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Abstract: This paper introduced the truncated versions of the Lindlsjribution and studied the characteristics of the predos
distributions with showing the monotonicity of the dengtyd hazard functions. The statistical proprieties such@sents, quantile
function and order statistics are also discussed. The maniiikelihood estimators are constructed for estimating timknown
parameters of the upper, lower and double truncated Lindilgyibutions. A set of real data containing the strengththe glass of
aircraft window, is considered to show the applicabilitythoé truncated Lindley distributions.
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1 Introduction

The truncated distributions are quite effectively usedlgerandom variable is restricted to be observed on somerang
and these situations are common in various fields. For instan survival analysis, failures during the warranty péri
may not be counted. Items may also be replaced after ceirt@@following the replacement policy, so that failures df th
item are ignored.

Many researchers, therefore being attracted to the probfeamalysing such truncated data encountered in various
disciplines, proposed the truncated versions of the udasiktical distributions. 2] discussed the application of the
truncated version of the Birnbaum-Saunders (BS) distiduio improve a forecasting actuarial model and partiduylar
for modelling data from insurance payments that establidddactible. 1,17] discussed the application of the truncated
Pareto distribution to the statistical analysis of masdestars and of diameters of asteroids. The truncated Weibull
distribution has been found being applied in the variousl§isluch as to analyse the diameter data of trees truncate data
specific threshold level, to predict the height distribntiof small trees based on incomplete laser scanning data, to
modelling the diameter distribution of forest, to charaze the observed Portuguese fire size distribution, to
seismological data, on the development of the pit depths watar pipe etc. For more detail on the truncated Weibull
distribution and related references readers may refera& [i8] covered the subject of Weibull distribution and recently
published article18] based on the truncated Weibull distribution.

From the above commentary and monitoring the wide applitaloif the truncated distributions, we proposed the
truncation in the Lindley distribution. The Lindley diditition is mixture ofexponential (6) and gamma(2,0)
distributions with their mixing proportions af&/ (1+ 6)) and(8/ (1+ 9)), respectively and was first proposed Hy]
as counter example of the fiducial statistic®. ave given the extensive mathematical treatments to stuglyarious
properties of the Lindley distribution and advocated the afLindley distribution over the exponential distributio
considering the waiting times before service of the banistaruers. One of the main reasons to prefer the Lindley
distribution over the exponential distribution is its tilependent increasing failure rate which is common praatitiee
survival analysis. Since last decade, Lindley distributh@ms been attracting the attention of the researchersitistée
and the reliability probationers, and many author exterititmlthe various parsimonious distributions. To name a few
extensions, three parameter generalized Lindl#}, the generalized Lindleyl4, 15|, extended Lindley 3], weighted
Lindley [7], power Lindley [B], exponential Poisson-Lindley] and the transmuted LindleyLP] distributions.
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Some extensions of the Lindley distributions e.g. powedlag and generalized Lindley distributions etc. are thedgoo
competitors of the Weibull distribution and can be quiteefively used to model the real phenomenon where the Weibull
distribution seems to be incompatible to the real data. imdfrections, one can also study the properties of trumcate
versions of these Lindley’s generalizations as the altamanodels to the truncated Weibull distribution in thetéture.
Therefore, this article aims to start the discussions witfoducing the concept of the truncation in one parametsaley
distribution.

The rest of the paper is arranged in the following sectionssdction 2, the truncated versions of the Lindley
distribution, named as the upper truncated Lindley (UThyyér truncated Lindley (LTL), double truncated Lindley
(DTL) distributions are introduced. Particularly, the flakty of the UTL distribution has been shown demonstrgtthe
characteristics of the probability density (pdf) and hdzamctions with different combination of the values of its
parameters. The moments, quantile function and ordessstatiof the UTL distribution are derived in section 3. In
section 4, the method of the maximum likelihood is applieditain the estimates of the parameters of the UTL, LTL
and DTL distributions. In section 5, a set of real data is niledethrough the different distributions and their
applicability are compared. Finally, the paper is conctliskesection 6.

2 Thetruncated Lindley distributions

A distribution G(x;©) is said to be a double truncated distribution over the irmtefv, ] if it has the cumulative
distribution function (cdf) defined as

F(x0)-F(v;0)

G(X;@):F(Z;@)—F(V';O)’VSXSZ’ —o <V <o )
and probability density function (pdf) is
‘O — f(x0) © ©
g(x,e)_F(Z;@)—F(V;O)’VSXSZ’ —w<V << )

where,f (x; @) andF (x; ©) are the pdf and cdf of the baseline model &d %" denotes the vector parameters of base
line model. Here, three cases can be recognized as

(i)Whenv = 0 and{ — o, it reduces to baseline model.
(i)Whenv = 0, it is called the upper truncated distribution of the biaseinodel.
(iii)When{ — o, it is called the lower truncated distribution of the baselmodel.

In this article, we consider the Lindley distribution as a&line model with the following distribution function

. _ Ex —Ox
F(x,0)=1 <1+1+6)e ,x>0,6>0 3)

Using (1) and @), the double truncated Lindley distribution is defined as

62  (1+x)exp(—6x)
(1+6)F({;:0)—F(v;8)

Oo (X 0) = 0<v<x<{<ow (4)

In the following sections, we will only discuss the propestiof the upper truncated Lindley distribution and the same
procedure can be applied to study the properties of the Itnwacated Lindley distribution as well as double truncated
Lindley distribution. The upper truncated Lindley distriton has the following pdf is given by

0% (1+x)exp(—6(x— 1)) .
(1+6)(exp(6¢) —1)— 6"

Itis denoted by UTL(O, {). Note that the above pdf will behave like as

i d . ! 6%(1-6-6 —0(x—{
(l)&g(x, 9) =4 (X) = ((1+9)(ex>&g?;(_1)(_xgg))

(ii)When® > 1,d (x) < 0, it indicates thaty(x) is decreasing in.

(il)When#8 < 1, g(x) is uni-modal and mode valuesig, = (1— 8) /6, see Figurel).

qu (% 6) = 0<x<{ (5)
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The corresponding hazard function at epbchgiven by

62  (1+t)exp(—6t)
(1+6)F({;0)—F(t;0)

H(t;8) = ;0<t<{ 6)

[9] used the termm (x) = —ff<—(xx)> to determine the monotonicity of the hazard function. FolLUdiistribution, we get

W= g T ToF@ g Y

It followed that

(i)H (0) = 62/[(1+6) (1~ exp(~67)) — 6 exp(—6{)]

(iHH () =, i.e.ast — {,H(t) » o
(iii)n/L(x) = TlXZ > 0V x, it implies that the hazard rate function of UTL distributiis increasing ik and@, see Figure

2.

3 Statistical properties
3.1 Moments and related measures

Therth moment under the upper truncated Lindley distributioteiBned as

zet
E[X] = : / X' (1+x) e~ %dx 7)
"0

Therth moment can also be written as

r 6% ¢ (0,0)+011(6,0)
H=1p £ 2.0 =12 (8)

Particularly, ifr =r + 1, we have

/ 62 ¢r1(0,0)+¢r+2(6,0)

M1~ 179 F(Z.0) ©)
From @) and @), we get
C_ 4k (6,0
IJrJrl— r 1+kr71(6;Z) M= 1523"' (10)
where,
ki (eaz) = %7' = 1527"'

andgs (6,¢) = (1-e % (1+07)) /62
9(0.0) = (11-1(6.0)~ e %) /6, j=23,...
The mean and variance of UTL distribution can be easily dated by

6[(6+2)91(6.0)— %]
H=Tlor 1) (1-e®) - 67e ]
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Fig. 1: The density function of UTL distribution for givefi = 0.5, 1 & 1.5 and{ = 10
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Fig. 2: The hazard function of UTL distribution for giveth= 0.5, 1 & 1.5 and{ = 10

and
2 2 ! ! 2
02 =V (X) =E[X - E(X)]* = pi,— 1y
respectively. We calculated the mean and variance of ULiFiligion for given values 08 and{ and presented in Table
1. It is observed from Tablé that mean and variance decreasefdacreases whil€ is kept fix. For fixed values of

6, mean and variance increase initially @sncreases and stabilise at a point. It is due fact that treer®imass to be
truncated from the data after a certain point for a givenevalif.

The skewness and kurtosis of the distribution can be simglified by using the following relationship

I I 2
(us— Bup, + 2u3)
(Hp— p2)°

(1 — 4uus+ 612, — 3u%)
{ = ]
(1o — p2)°

The skewness and kurtosis of the UTL distribution are sketéh Figure3 with respect to its parametefisand(.

(@© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro3, No. 2, 219-228 (2014)www.naturalspublishing.com/Journals.asp NS P 223

Skewness & Kurtosis

Fig. 3: The skewness (lower) and kurtosis (upper bold) function BE distribution with varyingd andT

Table 1. Mean and variance for various choices of the value8 ahd(.
0 (=5 (=10 (=15 (=20 (=25
H o° H o® H o® H a° H a°
0.10 1.8221 29174 7.0751 5.7116 15.801 8.2046 27.824 @0.342.647 12.227
0.25 1.8994 2.6373 7.1384 4.6299 14.159 5.8916 20.757 ®.5925.579 6.9383
0.50 1.8330 2.1657 5.1332 3.0634 6.9202 3.2871 7.4329 8.32h5359 3.3325
1.00 1.5678 1.7376 2.9734 2.0677 3.2093 2.0939 3.2279 2.09%5.2290 2.0952
1.25 1.2285 1.3879 1.7251 1.4974 1.7495 15000 1.7500 @.500.7500 1.5000
1.50 0.9185 1.1207 1.0802 1.1553 1.0825 1.1556 1.0825 @.1560825 1.1556
1.75 0.6781 0.9227 0.7287 0.9333 0.7289 0.9333 0.7289 B.9337289 0.9333

3.2 Quantile function

The quantile function is used to describe the percentiléabeflistribution and obtained as the solution of the follogvi
equation
G(é;,0)=1,1€(0, 1) (11)

From 3) and (L1), we have

(1+6)(tF(¢;6)—-1)
exp(1+ 0)

To solve the above equation fé¢, [10] introduced the use of Lambert W function for the generatibrandom variables

with Lindley or Poisson-Lindley distribution. The Lamb#&¥t function is a multivalued complex function defined as the
solution of the equation:

—(1+6+6¢&) g (1+6+6&)

(12)

W(2)exp(W(2)) =z, (13)
where,zis a complex number. Now, forni®) and (L3), we obtained

B _ (1+6)(tF({;6)—1)
(1+6+ efr)—w_1< exp110) (14)
where W_1 is negative branch of the Lambert W function. Thus,
1 1. ((1+6)(TF((6)-1)
=l < exp(1+6) (15)
As { — «, from the above equationl§), we get the quantile function of Lindley distribution dexd by [L0] as
1 Ly (At6(r-1)
fr=-l-g-g"s < exp(1+6) (16)
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The median of the UTL distribution can obtained as

B 1 1 (1+6)(F(;0)—2)
de__l____w‘1< 2exp1+0) ) (7)

3.3 Order statistics

In this subsection, we derive the pdf of thth (1 < s < n) order statisticXsn, gsn say, is defined as
1

_ s—1 _ n—-s
Gonlt) = gram s g9 O {16} (18)
where,B(s,n— s+ 1) is the beta function. Expanding the binomial expansion, &te g
B 1 ns L /n—s\ /F(t60)\* f(t06)

Gen(t) = B(s,n—s+1) i;(_l) ( i ) (F(Z,G) F(t,0) (19)
where,f (t,60) andF (t, 8) are the pdf and cdfs of the Lindley distribution. ot 1, particularly the pdf of the first order
statistics is given by

nt i (n—1\ f(t,0)F (t,0)
= -1 o A\
Oin(t) = ni;( 1) ( i ) FI1(Z,0) (20)

Substituting, the pdf and cdfs of the Lindley distributiere obtained

62 "l (—1) (141 (1 (14 125) e o)
Gunt) = 1 o= ; ro)e . (1)
E B(n—i,i+1)(1—(1+er)e*95)
Similarly, the pdf ofX,:, is given by
nO2(14+t)e o (1— (1+ -8 )e )"
gun(t) - LETUE T Ot gg)e ) (22)

1+ (1 (1+ %) e*ef)n

The mean and variance of tisth order statistics can be obtained by using the formulad usesection3.1 for UTL
distribution.

4 Maximum likelihood estimation

In this section, we describe the procedure to obtain the mmaixi likelihood estimates (MLE) of the parameters of UTL as
well as lower truncated Lindley (LTLD) and double truncateddley (DTLD) distributions based on the random sample
x = {x1,X,--- ,Xa} Of sizen, so that these distributions can be effectively used to rnihdereal problems depending
upon the nature of the data. We fitted these distributionsstt af real data in next section.

4.1 MLEsfor UTLD

Letx be an iid (independent and identically distributed) sangpleizen from UTL distribution. The likelihood function
based on the observed samplis given by

L(8,Z|x) = o° ]n : (1+x-)e_9i:§1(>q_o (23)
= | Treyeeen -6z [
Itis to be noted here th&= § X; is the joint sufficient statistics fa# and{. The corresponding log-likelihood equation
i=1
is given by |
n n
InL =2nIn(8) —nIn[(1+ 6) (exp(8{) — 1) — 6] + Zln (1+x)—6 in +n6¢ (24)
i= =
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Note that in the above log-likelihood equatidtv), it is not possible to get an estimatedfn terms of observed sample
since( is free fromx. Now, from the order statistics, lef;) < X2) < --- < X1, be the order sample corresponding to

X1,X2,++ ,Xn. Then, the MLEZ of ¢ can be taken aé max(xi, Xz, -, %) i.6. { = X largest observation. Once, we
get the MLE ofZ, the MLE 6 of 8 can be obtained as the solution of the following non-linearagion:

2 (1+)(e%- )+eze9<
6 (1+6)(ef—1)- ZL)HZ ° %)

In order to solve the above equation, we need to use theivieraiocedure like Newton’s method.

4.2 MLEsfor LTLD

The likelihood function based onfrom LTL distribution is given by

n 65 (x-v)
The log-likelihood equation is given by
n n
InL =2nIn(6) —nIn(1+ 6+ 6v)+ len (1+x)—6 in +név (27)

Similarly from the above subsection, the maximum likelil@stimate ot will be UV=min(x);i=1, 2,...,nsmallest
observation. The maximum likelihood estim&ef 6 can be uniquely determined by solving the following logelikood
equation

——7—ﬁi;Xi+V=0 (28)

Applying some mathematical treatments on equatid yields,

b —(X—=2v—1)+ /¥ +2X(2v+3)—4v(v+1)+1
- 2(1+ ) (x—v)

(29)

where Xis the mean of the observed sample.

4.3 MLEsfor DTLD

The likelihood function under the assumption of the douhlac¢ated Lindley distribution for the random variaideis
given by

2n n _gn

L(6,v,Z|x) = %n(lﬂi)e 2" (30)

where,@(8) = (1+6) (e‘g" — e‘ez) +6 (ve‘e" — Ze‘gz) . The corresponding log-likelihood function is given by
n n

InL:2n|n(6)—n|n((p(6))+Ziln(1+xi)—ezixi (31)
. 2

For given MLEs ofv and{ asV = X(1 andZ = Xn), respectively, the MLE 06 can be obtained by solving the following
log-likelihood equation
0O _
———=—-x=0 32
() (32)

[IEN)
SN—
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5 Real data modelling

In this section, we verified that the truncation of the Lindiiéstribution improves its applicability taking the stggh data
of glass of the aircraft window which is reported I5}.[The data are given as:

18.83, 20.80, 21.657, 23.03, 23.23, 24.05, 24.321, 255, 25.52
25.80, 26.69, 26.770, 26.78, 27.05, 27.67, 29.90, 31.11, 33.20
33.73, 33.76, 33.890, 34.76, 35.75, 3591, 36.98, 37.08, 37.09
30.58, 44.045 45.29, 45,381

The summary of the above data is given by

Units Minimum 1stQu. Median Mean 3rd Qu. Maximum
31 1883 2551 2990 3081 3583 45381

We fitted the data by exponential, Weibull, Lindley, and loweper and double truncated Lindley distributions. The
distribution function of the Weibull model is defined as

F(x) =1—exp(—60xP);6,p>0

To compare the goodness-of-fit of above models, we used tlgkék information criterion (AIC), Corrected Akaikes
information criterion (AICC), Bayesian information criten (BIC) and Kolmogorov-Smirnov (K-S) statistic, whichea
calculated form the following formulae

- ) 2k(k+ 1)
AIC = —2log(L) + 2k, AICC=AIC + m,

BIC = —2log(L) + klog(n) and D= sugFn(x) — Fo(X)|.

where k is the number of parameters, n is the sample sizeFafd is the empirical distribution function.

Based on the data, the fitting summary including the estisnaftthe parameters, log-likelihood, AIC, AICC, BIC and
KS statistics values have been summarised in Tahl@he probability-probability (P-P) plots for various dibutions
based on real data are plotted in Figdr&igure5 shows the log-log plot of the survival function of the coresiedd models
based on the real data. The above study clearly indicatéttbatouble truncated Lindley distribution gives reasoaéibl
to the data. From Figur® we observed that the usual distributions such as Exp, &ynaihd Weibull are trying to capture
the data from O (zero) as they support the whole positivelieal Whereas, the upper truncated and the lower truncated
Lindley distributions capture only right and left tails ¢fet data respectively. The performances based on usedarriter

Table 2: Maximum likelihood estimates, AIC, AICC, BIC and KS staitistvalues under considered models based on real data

Distribution Estimates LogL AlC AlCC BIC KS
Exp(a) (6)=0.03246 137.264 276.529 276.667 277.512 0.426
W(a,p) (6, p)=(0.00017, 2.5046) 113.067 230.135 230.563 229.117 0.225
LD(8) (é):0.06299 126.994 255.988 256.126 256.971 0.333
UTLD(6,() (é, 2):(0.00754, 45.381) 110.216 224.431 224.860 223.414 0.184
LTLD(6,v) (é70):(0.10974,18.83) 107.103 218.205 218.634 217.188 0.150
DTLD(6,v,{) (é,O,Z) =(0.0539,18.83,45.381) 101.090 208.180 209.069 205.163.18

(AIC & BIC etc.) of the different truncated forms of the Lirel distribution can be diagrammatically shown as

Worst Lindley — UT Lindley — LT Lindley — DT Lindley Best
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Fig. 4: The probability-probability (P-P) plots of various distutions based on real data
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Fig. 5: Log-log plot of the survival function of various models bdsm real data

6 Conclusions

In this article, we introduced the truncated Lindley dlmfitions called upper truncated, lower truncated and double
truncated Lindley distribution. Particularly, the profes of the upper truncated Lindley distribution such as reots,
guantile function and order statistics are discussed. Ta&gmum likelihood estimators are constructed for estintati
the unknown parameters of the upper truncated Lindley a$ aglower truncated and double truncated Lindley
distributions. The goodness-of-fits of the exponentialjdié, Lindley and truncated (lower, upper, double) Lingle
distributions have been compared through the AIC, AICC, B KS statistics and found that the double truncated
Lindley distribution fits well the data of the window strehgt Finally, it is concluded that the truncated distribni@can

be quit effectively used to model the real problems and so ae recommend the use of the truncated Lindley
distributions in various fields including engineering, roadl finance and demography where such type of truncated dat
are commonly encountered.
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