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Abstract: In this paper we investigate the generalized fractional integration and differentiation of the generalizedM-Series. We
give representations of the generalizedM-Series in terms of the Wright generalized hypergeometric function pψq , and formulas
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1 Introduction

The Wright generalized hypergeometric function [20] is
given by

pψq(z) = pψq

[

z

∣

∣

∣

∣

(α1,A1), ...,(αp,Ap)
(β1,B1), ...,(βq,Bq)

]

= ∑∞
n=0

∏p
i=1Γ (αi+nAi)

∏q
j=1Γ (β j+nBj )

zn

n!

(1)
whereAi > 0 (i = 1, p), B j > 0 ( j = 1,q); αi ,β j ∈C, and
∑p

i=1Ai −∑q
j=1B j ≤ 1.

WhenA1 = ...= Ap = B1 = ...= Bq = 1, then (1) reduces
to a generalized hypergeometric functionpFq(.) as shown
below

pψq

[

z

∣

∣

∣

∣

(α1,1), ...,(αp,1)
(β1,1), ...,(βq,1)

]

=
∏p

j=1 Γ (α j )

∏q
j=1Γ (β j )

pFq (α1, ...,αp; β1, ...,βq; z)

(2)
where p ≤ q, |z| < ∞; p = q+ 1, |z| < 1; p = q+ 1,

|z|= 1; Re
(

∑q
j=1β j −∑p

j=1α j

)

> 0.

It is observed that the Riemann-Liouville fractional
integral and derivative of the Wright function is also the
Wright function but of greater order. Conditions for the
existence of the series (1) together with its presentation in
terms of the Mellin-Barnes integral and theH-function
were established by Mathai and Saxena [7].

The generalizedM-Series [18] is defined as

pMα ,β
q (z) = pMα ,β

q (a1, ...,ap; b1, ...,bq; z)

=
∞

∑
n=0

(a1)n...(ap)n

(b1)n...(bq)n

zn

Γ (αn+β )
, (3)

where z,α,β ∈ C, ℜ(α) > 0; (ai)n (i = 1, p) and
(b j)n ( j = 1,q) are the Pochhammer symbols. The series
(3) is defined when none of the parameters
(b j)n

(

j = 1,q
)

, is a negative integer or zero; if any
numerator parametera j is a negative integer or zero, then
the series terminates to a polynomial inz. The series in
(3) is convergent for allz if p ≤ q, it is convergent for
|z| < δ = αα if p = q+ 1 and divergent, ifp > q+ 1.
When p = q+ 1 and|z| = δ , the series can converge on
conditions depending on the parameters. Further detailed
account of theM-Series can be found in the paper [18].
The fractional integral operator involving various special
functions, have been found of significant importance and
applications in various sub-fields of application
mathematical analysis.
The generalizedM-series can be represented as a special
case of the Wright generalized hypergeometric function
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pψq (z) and of the FoxH-function [7] as shown below.

pMα ,β
q (a1, ...,ap; b1, ...,bq; z) =

∏q
j=1 Γ (b j )

∏p
j=1Γ (a j )

p+1ψq+1

[

z

∣

∣

∣

∣

(a1,1) , ...,(ap,1) ,(1,1)
(b1,1) , ...,(bq,1) ,(β ,α)

]

(4)

=
∏q

j=1Γ (b j )

∏p
j=1Γ (a j )

H1,p+1
p+1,q+2

[

−z

∣

∣

∣

∣

(1−α j ,1;1)1,p ,(0,1)
(0,1) ,(1−β j,1)1,q ,(1−β ,α)

]

.

(5)
Furthermore, if we setp= q= 1, b= 1 anda= γ where
γ ∈C in (3), then we obtain the generalized Mittag-Leffler
function, as given below.

Eγ
α ,β (z) = ∑∞

n=0
(γ)n

Γ (αn+β )
zn

n! = ∑∞
n=0

(γ)n
(1)n

zn

Γ (αn+β ) = 1Mα ,β
1 (γ;1;z) .

(6)
Generalized fractional calculus operators:
Let α,α ′

,β ,β ′
,γ ∈ C, x > 0, then the left-sided

(Iα ,α
′
,β ,β

′
,γ

0+ ) and right-sided (Iα ,α
′
,β ,β

′
,γ

− ) generalized
fractional integral operators of a functionf (x) for
Re(γ) > 0 is defined by Saigo and Maeda [12], in the
following form:

(

Iα ,α ′
,β ,β ′

,γ
0+ f

)

(x) = x−α

Γ (γ)
∫ x

0 (x− t)γ−1 t−α ′

F3

(

α,α ′
,β ,β ′

;γ;1− t
x,1−

x
t

)

f (t)dt,

(7)

(

Iα ,α
′
,β ,β

′
,γ

− f

)

(x) = x−α
′

Γ (γ)
∫ ∞

x (t − x)γ−1 t−α F3

(

α,α ′
,β ,β ′

;γ;1− x
t ,1−

t
x

)

f (t)dt,

(8)
These operators reduce to the Saigo fractional integral
operators [11,14] due to the following relations:

Iα ,0,β ,β ′
,γ

0+ f (x) = I γ,α−γ,−β
0+ f (x) (γ ∈C), (9)

and

Iα ,0,β ,β ′
,γ

− f (x) = I γ,α−γ,−β
− f (x) (γ ∈C). (10)

Let α,α ′
,β ,β ′

,γ ∈ C, andx ∈ R+, then the generalized
fractional differentiation operators [12] involving the
Appell function F3 as a kernel are defined by the
following equations:

(

Dα ,α ′
,β ,β ′

,γ
0+ f

)

(x) =

(

I−α ′
,−α ,−β ′

,−β ,−γ
0+ f

)

(x) (11)

= dn

dxn

(

I−α
′
,−α ,−β

′
+n,−β ,−γ+n

0+ f

)

(x) , (Re(γ)> 0; n= [Re(γ)]+1) ,

(12)

(

Dα ,α ′
,β ,β ′

,γ
− f

)

(x)=

(

I−α ′
,−α ,−β ′

,−β ,−γ
− f

)

(x)

(13)

= (−1)n dn

dxn

(

I−α ′
,−α ,−β ′

,−β+n,−γ+n
− f

)

(x) , (Re(γ)> 0; n= [Re(γ)]+1)

(14)

These operators reduce to the Saigo fractional derivative
operators [11,16] as

(

D0,α ′
,β ,β ′

,γ
0+ f

)

(x)=

(

Dγ,α ′
−γ,β ′

−γ
0+ f

)

(x) , (Re(γ)> 0);

(15)
(

D0,α
′
,β ,β

′
,γ

− f

)

(x)=

(

Dγ,α
′
−γ,β

′
−γ

− f

)

(x) , (Re(γ)> 0).

(16)
Further [ [12], p. 394, Eqns. (4.18) and (4.19)] we also
have

Iα ,α ′
,β ,β ′

,γ
0+ xρ−1 = Γ

[

ρ , ρ+γ−α−α
′
−β , ρ+β

′
−α

′

ρ+γ−α−α ′
, ρ+γ−α ′

−β , ρ+β ′

]

xρ−α−α ′
+γ−1,

(17)
where
Re(γ)> 0,Re(ρ)> max

[

0,Re(α +α ′
+β − γ), Re(α ′

−β ′
)
]

,
and

Iα ,α ′
,β ,β ′

,γ
− xρ−1 = Γ

[

1+α+α
′
−γ−ρ , 1+α+β

′
−γ−ρ , 1−β−ρ

1−ρ , 1+α+α ′
+β ′

−γ−ρ , 1+α−β−ρ

]

xρ−α−α ′
+γ−1

,

(18)
where
Re(γ)> 0, Re(ρ)< 1+min

[

Re(−β ),Re(α +α ′
− γ), Re(α +β ′

− γ)
]

.
Here, we have used the symbolΓ [......] representing the
fraction of many Gamma functions.
Recently, Srivastava and Saxena [19] have discussed the
operators of fractional integration and their applications.
Similarly, generalized fractional calculus formulae of the
Aleph-function associated with the Appell functionF3 is
given by Saxena et al. [16], and Ram & Kumar [8].

2 Generalized fractional integration of the
generalizedM-Series

In this section we derive the left and right-sided
generalized fractional integration formulas of the
generalizedM-Series.

Theorem 1 Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, x > 0, µ > 0, z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then we have the following
relation:

{

Iα,α
′
,β ,β

′
,γ

0+

(

tσ−1
pMξ ,η

q (z tµ )
)

}

(x) = xσ−α−α
′
+γ−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+4ψq+4

[

zxµ
∣

∣

∣

∣

(a1,1),...,(ap,1),(σ ,µ),(σ+γ−α−α
′
−β ,µ),(σ+β

′
−α

′
,µ),(1,1)

(b1,1),...,(bq,1),(σ+γ−α−α′
,µ),(σ+γ−α′

−β ,µ),(σ+β ′ ,µ),(η ,ξ)

]

. (19)

provided each member of the equation exists.

Proof.Following the definition of left-sided Saigo-Maeda
fractional integral as given in (7), we have the following
relation:
{

Iα ,α ′,β ,β ′,γ
0+

(

tσ−1
pMξ ,η

q (ztµ)
)}

(x)
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= x−α

Γ (γ)
∫ x

0 (x− t)γ−1 t−α ′+σ−1F3 (α,α ′,β ,β ′;γ;1− t/x,1− x/t) pMξ ,η
q (ztµ)dt.

By virtue of (3) and (17); and interchanging the order of
integration and summations, evaluating the inner integral
with the help of Beta function and using Gauss
summation theorem, it becomes
{

Iα ,α ′
,β ,β ′

,γ
0+

(

tσ−1
pMξ ,η

q (ztµ)
)}

(x) =
xσ−α−α′+γ−1Γ (b1)...Γ (bq)

Γ (a1)...Γ (ap)

× ∑∞
n=0

Γ (a1+n)...Γ (ap+n)Γ (µn+σ)Γ (µn+σ+γ−α−α ′−β)
Γ (b1+n)...Γ (bq+n)Γ (µn+σ+γ−α−α ′)Γ (µn+σ+γ−α ′−β )

×
Γ (µn+σ +β ′−α ′)Γ (n+1)

Γ (µn+σ +β ′)Γ (ξ n+η)
(zxµ)n

n!

Following the definition of the Wright generalized
hypergeometric function as given in (1), we obtain (19).
This completes the proof of the Theorem 1.

On settingp= q= 1; a= λ ∈C; andb= 1 in (19), then
we obtained the following interesting result:

Corollary 1Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, x > 0, µ > 0, z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then there holds the following
formula:

{

Iα,α
′
,β ,β

′
,γ

0+

(

tσ−1 Eλ
ξ ,η (ztµ )

)

}

(x) =
xσ−α−α

′
+γ−1

Γ (λ )

× 4ψ4

[

zxµ

∣

∣

∣

∣

∣

(λ ,1) (σ ,µ),(σ + γ −α −α ′
−β ,µ),(σ +β ′

−α ′
,µ),(1,1)

(σ + γ −α −α ′
,µ),(σ + γ −α ′

−β ,µ),(σ +β ′
,µ),(η ,ξ )

]

.

(20)

If we setσ = η andµ = ξ in Theorem 1, then we obtain
an interesting result as given following:

Corollary 2Let α,α ′
,β ,β ′

,γ,ξ ,η ∈ C, x > 0, z ∈ ℜ;
Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then we have the following
relation:

{

Iα,α′ ,β ,β ′,γ
0+

(

tη−1
pMξ ,η

q

(

ztξ
))}

(x) =
xη−α−α′+γ−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

×

p+3ψq+3

[

zxξ
∣

∣

∣

∣

(a1,1) , ...,(ap,1) ,(η + γ −α −α ′ −β ,ξ ) ,(η +β ′ −α ′,ξ ) ,(1,1)
(b1,1) , ...,(bq,1) ,(η + γ −α −α ′,ξ ) ,(η + γ −α ′ −β ,ξ ) ,(η +β ′,ξ )

]

.

(21)

In view of the relation (9), then we arrive at the
following corollary concerning left-sided Saigo fractional
integral operator discussed by Sharma [17].

Corollary 3Let α,β ,γ,σ ,ξ ,η ∈ C, µ > 0, x > 0, z∈ ℜ,
and Re(α) > 0,Re(ξ ) > 0, then we have the following
result:

{

Iα,β ,γ
0+

(

tσ−1
pMξ ,η

q (ztµ )
)}

(x) =
xσ−β−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+3ψq+3

[

zxµ
∣

∣

∣

∣

(a1,1) , ...,(ap,1) ,(σ ,µ) ,(σ + γ −β ,µ) ,(1,1)
(b1,1) , ...,(bq,1) ,(σ −β ,µ) ,(σ +α + γ ,µ) ,(η ,ξ )

]

. (22)

Theorem 2Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, x > 0, µ > 0,z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then we have the following
relation:

{

Iα,α′ ,β ,β ′,γ
−

(

tσ−1
pMξ ,η

q

(

zt−µ)
)}

(x) =
xσ−α−α′+γ−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+4ψq+4

[

zx−µ
∣

∣

∣

∣

(a1,1),...,(ap,1),(1+α+α′−γ−σ ,µ),(1+α+β ′−γ−σ ,µ),(1−β−σ ,µ),(1,1)

(b1,1),...,(bq,1),(1−σ ,µ),(1+α+α′+β ′−γ−σ ,µ),(1+α−β−σ ,µ),(η ,ξ)

]

.

(23)

provided each member of the equation exists.

Proof.Following the definition of right-sided Saigo-Maeda
fractional integral as given in (8), we have the following
relation:
{

Iα ,α ′
,β ,β ′

,γ
−

(

tσ−1
pMξ ,η

q

(

zt−µ)
)}

(x)

= x−α′

Γ (γ)
∫ ∞

x (t − x)γ−1 t−αF3(α,α ′,β ,β ′;γ;1− x/t,1− t/x) pMξ ,η
q (zt−µ)dt.

By virtue of (3); and following similar lines to that of
Theorem 1, we obtain (23).

By putting p= q= 1; a= λ ∈C; andb= 1 in (23), then
we obtained the following interesting result:

Corollary 4Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, x > 0, µ > 0, z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then there holds the following
formula:

{

Iα,α
′
,β ,β

′
,γ

−

(

tσ−1 Eλ
ξ ,η

(

zt−µ )
)

}

(x) =
xσ−α−α

′
+γ−1

Γ (λ )

× 4ψ4

[

zx−µ
∣

∣

∣

∣

(λ ,1),(1+α+α′−γ−σ ,µ),(1+α+β ′−γ−σ ,µ),(1−β−σ ,µ),(1,1)
(1−σ ,µ),(1+α+α′+β ′−γ−σ ,µ),(1+α−β−σ ,µ),(η ,ξ)

]

. (24)

In view of the relation (10), then we arrive at the following
corollary concerning right-sided Saigo fractional integral
operator discussed by Sharma [17].

Corollary 5Let α,β ,γ,σ ,ξ ,η ∈ C, x > 0, µ > 0, z ∈
ℜandRe(ξ )> 0,Re(α)> 0, then we get the following:

{

Iα,β ,γ
−

(

tσ−1
pMξ ,η

q

(

zt−µ )
)}

(x) =
xσ−β−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+3ψq+3

[

zx−µ
∣

∣

∣

∣

(a1,1) , ...,(ap,1) ,(1+β −σ ,µ) ,(1+ γ −σ ,µ) ,(1,1)
(b1,1) , ...,(bq,1) ,(1−σ ,µ) ,(1+α +β + γ −σ ,µ) ,(η ,ξ )

]

.

(25)

Remark 1We can also obtain results concerning
Riemann-Liouville and Erd́elyi-Kober fractional integral
operators [11, 13, 14] by putting β = −α and β = 0
respectively in Corollary 3 and 5.

3 Generalized fractional differentiation of
the generalizedM-Series

In this section we derive the left and right-sided
generalized fractional differentiation formulas of the
generalizedM-Series.

c© 2015 NSP
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Theorem 3Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, µ > 0, x > 0, z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then we have the following
formula:

{

Dα,α′ ,β ,β ′ ,γ
0+

(

tσ−1
pMξ ,η

q (ztµ )
)}

(x) =
xσ+α+α′ −γ−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+4ψq+4

[

zxµ
∣

∣

∣

∣

(a1,1),...,(ap,1),(σ ,µ),(σ+α+α′+β ′−γ,µ),(σ+α−β ,µ),(1,1)

(b1,1),...,(bq,1),(σ+α+α′−γ,µ),(σ+α+β ′−γ,µ),(σ−β ,µ),(η ,ξ)

]

. (26)

provided each member of the equation exists.

Proof.Following the definition of left-sided Saigo-Maeda
fractional differentiation as given in (12), we get

{

Dα ,α ′,β ,β ′,γ
0+

(

tσ−1
pMξ ,η

q (ztµ)
)}

(x) =

dk

dxk

{

I−α ′,−α ,−β ′+k,−β ,−γ+k
0+

(

tσ−1
pMξ ,η

q (ztµ)
)}

(x) ,

where k = [Re(γ)+1]. Interchanging the order of
integration and summations, using (12) and (17) and
making some simplification, we arrive at

{

Dα ,α ′,β ,β ′,γ
0+

(

tσ−1
pMξ ,η

q (ztµ)
)}

(x) = dk

dxk

xσ+α+α′−γ+k−1Γ (b1)...Γ (bq)
Γ (a1)...Γ (ap)

× ∑∞
n=0

Γ (a1+n)...Γ (ap+n)Γ (µn+σ)Γ (µn+σ+α+α ′+β ′−γ)
Γ (b1+n)...Γ (bq+n)Γ (µn+σ+α+α ′−γ+k)Γ (µn+σ+α+β ′−γ)

Γ (µn+σ +α −β )Γ (n+1)
Γ (µn+σ −β )Γ (ξ n+η)

(zxµ)n

n!
.

By using dk

dxk xm = Γ (m+1)
Γ (m−k+1)x

m−k, where m ≥ k in the
above expression, and following the definition of the
Wright generalized hypergeometric function as given in
(1), we obtain (26). This completes the proof of the
Theorem 3.

On settingp= q= 1; a= λ ∈C; andb= 1 in (26), then
we obtained the following interesting result:

Corollary 6Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, x > 0, µ > 0, z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then there holds the following
formula:

{

Dα,α
′
,β ,β

′
,γ

0+

(

tσ−1 Eλ
ξ ,η (ztµ )

)

}

(x) =
xσ+α+α

′
−γ−1

Γ (λ )

× 4ψ4

[

zxµ
∣

∣

∣

∣

(λ ,1) ,(σ ,µ) ,(σ +α +α ′ +β ′− γ ,µ) ,(σ +α −β ,µ) ,(1,1)
(σ +α +α ′ − γ ,µ) ,(σ +α +β ′ − γ ,µ) ,(σ −β ,µ) ,(η ,ξ )

]

.

(27)

If we setσ = η andµ = ξ in Theorem 3, then we obtain
an interesting result as given below.

Corollary 7Let α,α ′
,β ,β ′

,γ,ξ ,η ,∈ C, x > 0, z ∈ ℜ;
Re(ξ ) > 0, Re(γ) > 0, and aj ,b j ∈ C,

(i = 1, ..., p; j = 1, ...,q), then we have the following
result:

{

Dα,α′ ,β ,β ′ ,γ
0+

(

tη−1
pMξ ,η

q

(

ztξ
))}

(x) =
xη+α+α′−γ−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

×

p+3ψq+3

[

zxξ
∣

∣

∣

∣

(a1,1) , ...,(ap,1) ,(η +α +α ′ +β ′− γ ,ξ ) ,(η +α −β ,ξ ) ,(1,1)
(b1,1) , ...,(bq,1) ,(η +α +α ′− γ ,ξ ) ,(η +α +β ′ − γ ,ξ ) ,(η −β ,ξ )

]

.

(28)

In view of the relation (15), then we arrive at the
following corollary concerning left-sided Saigo fractional
differentiation operator.

Corollary 8Let α,β ,γ,σ ,η ,ξ ∈C, µ > 0, x> 0, z∈ ℜ;
Re(α) > 0, Re(ξ ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then we have the following:

{

Dα,β ,γ
0+

(

tσ−1
pMξ ,η

q (ztµ )
)}

(x) =
xσ+β−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+3ψq+3

[

zxµ
∣

∣

∣

∣

(a1,1) , ...,(ap,1) ,(σ ,µ) ,(σ +α +β + γ ,µ) ,(1,1)
(b1,1) , ...,(bq,1) ,(σ +β ,µ) ,(σ + γ ,µ) ,(η ,ξ )

]

. (29)

Theorem 4Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, x > 0, µ > 0,z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q) then we have the following
relation:

{

Dα,α′ ,β ,β ′ ,γ
−

(

tσ−1
pMξ ,η

q

(

zt−µ)
)}

(x) =
xσ+α+α′ −γ−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+4ψq+4

[

zx−µ
∣

∣

∣

∣

(a1,1),...,(ap,1),(1−α−α′+γ−σ ,µ),(1−α′−β+γ−σ ,µ),(1+β ′−σ ,µ),(1,1)
(b1,1),...,(bq,1),(1−σ ,µ),(1−α−α′ −β+γ−σ ,µ),(1−α′+β ′−σ ,µ),(η ,ξ)

]

.

(30)

provided each member of the equation exists.

Proof.Following the definition of right-sided Saigo-Maeda
fractional differentiation as given in (14), we get

{

Dα ,α ′
,β ,β ′

,γ
−

(

tσ−1
pMξ ,η

q

(

zt−µ)
)}

(x)

= (−1)k dk

dxk

{

I−α ′
,−α ,−β ′

,−β+k,−γ+k
−

(

tσ−1
pMξ ,η

q (zt−µ)
)}

(x) ,

wherek= [Re(γ)+1].
Using (14) and (18) and making some simplification,

we obtain (30). This completes the proof of the Theorem
4.

By settingp= q= 1; a= λ ∈C; andb= 1 in (30), then
we obtained the following interesting result:

Corollary 9Let
α,α ′

,β ,β ′
,γ,ξ ,η ,σ ∈ C, x > 0, µ > 0, z ∈ ℜ;

Re(ξ ) > 0, Re(γ) > 0 and aj ,b j ∈ C,
(i = 1, ..., p; j = 1, ...,q), then there holds the following
formula:

{

Dα,α
′
,β ,β

′
,γ

−

(

tσ−1 Eλ
ξ ,η

(

zt−µ )
)

}

(x) =
xσ+α+α

′
−γ−1

Γ (λ )

× 4ψ4

[

zx−µ
∣

∣

∣

∣

(λ ,1),(1−α−α′+γ−σ ,µ),(1−α′−β+γ−σ ,µ),(1+β ′−σ ,µ),(1,1)
(1−σ ,µ),(1−α−α′−β+γ−σ ,µ),(1−α′+β ′−σ ,µ),(η ,ξ)

]

. (31)
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In view of the relation (16), then we arrive at the
following corollary concerning right-sided Saigo
fractional differentiation operator.

Corollary 10Letα,β ,γ,σ ,ξ ,η ∈C, µ > 0, x> 0, z∈ ℜ;
and Re(ξ )> 0,Re(α)> 0, then we get the following:

{

Dα,β ,γ
−

(

tσ−1
pMξ ,η

q

(

zt−µ)
)}

(x) =
xσ+β−1 ∏q

j=1 Γ (bj )

∏p
j=1 Γ (aj )

× p+3ψq+3

[

zx−µ
∣

∣

∣

∣

(a1,1) , ...,(ap,1) ,(1−β −σ ,µ) ,(1+α + γ −σ ,µ) ,(1,1)
(b1,1) , ...,(bq,1) ,(1−σ ,µ) ,(1−β + γ −σ ,µ) ,(η ,ξ )

]

.

(32)

Remark 2We can also obtain results concerning
Riemann-Liouville and Erd́elyi-Kober fractional
derivative operators [11] by putting β = −α and β = 0
respectively in Corollary 8 and 10.

4 Conclusion

In the present paper we investigate the generalized
fractional calculus involvingF3 hypergeometric function
of theM-Series. We can also obtain the number of special
functions as the special cases of our main results, which
are related with M-Series and Wright generalized
hypergeometric function.
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