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Abstract: In this paper, we define theB-orthonormal frame in Minkowski n-dimensional spaceMn
B using the so-called Birkhoff

orthogonality. Using the M-trigonometric functions, we insert the conceptof Minkowski semi-inner product. Brauner’s angle in M-
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1 Introduction

There are many open omitted problems of Minkowski
space involving angle measure. Brauner [1] tries to define
the concept of angle between two vectorsa,b in
projective space as a function of the ideal points of these
vectors and its orthogonal vectors. In our work, we shall
declare the Brauner’s angle between two vectors in
Minkowski space using the cross ratio of some ideal
points in the plane at infinity. Because the concept of
angle in Minkowski space is not symmetric, it is expected
to obtain a relation of angle measure dependent on the
angle froma to b and vice versa. This relation is based on
the so-called M-cosine function [2] which is also not
symmetric function. Besides, this function will allow us
to calculate coefficients of derivative equations of type
Frenet-Serret in a Minkowski 3-spaceM3

B.
The main properties of a Minkowski space and its

B-orthogonality as well as its relations to other
orthogonality concepts are introduced by many authors.
Thompson [2] and Alonso , for example, [3,4,5,6]
introduce the concept of area orthogonality, which
satisfies all orthogonality relations in an inner product
space except the abelian and additive relations. The
definition of the B-orthogonality is not in general a
symmetric relation. In the case of Radon plane the
relation is symmetric. The construction of Radon curve is

presented by Radon [7]. Also, Birkhoff [8] and Day [9]
give constructions of it in terms of polarity and a quarter
rotations with respect to some Euclidean structure.
Moreover, Martini and others [10,11] present it using
only an ”affine” bilinear form. Finally, Averkov and
others [12] give some important characterizations of
central symmetry of convex bodies in Minkowski spaces.

We will prefer a concept of Minkowski orthogonality
due to Birkhoff [8], James [13,14,15] and Day [9] from a
very geometric point of view which leads to a
non-symmetric orthogonality as it is most naturally
related to the geometry of the gauge BallB of the
Minkowski space. In general, it is no longer a symmetric
relation between linear subspaces of the Minkowski
space. Explicitly this construction of ”left-orthogonality”
reads as follows; the supporting plane of the unit ballB at
a pointx , contains all the linesy being ”left-orthogonal”
to vector x ; (and thenx is right-orthogonal toy ), see
Figure 1, We use the symbolsy ⊣ x for y left-orthogonal
to x resp.y ⊢ x for y right-orthogonal tox.

Definition 1.1. If Mn
B is an n-dimensional normed linear

space of unit ballB and if x,y ∈ Mn
B then we say thatx is

B-orthogonal toy and write

x ⊣ y ⇔‖x‖ ≤ ‖x+λy‖ ∀λ ∈ R (1)
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Geometrically, this means thatx ⊣ y if and only if the line
λy supports the unit ballB at x, see Figure 1.

The Hahn-Banach theorem [2] implies thatx+λy lies
in a hyperplane which supportsB atx. Obviously,⊣ is not a
symmetric relation, i.e. ifx ⊣ y , it is not means thaty ⊣ x.
In fact, for dimensions three or above, the only normed
spaces for which normality is symmetric are the Euclidean
spaces. In dimension two, normality is symmetric for the
wide class of Radon planes [7,16].

Fig. 1: Birkhoff (left) orthogonality,x ⊣ y

Definition 1.2. Let x1,x2 are two vectors in a Minkowski
spaceM3

B such that‖x1‖= ‖x2‖= 1, then this pair is called
mutually normal pair if x1 ⊣ x2 andx2 ⊣ x1.

Definition 1.3. (Thompson [2]), If is the unit ball in a
Minkowski space then there exists a basis(x1,x2, ...,xd)
such that‖xi‖ = 1 andxi ⊣ x j for all i and j with i 6= j ;
i.e. each pair of basis vectors is mutually normal.

Definition 1.4. (B-orthonormal frame inMn
B ): Let

e1,e2, ...,en ∈ Mn
B, ‖ei‖ = 1∀i = 1,2, ...,n. If

e j ⊣ ek∀k = 1,2, ..., j − 1 then the ordered vector set
e1,e2, ...,en is called B-orthonormal frame inMn

B .

2 Brauner’s theorem (Angle measure in
Projective space)

A famous formula of E. LAGUERRE (1853) describes
the (Euclidean) angle between two linesa,b by means of
Projective Geometry as follows: LetA,B be the ideal
points ofa,b and I,J be the pair of conjugate imaginary
absolute points on the ideal lineu = A∨B , then the angle
measureϕ = ∢a,b is calculated by

∢a,b =|
i
2

lncr (I,J,A,B) | (2)

This formula has, in spite of its importance for
understanding Euclidean Geometry as a sub-geometry of
Projective Geometry, two disadvantages: The first is the
necessity of a complex extension of the places of action

and the second is the necessity of a quadratic absolute
figure, thus demanding the underlying vector space to be
an inner product space.

H. BRAUNER’S angle formula [1] uses instead of
Laguerres absolute pointsI,J the ideal pointsA′,B′ ∈ u
belongs to the directionsa,b which are orthogonal to
a′,b′ respectively. It reads as follows:

tanϕ =
√

−cr (A,A′,B,B′,) =
√

−cr (a,a′,b,b′) (3)

(a, ...meaning the direction vectors to the ideal points
A, ...). This formula avoids complex extension and it
needs an orthogonality structure of the place of action. It
is therefore possible to declare an angle concept with this
formula in a large set of normed spaces.

3 M-trigonometric functions.

The Brauner’s angle measure (3) is not clear to use in
Minkowski space; however, it is almost projective space
but it is not inner product space. Therefore, we try to use
a well-defined trigonometric functions in M-space to
define the so-called semi-inner product which allow us to
find it in M-space.

Minkowski cosine (M-cosine) function.

We construct the more suitable definition of the
Minkowski cosine function inMn

B [2] between two
vectorsx,y ∈ Mn

B2
⊂ Mn

B, whereB2 = B∩M2 is the unit
ball of the subspaceM2 spanned by the two vectorsx and
y and pass through the origin of the main unit ballB of
the spaceMn

B . Mathematically, this function depends on

the unique linear function if the unit ball is smooth at
x
‖x‖

and hence this function is not symmetric function.
For all Minkowski spacesMn

B with strictly convex
smooth unit ballB , we have for allx ∈ Mn

B,x 6= 0 , up to a
positive scalar factor, a unique linear functionalfx attains
its maximum atx . i.e.,

fx (x) = ‖x‖ .‖ fx‖ (4)

using this function, we can define the M-cosine function
as follows:

Definition 3.1. (Minkowski cosine function): For all two
vectorsx,y ∈ Mn

B,y 6= 0 , the Minkowski cosine function
from x to y is not symmetric function, denoted bycm(x,y)
with the definition

cm(x,y) :=
fx (y)

‖y‖ .‖ fx‖
(5)

substituting (4) into (5) we get

cm(x,y) =
‖x‖ . fx (y)
‖y‖ . fx (x)

(6)
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In general, ifMd is a subspace ofMn
B then we can define

the cosine Minkowski function as

cm
(

x,Md
)

:= max{cm(x,y) |y ∈ Md −{0}} (7)

Minkowski sine (M-sine) function.

Let H and x be, respectively, a hyperplane through the
origin and a non-zero vector in an oriented Minkowski
spaceMn

B with centrally symmetric unit ballB. Also,
suppose also thatH has a basis(x1,x2, ...,xd−1) then the
Minkowski sine sm(x,y) is defined by

sm(H,x) :=
f (x)

‖x‖ .σ̃ ( f )
(8)

where f is a linear function in dual space(Mn
B)

∗ such that
f⊥ =H and whose sign is such thatf (x) has the same sign
as the basis(x1,x2, ...,xd−1,x) for Mn

B andσ̃ is the norm in
(Mn

B)
∗ induced by the isoperimetrix̃IB in Mn

B [16].
In general, ifH is a hyperplane and ifL is a subspace

of Mn
B then we can definesm(H,L) by

sm(H,L) := max{sm(H,x) |x ∈ L−{0}} (9)

In the following proposition, we will give some
interesting properties of the cosine function connecting
with the B-orthogonality. We will use it later to define the
Minkowski semi-inner product.

Proposition 3.2.For all x1,x2 ∈ Mn
B,x1,x2 6= 0 we have

i. cm(x1,x2) = 0 iff x1 ⊣ x2.
ii. cm(αx1,βx2) = cm(x1,x2)∀α,β > 0 .
iii. cm(x1,−x2) =−cm(x1,x2).
iv. If fx1 supports B at x1 then cm(−x1,x2) =

−cm(x1,x2).
v. cm(x1,x1) = 1.
vi. For all x1 6= x2, | cm(x1,x2) |≤ 1 with equality iff

the line

[

x1

‖x1‖

]

,

[

x2

‖x2‖

]

⊂ B.

4 Minkowski semi-inner product.

We know that a normed linear space is not necessarily an
inner product space. Therefore, a real normed linear space
is an inner product space if and only if each
two-dimensional linear subspace of it is also an inner
product space. Equivalently, we can state that a normed
linear space is an inner product space if and only if every
plane section of the unit ballB pass through the origino is
an ellipse. Forn ≥ 3, t B is an ellipsoid and the
Minkowski space is Euclidean space. As we cannot start
with an inner product, we need to find a so called
”semi-inner product”, which is compatible with the
B-orthogonality concept and the (non-Euclidean)
Minkowski norm.

Theorem 4.1.(Dragomir [17]), In each real normed linear
spaceMn

B there exists at least one semi-inner product[., .]

which generates the norm‖.‖ . That is,‖x‖ = [., .]1/2 for
all x ∈ Mn

B , and it is unique if and only ifMn
B is smooth.

Definition 4.2. In Minkowski spaceMn
B , we define the

Minkowski semi-inner product of two vectorsx1,x2 ∈ Mn
B

as follows:

〈x1,x2〉M :=
fx1 (x2)

fx1 (x1)
‖x1‖

2 (10)

By substitute (6) into (10), we have

〈x1,x2〉M = ‖x1‖‖x2‖cm(x1,x2) (11)

Proposition 4.3. The Minkowski semi-inner product
〈., .〉M : Mn

B ×Mn
B → R has the following properties for all

x1,x2,x3 ∈ Mn
B andα,β ∈ R:

i. 〈x1,x2〉M = 0 iff x1 ⊣ x2.
ii. In general〈x1,x2〉M 6= 〈x1,x2〉M.
iii. 〈x1,αx2+βx3〉M = α 〈x1,x2〉M + β 〈x1,x3〉M

(Distributive law is not symmetric ).
iv.〈αx1,x2〉M = α 〈x1,x2〉M and 〈x1,βx2〉M =

β 〈x1,x2〉M
v. 〈x1,x1〉M = 0 iff x = 0
vi. | 〈x1,x2〉M |2≤ ‖x1‖

2 .‖x2‖
2

5 Brauner’s theorem in Minkowski space.

The definition of Brauner’s angle in projective space (3)
is not valid in Minkowski space, because the angle in
M-space is not symmetric. Here we use the definition of
left-orthogonality (1) and the definition of Minkowski
semi-inner product to derive a suitable formula of the
angle measure in M-space.

Theorem 5.1.
If a,b are two vectors in a Minkowski spaceMn

B the
angle between a and b satisfies the equation
cm(u,v)cm(v,u) = cr

(

Au,Bu,B⊣
u ,A

⊣
u

)

, where
Au = (0,u)R , Bu = (0,v)R , A⊣

u =
(

0,u⊣
)

R and
B⊣

u =
(

0,v⊣
)

R are the ideal points of the vectors
a,a⊣,b,b⊣ respectively.

Proof. Assume thatδM = cr
(

Au,A⊣
u ,Bu,B⊣

u

)

anda⊣,b⊣ are
the left orthogonal vectors ofa,b respectively. From the
collinearity, we get,

(

0,u⊣
)

R= α (0,u)R+β (0,v)R,α,β ∈ R, (12)

multiply both sides byu from left as a Minkowski
semi-inner product, we get

0 = 〈u,αu+βv〉M = α 〈u,u〉M + β 〈u,v〉M ⇒
α : β = −〈u,v〉M : 〈u,u〉M . Then the homogeneous
coordinates of it are(−〈u,v〉M : 〈u,u〉M). Similarly the
homogeneous coordinates ofB⊣

u are(〈v,v〉M : −〈v,u〉M).
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Now we can assume that the ideal pointsAu = (1 : 0))
andBu = (0 : 1)) then,

δM =

∣

∣

∣

∣

∣

1 0
0 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−〈u · v〉M 0
〈u ·u〉M 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

−〈u · v〉M 〈v · v〉M
〈u ·u〉M −〈v ·u〉M

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 〈v · v〉M
0 −〈v ·u〉M

∣

∣

∣

∣

∣

, without

loss of generality we can assume that‖u‖= ‖v‖= 1 then,

δM = 1−
1

cm(u,v)cm(v,u)
and hence,

cm(u,v)cm(v,u) = cr
(

Au,Bu,B
⊣
u ,A

⊣
u

)

(13)

This result is compatible with the fact that the angle
measure in M-space is not symmetric; therefore, (13) gives
a relation between the two orientation angles and the cross
ratio of the two vectors and their orthogonal at infinity.

6 Frenet-Serret formulae in M-space.

The Frenet-Serret formulae in Minkowski space are
modified by Shonoda [16], because the derivatives of the
unit vectors of the frame(t,h,b) in M3

B lie in the
supporting planes of it, thent ⊣ h,h ⊣ b andb ⊣ t .

Moreover, we will define the so-calleddeformation
vector in M2 which helps us to find the more suitable
Frenet-Serret formulae inM3

B.

Definition 6.1. Deformation vector: Let M2
B2

be a
Minkowski plane with smooth, strictly convex and
centrally symmetric unit ballB2. Then the deformation
vectorx̃y of the vectorx in the plane(oxy), of any normed
vectorsx,y ∈ M2

B2
is defined as

x̃y =

(

x⊣
)⊣

∥

∥

∥
(x⊣)⊣

∥

∥

∥

(14)

Fig. 2: Deformation vectorx⊣⊣ of the vector x in
Minkowski two dimensional unit ballB

Note that the pair
(

x,x⊣
)

is a B-orthonormal basis for
M2

B2
, see Figure 2.

Theorem 6.2.
Let M2

B2
⊂ Mn

B be a Minkowski plane with smooth,
strictly convex and centrally symmetric unit ballB2. Let

y = x⊣
∥

∥x⊣
∥

∥

−1
be any normed vector ofM2

B2
, then its

left-orthogonal vectory⊣ is described by the formula
y⊣ =

∥

∥x⊣
∥

∥

{

−x+ y.cm
(

x⊣,x
)}

.

Proof. Assume that the vectorx ∈ M2
B2

. then, we have the

vectory⊣ which can be considered as a linear combination
of the normal basis

(

x,x⊣
)

,

y⊣ = A1x+A2x⊣, (15)

multiply both sides of (15) by x⊣ from left as a
Minkowski semi-inner product, then we have
〈

x⊣,y⊣
〉

M =
〈

x⊣,A1x+A2x⊣
〉

M, since
〈

x⊣,y⊣
〉

M = 0, then

A2 =−
A1cm

(

x⊣,x
)

∥

∥x⊣
∥

∥

. (16)

Remember that Minkowski planeM2
B2

is spanned by

the pairs
(

x,x⊣
)

or
(

y,y⊣
)

; therefore the Minkowski area
µ (P) of the parallelogram spanned byy andy⊣ is given by
µ (P) = ‖y‖

∥

∥y⊣
∥

∥sm
(

y,y⊣
)

=
∥

∥y⊣
∥

∥sm
(

y,y⊣
)

.

Sincesm
(

y,y⊣
)

=
1
∥

∥y⊣
∥

∥

, then by substitutingy⊣ from

(15) into (16), we have

1
∥

∥y⊣
∥

∥

= sm
(

y,y⊣
)

= sm
(

y,A1x+A2x⊣
)

. (17)

For all x1,x2,x3 ∈ M2
B2
−{0} we have

sm(x1,x3)= cm(x2,x3)sm(x1,x2)+cm(x2,x1)sm(x2,x3) ,
(18)

If we take x1 = y,x2 = A1x and x3 = y⊣, then (17)
becomes

1
∥

∥y⊣
∥

∥

= sm
(

y,y⊣
)

=−cm
(

x,y⊣
) 1
∥

∥x⊣
∥

∥

, (19)

multiply again both sides of (15) byx from left as a

Minkowski semi-inner product, we haveA1 =−
1
∥

∥x⊣
∥

∥

.

Substituting (19) into (20) and using (16), we get

y⊣ =
∥

∥

∥
x⊣
∥

∥

∥

{

−x+ y.cm
(

x⊣,x
)}

, (20)

which complete the proof.
Now, we assume thate(s1) be a unit vector which

depends only on a parameters1. By attaching this vector
at the origino of a fixed (affine) frame of a Minkowski
spaceM3

B , we receive the spherical imagec1 of the ruled
surface in considerationΦ at the unit sphereS and we call
the coneo∨ c1 , the ”direction cone” ofΦ . Without loss

c© 2014 NSP
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of generality we can assume that the parameters1 is a
”Minkowski arc length parameter” of the curvec1 , i.e.
the deviation vectore′ (s1) is normed all over the
definition interval ofs1. The direction cone ofΦ takes the
form

χ = νe(s1) . (21)

Based on the right handed B-orthonormal (affine)
frame {e,π,z} we havee ⊣ e′ , z ⊣ e and z ⊣ e′ , and
therefore〈e,e′〉M = 0, 〈z,e〉M = 0 and〈z,e′〉M = 0 . The
derivatives of the vectors{e,e′,z} should be linear
combinations of these vectors. The formulae for these
expressions are usually called the Frenet-Serret formulae
of a moving frame.

We can assume that the vectore′ (s1) = π is defined
by the first equation of the three Frenet-Serret equations.
We state that the first equation must be the same for
Minkowski cases as well as for the Euclidean case,
because the unit vectore(s1) is left-orthogonal to the
derivative vectore′ (s1) as in the Euclidean case.

The derivative of the unit vectorz can be obtained as
a linear combination of the three B-orthonormal vectors
{e,π,z} as follows:

z′ = B1e+B2π +B3z. (22)

Multiplying both sides of (22) by z from left as a
Minkowski semi-inner product and using proposition 4.3,
we get B3 = 0, wherez ⊣ z′ ( z′ lies in the supporting
plane of the unit ballB atz ). Therefore,

z′ = B1e+B2π. (23)

In the same manner, we multiply both sides of (23) by
e from left side, we can findB1 = 〈e,z′〉M. Then,

z′ =
〈

e,z′
〉

M e+B2π. (24)

By using the deformation vectorẽπ of the vectore in
the plane{oeπ}, then the vectorπ becomes

π =
e+ ẽπ

cm(π,e)
. (25)

Then, we can rewrite (24) as follows:

z′ =
[

〈

e,z′
〉

M +
B2

cm(π,e)

]

e+B2
ẽπ

cm(π,e)
. (26)

Multiply again both sides of (26) by π from left as a
Minkowski semi-inner product, we can easily compute the
constantB2 = ‖z′‖{cm(π,z′)− cm(e,z′)cm(π,e)} , we
have from (24)

z′=
∥

∥z′
∥

∥{cm
(

e,z′
)

e+
[

cm
(

π,z′
)

− cm
(

e,z′
)

cm(π,e)
]

π}.
(27)

By the same method, we can assume that the vectorπ ′

lies in the plane contains the vectorsẽπ andz̃π ; hence, we
can describe it as linear combination of that vectors,

π ′ = d1ẽπ +d2z̃π , (28)

where,

ẽπ =−e+π cm(π,e) ,
z̃π =−z+π cm(π,z)

}

(29)

It is clear to calculate the constantsd1 and d2 as
follows:

d1 =
‖π ′‖

‖ẽπ‖

cm(ẽπ ,π ′)− cm(z̃π ,π ′)cm(ẽπ , z̃π)

1− cm(z̃π , ẽπ)cm(ẽπ , z̃π)
, (30)

d2 =
‖π ′‖

‖z̃π‖

cm(z̃π ,π ′)− cm(ẽπ ,π ′)cm(z̃π , ẽπ)

1− cm(z̃π , ẽπ)cm(ẽπ , z̃π)
, (31)

then (28) can be rewritten as follows:

π ′ =
∥

∥π ′
∥

∥

(

cm(ẽπ ,π ′)− cm(z̃π ,π ′)cm(ẽπ , z̃π)

−H (z̃π , ẽπ)‖ẽπ‖
e+

(

(cm(ẽπ ,π ′)− cm(z̃π ,π ′)cm(ẽπ , z̃π))cm(π,e)
H (z̃π , ẽπ)‖ẽπ‖

+

(cm(z̃π ,π ′)− cm(ẽπ ,π ′)cm(z̃π , ẽπ))cm(π,z)
H (z̃π , ẽπ)‖z̃π‖

)

π+

cm(z̃π ,π ′)− cm(ẽπ ,π ′)cm(z̃π , ẽπ)

−H (z̃π , z̃π)‖z̃π‖
z

)

(32)

where, H = (z̃π , ẽπ) = 1 − cm(z̃π , ẽπ)cm(ẽπ , z̃π).
Now, we considerx(s) describing the space curvec with
arc lengths. The tangent vectort = x′ can be moved into
the unit sphereS to obtain the spherical imagec1 , the
cone (oc1) has generators which are parallel to the
tangent of the curvec. Similarly as the previous
construction, we have the right handed orthonormal
(affine) frame{t,h,b} , whereh is called the principle
normal vector andb is the binomial vector, without loss
of generality. We can consider that the derivatives of these
vectors are unit vectors, the plane(th) is the osculating
plane and the plane(hb) is the normal plane. By using the
derivatives of these vectors as before, we have

dt
ds1

= h, (33)
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dh
ds1

=
cm
(

t̃h,h′
)

− cm
(

b̃h,h′
)

cm
(

t̃h, b̃h
)

−H
(

b̃h, t̃h
)∥

∥t̃h
∥

∥

t+

(

(

cm
(

t̃h,h′
)

− cm
(

b̃h,h′
)

cm
(

t̃h, b̃h
))

cm(h, t)

H
(

b̃h, t̃h
)∥

∥t̃h
∥

∥

+

(

cm
(

b̃h,h′
)

− cm
(

t̃h,h′
)

cm
(

b̃h, t̃h
))

cm(h,b)

H
(

b̃h, t̃h
)∥

∥b̃h
∥

∥

)

h+

cm
(

b̃h,h′
)

− cm
(

t̃h,h′
)

cm
(

b̃h, t̃h
)

−H
(

b̃h, b̃h
)∥

∥b̃h
∥

∥

b

(34)

db
ds1

= cm
(

t,b′
)

t+
(

cm
(

h,b′
)

− cm
(

t,b′
)

cm(h, t)
)

h,

(35)
We insert the following abbreviations and notations:
ds1

ds
=: χ → M-curvature,

−cm(h,b′) =: χ1 → conical curvature,
cm(t,b′) =: χ2 → second conical curvature,
cm
(

b̃h,h′
)

=: χ3 → third conical curvature,
cm
(

t̃h,h′
)

=: χ4 → fourth conical curvature.
Multiplying both sides of the equations (33), (34) and

(35) with the previous functions, we similarly get
Minkowski analogues to the classical torsion functions as
follows:

χχ1 =: τ1 → M-torsion,
χχ2 =: τ2 → second torsion,
χχ3 =: τ3 → third torsion,
χχ4 =: τ4 → fourth torsion.
The coefficient functions of the M-Frenet-Serret

formulae are the 2nd , 3rd and 4th curvatures and torsions.
They have no geometric meaning in general but we can
find such a meaning for some special unit ballsB .

Then, The Frenet-Serret formulae can be written as
follows





t′

h′

b′



=





0 χ 0
−τ τ cm(h, t)+ τ1 cm(h,b) −τ1

τ2 −(τ1+ τ2cm(h, t)) 0









t
h
b





(36)
wherebyτ andτ1 are the following functions of the 3rd

and 4th Minkowski torsions [16]:

τ = χ
sm
(

b̃h,h′
)

sm
(

b̃h, t̃h
)∥

∥t̃h
∥

∥

, (37)

τ1 = χ
sm
(

t̃h,h′
)

sm
(

b̃h, t̃h
)∥

∥b̃h
∥

∥

. (38)

7 Conclusion

We have shown that examples of Euclidean concepts can
be translated into a Minkowski (normed) space. Of course

there remain many open questions. In this paper we e.g.
omitted those problems involving angle measures. By
presenting just one topic of these problems, namely the
Brauner’s theorem, we want to point out the arbitrariness
of finding and using a suitable angle concept. Moreover,
the discussion of special ruled surfaces remains to another
occasion. For example, it would be interesting to know
how surfaces with constant M-curvatures and M-torsions
look like.
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