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Abstract: In this paper, we define thB-orthonormal frame in Minkowski n-dimensional spacklj using the so-called Birkhoff
orthogonality. Using the M-trigonometric functions, we insert the conoéplinkowski semi-inner product. Brauner’s angle in M-
space is given as a function of some ideal points in projective spa@lyi-ime redefine the Frenet-Serret formulae in three dimensional
M-space using the concept of deformation vectors.
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1 Introduction presented by Rador7], Also, Birkhoff [8] and Day P]
give constructions of it in terms of polarity and a quarter
There are many open omitted problems of Minkowski rotations with respect to some Euclidean structure.
space involving angle measure. Braurrtfies to define  Moreover, Martini and others1p,11] present it using
the concept of angle between two vectoasb in only an "affine” bilinear form. Finally, Averkov and
projective space as a function of the ideal points of theseothers [L2] give some important characterizations of
vectors and its orthogonal vectors. In our work, we shallcentral symmetry of convex bodies in Minkowski spaces.

declare the Brauner's angle between two vectors in  \ya il prefer a concept of Minkowski orthogonality

Minkowski space using the cross ratio of some idealdue to Birkhoff ], James 13,14, 15] and Day P] from a
points in the plane at infinity. Because the concept Ofvery geometric 'point of view which leads to a

angle in Minkowski space is not symmetric, itis expected oy symmetric orthogonality as it is most naturally
to obtain a relation of angle measure dependent on th‘?elated to the geometry of the gauge Ba&l of the
angle fromato b and vice versa. This relation is based on Minkowski space. In general, it is no longer a symmetric

the so-called M-cosine functior2] which is also not rojation petween linear subspaces of the Minkowski
symmetric function. Besides, this function will allow us g0 06 “Explicitly this construction of "left-orthogortsli
to calculate coefficients of derivative equations of type oo 4s as follows: the supporting plane of the unit Bat

Frenﬁt-Serr_et ina Min.kowsfki 3'593:'%' K qi a pointx , contains all the lineg being "left-orthogonal”
The main properties of a Minkowski space and itS 1" yectorx : (and thenx is right-orthogonal toy ), see

B-orthogon_ality as well as its relations to other Figure 1, We use the symbojs x for y left-orthogonal
orthogonality concepts are introduced by many a“thorstoxresp.yl— x for y right-orthogonal tox.

Thompson 2] and Alonso , for example, 3[4,5,6]

introduce the concept of area orthogonality, which pefiniion 1.1, 1f M3 is an n-dimensional normed linear

satisfies all orthogonality relations in an inner product space of unit balB and ifx,y € M1 then we say that is
space except the abelian and additive relations. Th%-orthogonal toy and write7 B

definition of the B-orthogonality is not in general a
symmetric relation. In the case of Radon plane the
relation is symmetric. The construction of Radon curve is xAy & ||X|| <X+ Ay VA €R Q)
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Geometrically, this means thati y if and only if the line  and the second is the necessity of a quadratic absolute

Ay supports the unit baB atx, see Figure 1. figure, thus demanding the underlying vector space to be
The Hahn-Banach theorerg]implies thatx+ Aylies  an inner product space.
in a hyperplane which suppoiBsatx. Obviously,is not a H. BRAUNER’S angle formula I] uses instead of

symmetric relation, i.e. ik 1y, it is not means that - x. Laguerres absolute pointsJ the ideal pointsA’, B’ € u
In fact, for dimensions three or above, the only normedbelongs to the directiona,b which are orthogonal to
spaces for which normality is symmetric are the Euclideana’, b’ respectively. It reads as follows:

spaces. In dimension two, normality is symmetric for the
wide class of Radon planeg, [L6)]. tang = \/—cr (A/A,B,B,) =+/—cr (a,&,b,b’) (3)

(a,...meaning the direction vectors to the ideal points
A,..). This formula avoids complex extension and it
needs an orthogonality structure of the place of action. It
is therefore possible to declare an angle concept with this
formula in a large set of normed spaces.

3 M-trigonometric functions.

The Brauner's angle measur8) (is not clear to use in
Minkowski space; however, it is almost projective space
but it is not inner product space. Therefore, we try to use
a well-defined trigonometric functions in M-space to
define the so-called semi-inner product which allow us to
find it in M-space.

Fig. 1: Birkhoff (left) orthogonality,x 4y

_ , _ ~ Minkowski cosine (M-cosine) function.
Definition 1.2. Let x1, %, are two vectors in a Minkowski

spaceVIg such thaf|xi|| = [|x|| = 1, then this pairis called we construct the more suitable definition of the
mutually normal pair if X1 = 2 andxz - X1. Minkowski cosine function inMJ [2] between two
Definition 1.3. (Thompson 2]), If is the unit ball in a  vectorsx,y € M§, C Mg, whereB; = BN M? is the unit

Minkowski space then there exists a ba@is, x,....Xd)  pall of the subspackl2 spanned by the two vectoxsand

such thatfx|| = 1 andx; - x; for all i andj withi # j ;v and pass through the origin of the main unit Halbf

I.e. each pair of basis vectors is mutually normal. the spaceM . Mathematically, this function depends on

Definition 1.4. (B-orthonormal frame inMg ): Let  he ynique linear function if the unit ball is smooth-at

e,e,...en € Mg, el = vi = 12,...n. If _ o _ _ ﬂ%(ﬁ

ej 1eavk=12..j—1 then the ordered vector set and hence thI.S funct|qn is not symmetrlc fgnctlon.

e1,€, ..., en is called B-orthonormal frame M3 . For all Minkowski spacesM§ with strictly convex
smooth unit balB, we have for alk e Mg,x# 0, up to a
positive scalar factor, a unique linear functioriglattains

2 Brauner’s theorem (Angle measure in its maximum ak. i.e.,
Projective space) fi () = [IXI] . || x| (4)

A famous formula of E. LAGUERRE (1853) describes using this function, we can define the M-cosine function
the (Euclidean) angle between two lined by means of  as follows:

Projective Geometry as follows: LeA,B be the ideal pefinition 3.1. (Minkowski cosine function): For all two
points ofa,b andl,J be the pair of conjugate imaginary vectorsx,y € M2y 0 , the Minkowski cosine function

absolute points on the ideal line= AV B, then the angle  from x to y is not symmetric function, denoted logn(x, y)
measurep = <a, b is calculated by with the definition

L _ &y
<a,b=| zIncr (1,J,AB 2 cmixy) = — X\ 5
A @ 0¥) = . ®
This formula has, in spite of its importance for gpsiituting 4) into (5) we get
understanding Euclidean Geometry as a sub-geometry of
Projective Geometry, two disadvantages: The first is the 1X]| - fx (y)
necessity of a complex extension of the places of action cem(x.y) = MRS (6)
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In general, ifMY is a subspace d¥1g then we can define  Theorem 4.1.(Dragomir [L7]), In each real normed linear
the cosine Minkowski function as spaceMg there exists at least one semi-inner product
4 g which generates the norfn|| . That is,||x|| = [.,.]%/2 for
cm (X, M ) =max{cm(xy)lye M"—{0}}  (7)  allxe M, and itis unique if and only ik3 is smooth.

Definition 4.2. In Minkowski spaceMg , we define the
Minkowski semi-inner product of two vectorg, x, € Mg

Minkowski sine (M-sine) function. as follows:

Let H and x be, respectively, a hyperplane thrc_Jugh th(_a (X1, %)y = fx, (X2) I H2 (10)

CPACEMS wih contraly Symmetnc Uit balB, Also, b )

:SggigﬂeBg\lgo thadt has a basigxy, X, .., X4 1) then the By substitute §) into (10), we have

Minkowski sine sm(x,y) is defined by (0, Xog = [l el (e, %2) (11)
sm(H,x) := ||X||f-(f~)f()(f) (8) Proposition 4.3. The Minkowski semi-inner product

(.,-)m - ME x M§ — R has the following properties for all
X1,X%2,X3 € Mg anda, B € R:

i (X1, %) = O'iff Xq "4 %o.

i. In general(Xy,X2)y 7 (X1,X2) -

wheref is a linear function in dual spad¢#13)* such that
f+ =H and whose sign is such thafx) has the same sign
as the basiéxy, Xz, ...,X4—1,X) for Mg andd is the norm in

b : . ) i, (X, 0%+ BXa)yy = o (X, X))y + B(X1,X3)
(M%) mduce:j %3_/' the |sh0per|m|etri>g mdMIIg'[le]. b (Distributive law is not glymmetric ). . .

n general, ifH is a hyperplane and If is a subspace : _ _
of M3 then we can definem(H, L) by 8 <X'l’-)<(‘27>>;1>x2>|v| o (X1, X2)p and (Xa, BX2)

sm(H, L) :=max{sm(H,x)|xe L—{0 9 V- {x1,x1)y = 01ff x=0
(L) =madamokeL =0 O G i P< lal. el?

In the following proposition, we will give some
interesting properties of the cosine function connecting
with the B-orthogonality. We will use it later to define the 5 Brauner’s theorem in Minkowski space.
Minkowski semi-inner product.

Proposition 3.2.For allx;, x; € M3, %1, %2 # 0 we have The definition of Brauner’s angle in projective spag (
i. cm(xy,x2) = 0'iff X1 4 Xo. is not valid in Minkowski space, because the angle in
ii. cm(axy, Bxz) = cm(xg, %) Va,B >0. M-space is not symmetric. Here we use the definition of
iii. cm(xq, —X2) = —CmM(Xg,X2). left-orthogonality () and the definition of Minkowski
iv. If fy, supportsB at x; then cm(—x1,Xp) = semi-inner product to derive a suitable formula of the
—Cm(X1,X2). angle measure in M-space.
V. cm(xg,x1) = 1. Theorem 5.1.
vi. For all x; # Xz,| em(xg,%2) [< 1 with equality iff If a,b are two vectors in a Minkowski spaddg the
the line | X | | X2 angle betweena and b satisfies the equation
]| | | [[%]l cm(u,v)em(vu) = cor (Ay,Bu,Bj,A;) ., where

A, = (O,WR , B, = (VR , Aj = (O,u’)R and
B, = (O,v')R are the ideal points of the vectors
a,a’,b,b™ respectively.

We know that a normed linear space is not necessarily a@roof. Assume thaby = cr (Au, A, By, By) anda’, b are
inner product space. Therefore, a real normed linear spaci€ [€ft orthogonal vectors d@,b respectively. From the
is an inner product space if and only if each collinearity, we get,

two-dimensional linear subspace of it is also an inner

product space. Equivalently, we can state that a normed .

linear space is an inner product space if and only if every (O,u )R =a(OUR+BOVIR a,BeR,  (12)
plane section of the unit ball pass through the originis

an ellipse. Forn > 3, t B is an ellipsoid and the multiply both sides byu from left as a Minkowski
Minkowski space is Euclidean space. As we cannot starsemi-inner product, we get

with an inner product, we need to find a so called 0 = (u,au+pBv)y = a(uuy + Buvy =
"semi-inner product”’, which is compatible with the a : B = —(u,v)y; : (u,u)y . Then the homogeneous
B-orthogonality concept and the (non-Euclidean) coordinates of it arg— (u,v) : (u,u)y,). Similarly the
Minkowski norm. homogeneous coordinatesRf are((v,v)y, : — (v,u)y,).

4 Minkowski semi-inner product.
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Now we can assume that the ideal poiAgs= (1 : 0))
andBy = (0: 1)) then,

10 ‘—<U~V>M (V-V)y

B 01 (u-uyy, —(v-uyy

o= oLy

(U-upy 1 0 —(v-U)y

loss of generality we can assume thaff = ||v|]| = 1 then,

du=1-

,  without

——————andh ,
cm(u,v)cm(v, u) andhence

cm(u,v) cm(v,u) = cr (Au, Bu, Bj7Aj) (13)

This result is compatible with the fact that the angle

measure in M-space is not symmetric; therefat8) gives

a relation between the two orientation angles and the crosglinkowski

ratio of the two vectors and their orthogonal at infinity.

6 Frenet-Serret formulae in M-space.

The Frenet-Serret formulae in Minkowski space are

Theorem 6.2.
Let Méz C Mg be a Minkowski plane with smooth,
strictly convex and centrally symmetric unit b&p. Let

y =X Hx*”fl be any normed vector o3, then its
left-orthogonal vectory™ is described by the formula
y'= [ {=xtyem( )}

Proof. Assume that the vectore Méz. then, we have the

vectory™ which can be considered as a linear combination
of the normal basigx,x),

Y = Apx+ Apx (15)
multiply both sides of 15 by x' from left as a
semi-inner product, then we have

(XY = (X, Arx+Aox),,, since(x,y ™), =0, then

Ascm(x7,x)
[l

Remember that Minkowski plarilsa‘lé2 is spanned by

Ar=— (16)

modified by Shonodallg], because the derivatives of the the pairs(x, x*) or (y’yﬁ); therefore the Minkowski area

unit vectors of the frame(t,h,b) in M3 lie in the
supporting planes of it, thend h,h 4b andb it .
Moreover, we will define the so-calledeformation

vector in M2 which helps us to find the more suitable

Frenet-Serret formulae 3.
Definition 6.1. Deformation vector: LetMé2 be a

Minkowski plane with smooth, strictly convex and

centrally symmetric unit balB,. Then the deformation
vectorx; of the vectorx in the plangoxy), of any normed
vectorsx,y € Méz is defined as

(14)

Fig. 2: Deformation vectorx' of the vector x in
Minkowski two dimensional unit baB

Note that the paifx,x") is a B-orthonormal basis for
M3, see Figure 2.

u (P) of the parallelogram spanned pwndy is given by
u(P)=1lyl Hy*||sm(y,yi) =[ly"[[sm(y,y").
Sincesm(y,y ') = —, then by substituting™ from

(15) into (16), we hav

=sm (y, y*) —sm (y, Agx+ Azx*) . (17)

1
Iy

For allxy, X2, X3 € M3, — {0} we have

SM(X1,X3) = CM(X2,X3) SM(X1,X2) +CM(X2,X1) SM(X2,X3) ,

(18)

If we take x; = y,xo = Aix and x3 =y, then (17)
becomes

WlH = sm(y,y*) =—cm (x,y*) H;H,

multiply again both sides of (15) by from left as a

(19)

Minkowski semi-inner product, we havg = —W.
Substituting 19) into (20) and using 16), we get

= e {oxeom(i )}

which complete the proof.

Now, we assume that(s;) be a unit vector which
depends only on a paramett By attaching this vector
at the origino of a fixed (affine) frame of a Minkowski
spaceM? , we receive the spherical image of the ruled
surface in consideratiof® at the unit spher&and we call
the coneoV c; , the "direction cone” of® . Without loss

(20)
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of generality we can assume that the paramsieis a By the same method, we can assume that the vettor
"Minkowski arc length parameter” of the cunag , i.e. lies in the plane contains the vect@&gsandZ,; hence, we
the deviation vector€ (s;) is normed all over the can describe it as linear combination of that vectors,
definition interval ofs;. The direction cone o takes the
form

T = di&;+ doZy, (28)
X =ve(s). (21) where
Based on the right handed B-orthonormal (affine)
frame {e,11,z} we havee-¢ ,z-4eandz-€ , and 8= —e+ mem(me),
therefore(e, &)y, = 0, (z,€), = 0 and(z,€),, =0 . The S = —z4 TCM(TT,2) } (29)

derivatives of the vectors{e€,z} should be linear
combinations of these vectors. The formulae for these |; is clear to calculate the constants and dy as
expressions are usually called the Frenet-Serret formulag,| o s:
of a moving frame.
We can assume that the vecg’(s;) = mis defined

by the first equation of the three Frenet-Serret equations. 77]| M (B, 7T) — CM (2, 7¥) cM(B, Z10)

We state that the first equation must be the same for d; = = — — , (30)
Minkowski cases as well as for the Euclidean case, Bl 1~ cm(Zn,Er) cm(En, Zn
because the unit vecta(s;) is left-orthogonal to the
derivative vecto€ (s1) as in the Euclidean case.
The derivative of the unit vectar can be obtained as [77]] em(Zx, ) — cm (&g, 1) e (Zrr, &)
a linear combination of the three B-orthonormal vectors t2 = Bl 1= M) cMBrn) (31)

{e,m,z} as follows:

7 = Bie+ BorT+ Bsz. 22) then @8) can be rewritten as follows:

Multiplying both sides of 22) by z from left as a
Minkowski semi-inner product and using proposition 4.3, . H”’H (cm(ém ) —cm(Zy, ) cm (&, Zr7)

we getBsz = 0, wherez -z ( Z lies in the supporting “HG- &
plane of the unit balB atz ). Therefore, (Zr &r) |8l

s
H (Zn, &r) [|€n|

<(cm(~em ) —cm(Zy, ) em(&n, Z5r)) cm(TT, €)
7 =Bie+ By (23) +

In the same manner, we multiply both sides 28)(by
e from left side, we can fin@, = (e,Z),,. Then,

(CM(Zy, 1T) — cm (&, 1) cM (27, B) ) cM(TT, z)) -

H (Zn, €n) || Znl|
7 =(eZ),e+Bem (24) Cm (2, ) — cM(&r, 1) CM (21 Br)
By using the deformation vect@; of the vectore in —H (Zn, Zr) || Zn||
the plane{oert}, then the vectorr becomes (32)
e+8é s s T

p— e (25) where, H = (Zp,&7) = 1 — cm(Zp, &) cm (&, Zn).

cm(7,€) Now, we considex(s) describing the space curgewith
Then, we can rewrite2d) as follows: arc lengths. The tangent vectdr= X' can be moved into

the unit spheres to obtain the spherical imagg , the
cone (ocy) has generators which are parallel to the
tangent of the curvec. Similarly as the previous
construction, we have the right handed orthonormal
(affine) frame{t,h,b} , whereh is called the principle
Multiply again both sides of26) by r from left as a  normal vector and is the binomial vector, without loss
Minkowski semi-inner product, we can easily compute theof generality. We can consider that the derivatives of these

constantB, = ||Z|| {em(m,Z)) — cm(e,Z)cm(m,e)} , we  Vectors are unit vectors, the plafih) is the osculating
have from 24) plane and the plangb) is the normal plane. By using the
derivatives of these vectors as before, we have

B, e
= ! — B,————. 26
z <e’Z>'\"+cm(7r,e) et Zem(m,e) (26)

'=||Z|| {cm(e,Z) e+ [em(m,Z) —em(e,Z) cm(m, e . dt
2|2 on(e2)e+ [an(n2) -em(e2)anire) @, @)
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dh  cm(tn,h') —cm(bn, ) cm(th, br)

& Ao
(em(th,h’) —em(bn,h) em(th, b)) cm(h,t)
( H (bn,th) [[ta]]
(em(bn,h) —cm (Eh, h') cm(bn,th)) cm(h,b))h+
H (bn, ) [[bn|
cm (b, ) —em (th, h') cm (Bn, Th) 5
~H (bn.bn) [[bn|
(34)
db
F cm(t,b’)t+ (cm(h,b’) —cem(t,b") cm(h,t)) h,

(39)

We insert the following abbreviations and notations:

d—sl =: X — M-curvature,

—cm(h,b’) =: x1 — conical curvature,

cm(t,b’) =: x2 — second conical curvature,
cm(bp,h") =: x3 — third conical curvature,
cm(ih,h') =: x4 — fourth conical curvature.
Multiplying both sides of the equation83), (34) and

there remain many open questions. In this paper we e.g.
omitted those problems involving angle measures. By
presenting just one topic of these problems, namely the
Brauner’s theorem, we want to point out the arbitrariness
of finding and using a suitable angle concept. Moreover,
the discussion of special ruled surfaces remains to another
occasion. For example, it would be interesting to know
how surfaces with constant M-curvatures and M-torsions
look like.
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