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Abstract: In the present paper we introduce some generalizedI−convergent sequence spaces and study some topological and algebraic
properties of these spaces. We also make an effort to study some inclusion relations between these spaces.
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1 Introduction and Preliminaries

Let w denote the space of all real or complex sequences.
A double sequence of complex numbers is defined as a
functionx : N×N→ C. We denote a double sequence as
(xi j) where the two subscripts run through the sequence
of natural numbers independent of each other. A number
a ∈C is called a double limit of a double sequence(xi j) if
for everyε > 0 there exists someN = N(ε) ∈ N such that

|(xi j)− a|< ε, ∀i, j ∈ N.

The study of double sequence spaces was initiated by
Bromwich [2] and further generalized and studied by
Hardy [6], Moricz [15], Moricz and Rhoades [16],
Tripathy ([27], [28]), Başarir and Sonalcan [4] and many
others. Quite recently, Zeltser [31] in her Ph.D thesis has
essentially studied both the theory of topological double
sequence spaces and the theory of summability of double
sequences. For more details about double sequence
spaces (see [20], [17],[18]) and references therein. Letl∞
and c denote the Banach spaces of bounded and
convergent sequences, respectively, with norm
‖x‖∞ = sup

k
|xk|. Let V denote the space of sequences of

bounded variation that is,

V =
{

x = (xk) :
∞

∑
k=0

|xk − xk−1|< ∞, x−1 = 0
}

,

whereV is a Banach space normed by

‖x‖=
∞

∑
k=0

|xk − xk−1|, (see [19]).

Let σ be a mapping of the set of the positive integers into
itself having no finite orbits. A continuous linear
functional φ on l∞ is said to be an invariant mean or
σ -mean if and only if
(i) φ(x) ≥ 0 when the sequencex = (xk) hasxk ≥ 0 for all
k;
(ii) φ(e) = 1, wheree = {1,1,1, ...};
(ii) φ(xσ(n)) = φ(x) for all x ∈ l∞.
In case σ is the translation mappingn → n + 1, a
σ−mean is often called a Banach limit (see [3]) andVσ
the set of bounded sequences all of whose invariant
means are equal, is the set of almost convergent
sequences (see [14]). If x = (xk), then
Tx = (T xk) = (xσ(n)). It can be shown that

Vσ =
{

x = (xk) :
∞

∑
m=1

tm,k(x) = L uniformally ink L = σ − lim x
}

(1)
wherem ≥ 0, k > 0. Consider

tm,k(x) =
xk + xσ(k)+ xσ2(k)+ ....+ xσ m(k)

m+1
, t−1,k = 0,

where σm(k) denote themth iterate ofσ(k) at k. The
special case of (1) in whichσ(n) = n+ 1 was given by
Lorentz [[14], Theorem 1], and that the general result can
be proved in a similar way. It is familiar that a Banach
limit extends the limit functional onc.
A σ -mean extends the limit functional onc in the sense
thatφ(x) = lim x for all x ∈ c if and only if σ has no finite
orbits that is to say, if and only if, for allk ≥ 0, j ≥ 1,
(see [19])

σ j(k) 6= k.
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Put
φm,k(x) = tm,k(x)− tm−1,k(x),

assuming thatt−1,k = 0. A straight forward calculation
shows (see [21]) that

φm,k(x) =







1
m(m+1)

m

∑
j=1

J(xσ j(k)− xσ j−1(k)), (m ≥ 1),

xk, (m = 0).

For any sequencex, y and scalarλ , we have

φm,k(x+ y) = φm,k(x)+φm,k(y),

φm,k(λ x) = λ φm,k(x).

A sequencex ∈ l∞ is of σ -bounded variations if and only
if

(i)
∞

∑
k=0

|φm,k(x)|converges uniformly inm;

(ii) lim
m→∞

tm,k(x), which must exist, should take the same

value for allk.
We denote byBVσ , the space of all sequences of
σ -bounded variations (see [8]):

BVσ =
{

x ∈ l∞ : ∑
m
|φm,k(x)|< ∞, uniformaly ink

}

.

BVσ is a Banach space normed by

‖x‖= sup
k

∞

∑
k=0

|φm,k(x)| (see [22]).

Subsequently, invariant mean have been studied by
Ahmad and Mursaleen [1], Mursaleen et al. ([19],[21]),
Raimi [23], Vakeel et al. ([9], [10], [11]), and many
others. For the first time,I−convergence was studied by
Kostyrko et al. [13]. Later on, it was studied by Salat et al.
[26], Tripathy and Hazarika [29] and many others.
The notion of difference sequence spaces was introduced
by Kızmaz [7], who defined the sequence spaces

Z(∆) = {x = (xk) ∈ w : (∆xk) ∈ Z} for Z = c,c0 andl∞

where∆x = (∆xk) = (xk − xk+1). The notion was further
generalized by Et and Çolak [5] by introducing the spaces.
Let r be a non-negative integer, then

Z(∆ r) = {x = (xk) ∈ w : (∆ rxk)∈ Z} for Z = c,c0 and l∞

where∆ rx=(∆ rxk)= (∆ r−1xk−∆ r−1xk+1) and∆0xk = xk
for all k ∈ N. The generalized difference sequence has the
following binomial representation

∆ rxk =
r

∑
v=0

(−1)v
(

r
v

)

xk+v.

Let N be a non empty set. Then a family of setsI ⊆ 2N

(Power set ofN) is said to be an ideal ifI is additive i.e

A,B ∈ I ⇒ A∪ B ∈ I and A ∈ I,B ⊆ A ⇒ B ∈ I. A non
empty family of sets£(I) ⊆ 2N is said to be filter onN if
and only ifΦ /∈ £(I) for A,B ∈ £(I) we haveA∩B ∈ £(I)
and for eachA ∈ £(I) andA ⊆ B impliesB ∈ £(I).
An ideal I ⊆ 2N is called non trivial if I 6= 2N. A non
trivial ideal I ⊆ 2N is called admissible if
{{x} : x ∈ N} ⊆ I. A non-trivial ideal is maximal if there
cannot exist any non trivial idealJ 6= I containingI as a
subset. For each idealI, there exist a filter £(I)
corresponding toI i.e £(I) = {K ⊆ N : Kc ∈ I}, where
Kc = N\K.

Definition 1.1. A double sequence(xi j) ∈ w is said to be
I-convergent to a numberL if for every ε > 0, the set
{i, j ∈ N : |xi j − L| ≥ ε} ∈ I. In this case we write
I− lim xi j = L.
Definition 1.2. A double sequence(xi j) ∈ w is said to be
I-null if L = 0. In this case we writeI− lim xi j = 0.
Definition 1.3. A double sequence(xi j) ∈ w is said to be
I-Cauchy if for everyε > 0, there exist a numbera = a(ε)
andb = b(ε) such that{i, j ∈ N : |xi j − xab| ≥ ε} ∈ I.
Definition 1.4. A double sequence(xi j) ∈ w is said to be
I-bounded if there exist M > 0 such that
{i, j ∈N : |xi j|> M} ∈ I.
Definition 1.5. A double-sequence spaceE is said to be
solid or normal if (xi j) ∈ E implies (αi jxi j) ∈ E for all
sequence of scalars(αi j) with |αi j |< 1 for all i, j ∈ N.
Definition 1.6. Let X be a linear metric space. A function
p : X → R is called paranorm, if

1.p(x)≥ 0 for all x ∈ X ;
2.p(−x) = p(x) for all x ∈ X ;
3.p(x+ y)≤ p(x)+ p(y) for all x,y ∈ X ;
4.if (λn) is a sequence of scalars withλn → λ asn →

∞ and(xn) is a sequence of vectors withp(xn − x) →
0 asn → ∞, thenp(λnxn −λ x)→ 0 asn → ∞.

A paranormp for which p(x) = 0 impliesx = 0 is called
total paranorm and the pair(X , p) is called a total
paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm
([Theorem 10.4.2, pp. 183] see [30]). For more details
about sequence spaces see ([24], [25]) and references
therein.
Let p = (pi j) be any double bounded sequence of positive
real numbers andu = (ui j) be a double sequence of
strictly positive real numbers. In this paper we define the
following sequence space:

2BV I
σ (u, p,∆ r)

=
{

x = (xi j) ∈ w :
{

i, j ∈ N : |φmn,i j(ui j∆ rx)−L|pi j ≥ ε
}

∈ I,

for someL ∈ C

}

.

If we take u = (ui j) = 1, p = (pi j) = 1, for all i, j and
r = 0 then we get the sequence space defined by Vakeel
and Nazneen [12].
The main purpose of this paper is to introduce the
sequence space2BV I

σ (u, p,∆ r). We have also make an

c© 2015 NSP
Natural Sciences Publishing Cor.



Math. Sci. Lett.4, No. 2, 165-170 (2015) /www.naturalspublishing.com/Journals.asp 167

attempt to study some topological, algebraic properties
and inclusion relations between the sequence spaces
2BV I

σ (u, p,∆ r).

2 Main Results

Theorem 2.1. Let p = (pi j) be a double bounded
sequence of positive real numbers andu = (ui j) be a
double sequence of strictly positive real numbers. Then
the space2BV I

σ (u, p,∆ r) is a linear space over the
complex fieldC.

Proof. Let x= (xi j), y= (yi j)∈ 2BV I
σ (u, p,∆ r) andα, β ∈

C. Then for a givenε > 0, we have
{

i, j ∈N : |φmn,i j(ui j∆ rx)−L1|
pi j ≥ ε

2

}

∈ I,

for someL1 ∈C,
{

i, j ∈N : |φmn,i j(ui j∆ ry)−L2|
pi j ≥ ε

2

}

∈

I,
for someL2 ∈ C. Now let

A1 =
{

i, j ∈N : |φmn,i j(ui j∆ rx)−L1|
pi j ≥ ε

2

}

∈ I,

for someL1 ∈C, A2 =
{

i, j ∈N : |φmn,i j(ui j∆ ry)−L2|
pi j ≥

ε
2

}

∈ I,

for someL2 ∈ C be such thatAc
1,A

c
2 ∈ I. Now consider

|φmn,i j(ui j∆ r(αx+β y))− (αL1+β L2)|
pi j

= |φmn,i j(αui j∆ rx)+φmn,i j(β ui j∆ ry)−αL1−β L2|
pi j

= |φmn,i j(αui j∆ rx)−αL1+φmn,i j(β ui j∆ ry)−β L2|
pi j

≤ |φmn,i j(αui j∆ rx)−αL1|
pi j + |φmn,i j(β ui j∆ ry)−β L2|

pi j

= |α||φmn,i j(ui j∆ rx)−L1|
pi j + |β ||φmn,i j(ui j∆ ry)−L2|

pi j

≤ |α|
ε
2
+ |β |

ε
2

= (|α|+ |β |)
ε
2

≤ ε ′ (say).

This implies that the sequence space

A3 =
{

i, j ∈ N :

|φmn,i j(ui j∆ r(αx+β y))− (αL1+β L2)|
pi j < ε ′

}

∈ I, for some L1, L2 ∈ C. Hence
(αx+β y) ∈ 2BV I

σ (u, p,∆ r). Therefore2BV I
σ (u, p,∆ r) is a

linear space over the complex fieldC. This completes the
proof.

Theorem 2.2. Let p = (pi j) be a double bounded
sequence of positive real numbers andu = (ui j) be a
double sequence of strictly positive real numbers. Then
the space 2BV I

σ(u, p,∆ r) is a paranormed space,
paranormed by

g(xi j) = sup
i j

|φmn,i j(ui j∆ rx)|pi j .

Proof. For x = (xi j) = 0, g(xi j) = 0 is trivial. For

x = (xi j) 6= 0, g(xi j) 6= 0, we have
(i) g(x) = sup

i j
|φmn,i j(ui j∆ rx)|pi j ≥ 0, for all

x ∈ 2BV I
σ (u, p,∆ r).

(ii) g(−x) = sup
i j

|φmn,i j(−ui j∆ rx)|pi j =

sup
i j

| − φmn,i j(ui j∆ rx)|pi j = sup
i j

|φmn,i j(ui j∆ rx)|pi j = g(x),

for all x ∈ 2BV I
σ (u, p,∆ r).

(iii) g(x + y) = sup
i j

|φmn,i j(ui j∆ rx + ui j∆ ry)|pi j ≤

sup
i j

|φmn,i j(ui j∆ rx)|pi j + sup
i j

|φmn,i j(ui j∆ ry)|pi j =

g(x)+ g(y).
(iv) Let λi j be a sequence of scalars with
λi j → λ as (i j → ∞) andx ∈ 2BV I

σ (u, p,∆ r) such that

φmn,i j(ui j∆ rx)→ L as (i j → ∞)

in the sense that

g(φmn,i j(ui j∆ rx)−L)pi j → 0 as (i j → ∞).

Therefore
g(λi jφmn,i j(ui j∆ rx)−λ L)pi j

≤ g(λi jφmn,i j(ui j∆ rx))pi j − g(λ L)pi j

= λi jg(φmn,i j(ui j∆ rx))pi j −λ g(L)pi j

→ 0 as i j → ∞.

Hence 2BV I
σ (u, p,∆ r) is a paranormed space. This

completes the proof.

Theorem 2.3. The space2BV I
σ (u, p,∆ r) is solid and

monotone.
Proof. Let x = (xi j) ∈ 2BV I

σ (u, p,∆ r) and (αi j) be a
sequence of scalars with|αi j | ≤ 1, for all i, j ∈ N. Then
we have

|αi jφmn,i j(ui j∆ rx)|pi j ≤ |αi j||φmn,i j(ui j∆ rx)|pi j

≤ |φmn,i j(ui j∆ rx)|pi j , ∀ i, j ∈N.

The space2BV I
σ (u, p,∆ r) is solid follows from the

following inclusion relation:
{

i, j ∈ N : |φmn,i j(ui j∆ rx)|pi j ≥ ε
}

⊇
{

i, j ∈ N : |αi jφmn,i j(ui j∆ rx)|pi j ≥ ε
}

. Also a sequence

is solid implies monotone. Hence the space
2BV I

σ (u, p,∆ r) is monotone. This completes the proof.

Theorem 2.4. 2BV I
σ (u, p,∆ r) is a closed subspace of

2lI
∞(u, p,∆ r).

Proof. Let (x(bd)
i j ) be a Cauchy sequence in2BV I

σ (u, p,∆ r)

such thatx(bd) → x. We show thatx ∈ 2BV I
σ (u, p,∆ r).

Since(x(bd)
i j ) ∈ 2BV I

σ (u, p,∆ r), then there existabd such
that

{

i, j ∈ N : |φmn,i j(ui j∆ rx(bd))− abd|
pi j ≥ ε

}

∈ I.

We need to show that
(i) (abd) converges toa.
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(ii) If U =
{

i, j ∈N : |xi j − a|< ε
}

, thenUc ∈ I.

Since (x(bd)
i j ) is a Cauchy sequence in2BV I

σ (u, p,∆ r).
Then for a givenε > 0, their existsk0 ∈ N such that

sup
i j

|φmn,i j(ui j∆ rx(bd)
i j )−φmn,i j(ui j∆ rx(e f )

i j )|pi j <
ε
3
,

∀b,d,e, f ≥ k0. For a givenε > 0, we have

Bbde f =
{

i, j ∈ N :

|φmn,i j(ui j∆ rx(bd)
i j )−φmn,i j(ui j∆ rx(e f )

i j )|pi j < ε
3

}

,

Bbd =
{

i, j ∈ N : |φmn,i j(ui j∆ rx(bd)
i j )− abd|

pi j <
ε
3

}

,

Be f =
{

i, j ∈ N : |φmn,i j(ui j∆ rx(e f )
i j )− ae f |

pi j <
ε
3

}

.

ThenBc
bde f , Bc

bd andBc
e f ∈ I. Let Bc = Bc

bde f ∩Bc
bd ∩Bc

e f ,

whereB = {i, j ∈ N : |abd − ae f | < ε}. ThenBc ∈ I. We
choosek0 ∈ Bc, then for eachb,d,e, f ≥ k0, we have

{i, j ∈ N : |abd − ae f | < ε} ⊇
{

i, j ∈ N :

|φmn,i j(ui j∆ rx(bd)
i j )− abd|

pi j < ε
3

}

∩
{

i, j ∈N : |φmn,i j(ui j∆ rx(bd)
i j )−φmn,i j(ui j∆ rx(e f )

i j )|pi j <
ε
3

}

∩
{

i, j ∈ N : |φmn,i j(ui j∆ rx(e f )
i j )− ae f |

pi j <
ε
3

}

.

Then(abd) is a Cauchy sequence of scalars inN, so their
exists a scalara ∈ C such that(abd)→ a asb,d → ∞.
For the next step, let 0< δ < 1 be given. Then, we show

that if U =
{

i, j ∈ N : |φmn,i j(ui j∆ rx)− a|pi j < δ
}

, then

Uc ∈ I. Since φmn,i j(ui j∆ rx(bd)) → φmn,i j(ui j∆ rx), then
their exist a scalarb0d0 ∈ N such that

P=
{

i, j ∈N : |φmn,i j(ui j∆ rx(b0d0)
i j )−φmn,i j(ui j∆ rx)|pi j <

δ
3

}

(2)
which implies thatPc ∈ I. The numberb0d0 can be so
chosen together with , we have

Q =
{

i, j ∈ N : |ab0d0 − a|pi j <
δ
3

}

such thatQc ∈ I. Since
{

i, j ∈ N : |φmn,i j(ui j∆ rx(b0d0)
i j )−

ab0d0|
pi j ≥ δ

}

∈ I, then we have a subsetS of N such that

Sc ∈ I, where

S =
{

i, j ∈N : |φmn,i j(ui j∆ rx(b0d0)
i j )− ab0d0|

pi j <
δ
3

}

.

Let Uc = Pc ∩ Qc ∩ Sc, where

U =
{

i, j ∈ N : |φmn,i j(ui j∆ rx)− a|pi j < δ
}

, therefore for

eachi, j ∈Uc, we have
{

i, j ∈N : |φmn,i j(ui j∆ rx)− a|pi j < δ
}

⊇
{

i, j ∈N : |φmn,i j(ui j∆ rx(b0d0)
i j )−φmn,i j(ui j∆ rx)|pi j <

δ
3

}

∩
{

i, j ∈ N : |φmn,i j(ui j∆ rx(b0d0)
i j )− ab0d0|

pi j <
δ
3

}

∩
{

i, j ∈N : |ab0d0 − a|pi j < δ
3

}

.

Hence the result2BV I
σ (u, p,∆ r,) ⊂ 2lI

∞(u, p,∆ r) follows.
This completes the proof.

Theorem 2.5.The space2BV I
σ (u, p,∆ r) is nowhere dense

subset of2lI
∞(u, p,∆ r).

Proof. Proof of the result follows from the previous
theorem.

Theorem 2.6. The inclusions
2CI

0(u, p,∆ r)⊂ 2BV I
σ (u, p,∆ r,)⊂ 2lI

∞(u, p,∆ r) are proper.

Proof. Let x = (xi j) ∈ 2CI
0(u, p,∆ r). Then, we have

{

i, j ∈

N : |ui j∆ rxi j|
pi j ≥ ε

}

∈ I. Since

2C0 ⊂ 2BVσ , x = (xi j) ∈ 2BV I
σ (u, p,∆ r) implies

{

i, j ∈N : |φmn,i j(ui j∆ rx)|pi j ≥ ε
}

∈ I.

Now let

A1 =
{

i, j ∈ N : |ui j∆ rxi j|
pi j < ε

}

,

A2 =
{

i, j ∈N : |φmn,i j(ui j∆ rx)|pi j < ε
}

be such thatAc
1, Ac

2 ∈ I. As

2lI
∞(u, p,∆ r) =

{

x = (xi j) : sup
i j

|ui j∆ rxi j|
pi j < ∞

}

∈ I,

taking supremum overi, j we getAc
1 ⊂ Ac

2. Hence

2CI
0(u, p,∆ r)⊂ 2BV I

σ (u, p,∆ r)⊂ 2lI
∞(u, p,∆ r).

Next we show that the inclusion is proper. First for
2CI

0(u, p,∆ r) ⊂ 2BV I
σ (u, p,∆ r). Consider

x ∈ 2BV I
σ (u, p,∆ r), then by the definition

2BV I
σ (u, p,∆ r)

=
{

x=(xi j)∈w :
{

i, j ∈N : |φmn,i j(ui j∆ rx)−L|pi j ≥ ε
}

∈ I,

for someL ∈ C,
}

we have

φmn,i j(ui j∆ rx) = tmn,i j(ui j∆ rx)− t(m−1)(n−1),i j(ui j∆ rx),

where

tmn,i j(ui j∆ rx) =

ui j∆ rxi j + ui j∆ rxσ(i j)+ ui j∆ rxσ2(i j)+ ....+ ui j∆ rxσ mn(i j)

mn
.

Therefore
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tmn,i j(ui j∆ rx)− t(m−1)(n−1),i j(ui j∆ rx)

=
ui j∆ rxi j + ui j∆ rxσ(i j)+ ui j∆ rxσ2(i j)

mn

+....+
ui j∆ rxσmn(i j)

mn

−
ui j∆ rxi j + ui j∆ rxσ(i j)+ ui j∆ rxσ2(i j)

(m−1)(n−1)

+....+
ui j∆ rxσ (m−1)(n−1)(i j)

(m−1)(n−1)

=
(m−1)(n−1)(ui j∆ rxi j + ui j∆ rxσ(i j)+ ui j∆ rxσ2(i j)

mn(m−1)(n−1)

+....+
ui j∆ rxσ mn(i j)

mn(m−1)(n−1)

−
mn(ui j∆ rxi j + ui j∆ rxσ(i j)+ ui j∆ rxσ2(i j)

mn(m−1)(n−1)

+....+
ui j∆ rxσ (m−1)(n−1)(i j)

mn(m−1)(n−1)
.

On solving we get

φmn,i j(ui j∆ rx) =
mnui j∆ rxσmn(i j)

mn(m−1)(n−1) +

(1−m− n)(ui j∆ rxi j + ui j∆ rxσ(i j)+ ui j∆ rxσ2(i j)

mn(m−1)(n−1)

+....+
ui j∆ rxσ mn(i j)

mn(m−1)(n−1)
.

As σ is a translation map, that isσ(n) = n+1, we have

φmn,i j(ui j∆ rx) =
mnui j∆ rx(i+m)( j+n)

mn(m−1)(n−1) +

(1−m− n)(ui j∆ rxi j + ui j∆ rx(i+1)( j+1)

mn(m−1)(n−1)

+....+ ui j∆ rx(i+m)( j+n)

mn(m−1)(n−1)
.

taking limit i, j → ∞, we have

lim
(i, j)→∞

φmn,i j(ui j∆ rx)

= lim
(i, j)→∞

[

(mnui j∆ r

x(i+m)( j+n)+(1−m− n)(ui j∆ rxi j

+ ui j∆ rx(i+1)( j+1) + ....+ ui j∆ rx(i+m)( j+n))

(mn(m−1)(n−1))−1
]

,

L(mn(m−1)(n−1)) = lim
(i, j)→∞

[

mnui j∆ rx(i+m)( j+n)+

(1−m− n)(ui j∆ rxi j

+ ui j∆ rx(i+1)( j+1)+ ....+ ui j∆ rx(i+m)( j+n))
]

.

Since m,n,L 6= 0, therefore lim
(i, j)→∞

φmn,i j(ui j∆ rx) 6= 0

which implies thatx /∈ 2CI
0(u, p,∆ r). Hence we get that

the inclusion is proper. For2BV I
σ (u, p,∆ r)⊂ 2lI

∞(u, p,∆ r),
the result of this part follows from the proof of the
Theorem (2.4). This completes the proof.
Theorem 2.7. The inclusions
2CI(u, p,∆ r)⊂ 2BV I

σ (u, p,∆ r)⊂ 2lI
∞(u, p,∆ r) are proper.

Proof. Let x = (xi j) ∈ 2CI(u, p,∆ r). Then, we have
{

i, j ∈ N : |ui j∆ rxi j − L|pi j ≥ ε
}

∈ I. Since

2CI
0(u, p,∆ r) ⊂ 2BV I

σ (u, p,∆ r) ⊂ 2lI
∞(u, p,∆ r), which

impliesx = (xi j) ∈ 2BV I
σ (u, p,∆ r) then

{

i, j ∈N : |ui j∆ rφmn,i j(x)−L|pi j ≥ ε
}

∈ I.

Now let

B1 =
{

i, j ∈ N : |ui j∆ rxi j −L|pi j < ε
}

,

B2 =
{

i, j ∈N : |φmn,i j(ui j∆ rx)−L|pi j < ε
}

be such that Bc
1, Bc

2 ∈ I. As

2lI
∞(u, p,∆ r) =

{

x = (xi j) : sup
i j

|ui j∆ rxi j|
pi j < ∞

}

∈ I,

taking lim sup over i, j we get Bc
1 ⊂ Bc

2. Hence

2CI(u, p,∆ r) ⊂ 2BV I
σ (u, p,∆ r) ⊂ 2lI

∞(u, p,∆ r). Next we
show that the inclusion is proper. First for
2CI(u, p,∆ r) ⊂ 2BV I

σ (u, p,∆ r). Let
x = (xi j) ∈ 2BV I

σ (u, p,∆ r), then by the definition

2BV I
σ (u, p,∆ r)

=
{

x=(xi j)∈w :
{

i, j ∈N : |φmn,i j(ui j∆ rx)−L|pi j ≥ ε
}

∈ I,

for someL ∈C

}

.

We have|φmn,i j(ui j∆ rx)−L|pi j ≥ ε. We say that the

I− lim
i j
(φmn,i j(ui j∆ rx)) = L.

Now considering the case when|φmn,i j(ui j∆ rx)−L|pi j < ε.
Then

{

|tmn,i j(ui j∆ rx)− t(m−1)(n−1),i j(ui j∆ rx)−L|pi j < ε
}

whenm,n = 0, then we have

φmn,i j(ui j∆ rx) = ti j(ui j∆ rx) = ui j∆ rxi j.

Therefore, we get

|ui j∆ rxi j −L|pi j < ε, ∀ i, j ∈ N.

Hence,

x /∈ 2CI(u, p,∆ r) =
{

i, j ∈N : |ui j∆ rxi j −L|pi j ≥ ε
}

∈ I.

Hence, the inclusion is proper. For
2BV I

σ (u, p,∆ r) ⊂ 2lI
∞(u, p,∆ r), the result of this part

follows from the proof of the Theorem (2.4). This
completes the proof.
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