. [22] and Ghosh and Jammalamadaka [5] that the MPS method is
asymptotically equivalent to MLE. Keeping this in mind, we may propose the asymptotic confidence intervals using PS.
The exact distribution of the PS cannot be obtained explicitly. Therefore, the asymptotic properties of PS can be used to
construct the confidence intervals for the parameterθ . Anatolyevin and Kosenok [14] show mathematically that
θ̂MPS = θ̂ML + o(n−

1
2 ) i.e. it implies that both are asymptotically equivalent andhence the asymptotic or bootstrap

inference aroundθ based on MPS estimator may be carried out by utilizing the ML asymptotics.
Using the concept of large sample theory we may write the asymptotic confidence interval. We obtain the information
matrix I(θ̂ ). We may write the asymptotic confidence interval using MLE as,

C.IML =

[

θ̂ML ±1.96
√

V( ˆθML)

]

(9)

and utilizing the concept of Anatolyevin and Kosenok [14], we may write the asymptotic confidence interval using PS as

C.IPS=

[

θ̂PS±1.96
√

V( ˆθPS)

]

(10)
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3.3 Bayesian Estimation

In this section, we have developed the Bayesian estimation procedure for the parameterθ and HPD interval using PS
as an alternative to the usual likelihood. We have taken the idea from a note due to Coolen and Newby [13]. Keeping
his idea in mind we have derived the expressions. The productspacings i.eS(θ |x) = ∏n+1

i=1 Di is used in place of the
traditional likelihood. In Bayesian analysis, the parameter of interest is assume to be a random variable having some prior
distribution. The prior distribution is selected on the basis of type of information available to us. We writep(θ ) for prior
density andS(x

∼
|θ ) as PS. According to Bayes theorem, we may write the posteriordensity using PS as

π(θ |x
∼
) =

S(x
∼
|θ )p(θ )

∫

θ S(x
∼
|θ )p(θ )dθ

(11)

3.3.1 Bayesian Estimation of Parameterθ using PS

In this section, we have provided prior and posterior distribution for considered model for parameterθ . Here, we have
considered both informative as well as non informative priors. We have chosen Gamma prior as informative prior and it
can be justified on the basis of its flexibility. When we have little or no information about the parameter, a
non-informative prior should be used. Jeffery’s prior is one of the general class of non-informative priors. Several authors
have given justification for using Jaffery’s prior for an exponential family. For this reason we are motivated to take
Jaffery’s non-informative prior for the parameter.

Bayes estimator ofθ using an informative prior

Here, we take an informative prior distribution for the parameterθ as the Gamma prior having pdf

p1(θ ) =
β α θ α−1e−β θ

Γ (α)
;α ,β ≥ 0 (12)

Then the posterior can be written as,
π1(θ |x) ∝ S(x

∼
|θ )p1(θ )

π1(θ |x) ∝

(

n+1

∏
i=1

[

e−θxi−1:n −e−θxi:n
]

)

θ α−1e−β θ (13)

Bayes estimates ofθ based on the squared error loss function (SELF) is the posterior mean and can be derived as

E(θ |x) =
∞
∫

θ=0

θ π1(θ |x) dθ

Substituting the value ofπ1(θ |x) from equation (11), we get

E(θ |x) =
∞
∫

θ=0

(

n+1

∏
i=1

[

e−θxi−1:n −e−θxi:n
]

)

θ αe−β θ dθ (14)

Bayes estimator ofθ using a non-informative prior

The pdf of the Jaffery’s non-informative prior distribution for the parameterθ is given as

p12(θ ) ∝
1
θ

; θ > 0 (15)
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Thus, the posterior in this case can be written as,

π12(θ |x) ∝

(

n+1

∏
i=1

[

e−θxi−1:n −e−θxi:n
]

)

1
θ

(16)

Hence, the Bayes estimates ofθ under squared error loss function (SELF) can be derived as

E(θ |x) =
∞
∫

θ=0

(

n+1

∏
i=1

[

e−θxi−1:n −e−θxi:n
]

)

dθ (17)

3.3.2 Bayesian Estimation of Parameterθ using usual likelihood

Bayes estimator ofθ using an informative prior

Here, we take an informative prior distribution for the parameterθ as the Gamma prior whose pdf is given in equation
(12). Combining the likelihood function with the considered prior density of parameterθ , we get the posterior density of
θ as,

π21(θ |x) ∝ θ n+α−1e−θ(∑xi+β ) (18)

Hence, the Bayes estimates ofθ under SELF can easily obtained as

θ̂BS1 =
Γ (n+α +1)

(∑xi +β )n+α+1 (19)

Bayes estimator ofθ using a non-informative prior

In this subsection, we take a non-informative prior distribution for the parameterθ as the Jaffery’s prior whose pdf is
given in equation (15). Combining the likelihood function with the considered prior density of parameterθ , we get the
posterior density ofθ as,

π22(θ |x) ∝ θ n−1e−θ(∑xi) (20)

and the Bayes estimates ofθ under SELF as

θ̂BS2 =

[

Γ (n+1)
(∑xi)n+1

]

(21)

It may be noted here that the solution of the Bayes estimatorsusing PS are not analytically possible, but in this era, it is
not a matter of concern due to advancement of numerical methods to solve any numerical equation or integral. Therefore,
we use Monte Carlo Markov Chain Method to solve the integral,which is described as follows.

3.3.3 Gibbs Sampling Method

In this subsection, we discuss about the Gibbs sampling procedure to generate sample from posterior under the
considered prior for the parameterθ , for more details about MCMC method see Gelfand and Smith (1990) and Singh et
al. [19]. Thus utilizing the concept of Gibbs sampling procedure, we generate samples from the posterior density
function. For implementing the Gibbs algorithm, the full conditional posterior densities of parameterθ for informative
and non informative prior are.

π11(θ |x) ∝

(

n+1

∏
i=1

[

e−θxi−1:n −e−θxi:n
]

)

θ α−1e−β θ (22)

and

π12(θ |x) ∝

(

n+1

∏
i=1

[

e−θxi−1:n −e−θxi:n
]

)

1
θ

(23)

respectively.

The simulation algorithm consists of the following steps.
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Step 1 :Start with j = 1 and the initial values of
{

θ 0
}

Step 2 :Generateθ from (13) and (16) respectively.
Step 3 :Obtain the posterior sampleθ1,θ2, · · · ,θM by repeating step 2, M times.
Step 4 :The Bayes estimates of the parameterθ under SELF of the parameters can be obtained as the mean of thegenerated

samples from the posterior densities i.e.

θ̂ = [Eπ(θ |x)]∼=

(

1
M

M

∑
k=1

θk

)

(24)

Step 5 :After extracting the posterior samples, we can easily construct the HPD credible intervals forθ . For this purpose,
orderθi ’s asθ1 < θ2 < · · ·< θM. Then construct all the 100(1−β ) % credible intervals ofθ as

(

θ[1],θ[M(1−β )+1]
)

, · · · ,
(

θ[Mβ ],θ[M]

)

Here,[x] denotes the largest integer less than or equal tox. Then, the HPD credible interval is that interval which has the
shortest length.

4 Comparison of estimators

In this section, we compare the various estimators obtainedin section 3. This section consists of the simulation results to
compare the performance of the classical and Bayesian estimation procedures. The comparison between the PS, MLEs and
Bayes estimators using PS and Bayes estimators using usual likelihood of the model parameter has been performed. The
comparison is based on the risks (average loss over sample space) under SELF. We have also compared the average lengths
of the asymptotic confidence intervals and HPD credible intervals. Here, we investigate the performance of the proposed
estimators through a simulation study. For this purpose, wegenerate the sample of sizesn= 20 (small), 30 (medium), and
50 (large) from exponential distribution for fixed values ofθ = 2. Asymptotic/HPD intervals and corresponding coverage
probabilities (CP) were also calculated for different value of θ ( θ = 0.5,1,2,3). For more detail about CP readers are
requested to see Krishna and Kumar [18].

The choice of the hyper parameters is the main issue in the Bayesian analysis. Berger [17] argues that when
information is not in compact form, it is better to perform the Bayesian analysis under the assumption of non-informative
prior. For the choice of hyper parameters of informative prior, we have taken prior means equals to the true values of the
parameter with varying prior variances. The prior varianceindicates our confidence in the prior guess. A large prior
variance shows less confidence in prior guess i.e. the prior distribution is relatively flat. On other hand, small prior
variance indicates greater confidence in prior guess. In this study, we have taken prior variance equals to 0.5 (small) and
100 (large).

For obtaining the Bayes estimates, we generate samples fromthe posterior ofθ using the algorithm discussed in
Section 3. First thousand MCMC iterations (Burn-in period)have been discarded from the generated sequence. We have
also checked the convergence of the sequences ofθ for its stationary distributions through different starting values. It
was observed that all the Markov chains reached to the stationary condition very quickly.

For the unknown model parameter, we have computed MLEs, PS and Bayes estimates under informative and
non-informative priors along with their asymptotic confidence/HPD intervals. We repeat the process 1000 times, and the
average estimates, risk of the estimators, and average confidence/HPD intervals are recorded.

On the basis of the simulated results which are summarised inTables 1-3, the following conclusions can be made as
follows:

(i)The risk of all the considered estimators and Bayes estimators decrease as sample size n increases, which is quite
obvious. This confirms that all estimators are consistent.

(ii)The Bayes estimator based on PS perform well (in the sense of having smaller risk) in comparison to Bayes
estimator based on usual likelihood (UL) and other considered estimators. It is also observed that classical estimator
based on PS perform better than Bayes estimator under UL and MLE .

(iii)The risk of the all considered estimators increase asθ increases but trend of the associated risk remains same. It is
also noticed that risk of the proposed Bayes estimators are not very much affected by the variation of hyper
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parameters. Table 2 shows slight changes in risk of the estimators with variation of prior variance (small, moderate,
large). Thus in all the considered cases, the risk of the estimators can be ordered in the following way;
Risk (Bayes PS)< Risk (classical PS)< Risk (Bayes UL)< Risk (MLE ).

(iv)The HPD credible intervals have shorter average lengththan the asymptotic confidence intervals. Further more, for
fixed value ofθ , it is observed that the average length of confidence interval decreases as sample sizen increases
and the HPD credible intervals based on PS provide smaller length as compared to Bayes estimator based on UL and
other considered estimators. It is interesting to note herethat coverage probability i.e.P(θ̂L < θ < θ̂U) for interval
estimators based on PS are more than prefixed confidence interval (Here it is obtained as 100% in all the considered
cases). However, the coverage probability for other intervals are either equal to prefixed value (95%) or slightly less
than that, see Table 1.

(v)It is observed from table 2 that, the average length of asymptotic/HPD intervals increases as the value ofθ increases,
but the HPD credible intervals based on PS maintain their superiority in term of the smaller average length among
all considered estimators. Further, it is noticed that in some cases Bayes estimators using PS attains 100% coverage
probability for some value ofθ under different priors.
Similar trend has been observed in case of non informative prior also.

Table 1: Average estimates (in the first row of each cell) under SELF using non-informative prior and corresponding risks, Coverage
probabilities and corresponding confidence intervals of the estimators ofθ for fixed values ofθ = 2 with varying sample size i.en.

n estimate mse CI/HPD cv percentage

20

mle 2.12306 0.24868 (1.1884,3.0576) 94.2053
mps 1.87548 0.19869 (1.0535,2.6974) 92.0530

Bayes ml 2.11296 0.22533 (1.2414,3.0681) 94.5364
Bps 1.87466 0.02479 (1.2975,2.4047) 100.0000

30

mle 2.07197 0.15421 (1.3251,2.8187) 94.6000
mps 1.89446 0.13614 (1.2165,2.5723) 91.3000

Bayes ml 2.06254 0.14167 (1.3600,2.8232) 95.6000
Bps 1.89562 0.01724 (1.4245,2.3343) 100.0000

50

mle 2.03955 0.09092 (1.4673,2.6117) 94.2053
mps 1.92222 0.08526 (1.3894,2.4550) 92.0530

Bayes ml 2.02355 0.09075 (1.4915,2.6116) 94.5364
Bps 1.93850 0.00789 (1.5659,2.2842) 100.0000

5 Concluding Remarks

In this paper, we have proposed PS as an alternative to the traditional likelihood in Bayesian set up. We have found that
Bayesian procedure under PS provides the better estimates and smaller HPD interval of the unknown parameter of
exponential model. On the basis of above simulated results and findings, we recommend to use the PS as an alternative to
traditional likelihood in Bayesian set up . The methodologydeveloped in this paper will be very useful to the researchers,
engineers, and statisticians for the further advancement in this area. It motivated the researchers to use PS as an
alternative to UL to get more efficient estimators. For future, same methodology has been considered by us for some
other lifetime models and work is under progress for Generalized inverted exponential distribution (GIED) and Flexible
Weibull distribution.
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Table 2: Coverage probabilities and corresponding confidence intervals/HPD intervals of the estimators ofθ for fixed values of sample
sizen= 20 with different values ofθ i.e θ = 0.5,1,2,3 with different prior scheme.

theta prior scheme mle mps Bmle Bps
0.5 1 92.9(0.3086,0.7380) 88.3(0.2566,0.6674) 94.7(0.3059,0.7559) 91.4(0.3037,0.5546)

2 96.4(0.2632,0.7906) 88.5(0.2609,0.6702) 95.4(0.3092,0.7561) 100(0.3564,0.6649)
3 95.0(0.2890,0.7632) 88.6(0.2597,0.6694) 96.4(0.3075,0.7596) 100(0.3266,0.6065)
4 95.7(0.2528,0.7958) 87.4(0.2591,0.6674) 94.0(0.3063,0.7573) 100(0.3488,0.6571)

1 1 95.8(0.5097,1.5807) 84.6(0.5188,1.3284) 94.7(0.6109,1.5106) 100(0.6858,1.2876)
2 81.9(0.7410,1.3579) 86.6(0.5207,1.3334) 95.7(0.6261,1.4802) 85.0(0.5149,1.1595)
3 91.3(0.6181,1.5202) 87.9(0.5307,1.3590) 94.8(0.6257,1.5421) 99.6(0.6382,1.1705)
4 92.4(0.6001,1.5195) 87.5(0.5256,1.3458) 94.0(0.6191,1.5305) 100(0.6423,1.1877)

2 1 94.2(1.1884,3.0576) 92.0 (1.0535,2.6974) 94.5(1.2414,3.0681) 100 (1.2975,2.4047)
2 90.6(1.2798,2.9449) 87.7(1.0481,2.6836) 97.4(1.3254,2.8264) 100(1.5171,2.3704)
3 90.3(1.3316,2.8558) 88.5(1.0355,2.6636) 95.9(1.2298,3.0054) 75.7(1.1702,2.0832)
4 91.0(1.2958,2.8866) 87.1(1.0377,2.6570) 96.1(1.2203,3.0170) 95.2(1.1639,2.1047)

3 1 89.5(1.9618,4.3600) 87.2(1.5687,4.0167) 95.0(1.8444,4.5646) 78.8(1.7682,3.2064)
2 95.3(1.6492,4.6123) 86.9(1.5539,3.9788) 98.7(2.0994,4.0040) 100(2.8159,4.1089)
3 95.1(1.6234,4.6323) 87.5(1.5521,3.9741) 96.1(1.8509,4.45839) 100(2.1087,3.8440)
4 92.0(1.8405,4.5046) 87.5(1.5744,4.0312) 94.5(1.8555,4.5773) 95.7(1.8557,3.3923)

Table 3: Average estimates (in the first row of each cell) under SELF using informative prior and corresponding Risks (in brackets) of
θ for fixed values of sample sizen= 20 for different values ofθ i.e θ = 0.5,1,2,3 with different prior scheme and prior variance.

prior scheme mle mps Bmle Bps
0.5 1(00) 0.5233(0.0146) 0.4620(0.0125) 0.5232(0.0144) 0.4286(0.0055)

2(var=.5) 0.5269(0.0157) 0.4656(0.0129) 0.5255(0.0146)0.5238(0.0012)
3(var=8) 0.5261(0.01395) 0.4645(0.0116) 0.5260(0.0138)0.4737(0.0032)

4(var=100) 0.5243(0.0158) 0.4632(0.0132) 0.5243(0.0158) 0.5202(0.0059)
1 1(00) 1.0452(0.0669) 0.9236(0.0569) 1.0452(0.0669) 1.0178(0.0174)

2(var=.5) 1.0494(0.0620) 0.9271(0.0523) 1.0399(0.0486)0.6557(0.0105)
3(var=8) 1.0692(0.0746) 0.9449(0.0577) 1.0679(0.0732) 0.9080(0.0106)

4(var=100) 1.0598(0.0697) 0.9357(0.0559) 1.0598(0.0696) 0.9249(0.0128)
2 1(00) 2.1230(0.2486) 1.8754(0.1986) 2.1129(0.2253) 1.8746(0.2431)

2(var=.5) 2.1124(0.2609) 1.8658(0.2125) 2.0558(0.2145)1.8269(0.0167)
3(var=8) 2.0937(0.2288) 1.8491(0.1945) 2.0887(0.2145) 1.5952(0.0238)

4(var=100) 2.0912(0.2443) 1.8473(0.2093) 2.0908(0.2429) 1.6183(0.1512)
3 1(00) 3.1609(0.6045) 2.7927(0.4967) 3.1609(0.6045) 2.4677(0.2972)

2(var=.5) 3.1308(0.5278) 2.7664(0.4566) 3.0292(0.4378)3.2104(0.0243)
3(var=8) 3.1279(0.5439) 2.7631(0.4678) 3.1121(0.4695) 2.9965(0.0448)

4(var=100) 3.1725(0.6273) 2.8028(0.5094) 3.1708(0.6193) 2.6252(0.1581)
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