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Abstract: This paper considers a two commodity continuous review inventory system with Markovian demands. The two commodities
are assumed to be both way substitutable. That is, if the inventory level of one commodity reaches zero, then a demand for this
commodity will be satisfied by an item of the other commodity.A joint order is placed when the inventory level reaches to any one of
the reorder levels in the set of reorder levels with some prefixed probability. The limiting probability distribution for the joint inventory
levels is computed. Various operational characteristics and the expression for the long run total expected cost rate are derived.
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1 Introduction

With the advent of advanced computing systems, many organizations have increasingly use multi commodity inventory
systems. Further, models were proposed with independentlyestablished reorder points. When several products compete
for limited storage space, or share the same transport facility, or items are produced on (procured from) the same
equipment (supplier), the above strategy overlooks the potential savings associated with the joint replenishment andcost
reduction in the ordering and setup costs.

In continuous review inventory systems,Balintfy and Silver [1,2] have considered a coordinated reordering policy
which is represented by the triplet of vectors(S,c,s), where the parametersSi,ci and si(the components ofS, c ands
respectively) are specified for each itemi with si ≤ ci ≤ Si. In this policy, if the level of commodityi at any time is below
si, an order is placed forSi − si items and at the same time, for any other itemj(6= i) with available inventory at or below
its can-order levelc j, an order is placed so as to bring its level back to its capacity S j. Subsequently many articles have
appeared with models involving the above policy. Another article of interest is due to Federgruen [3] et al., which deals
with the general case of compound Poisson demands and non-zero lead times. A review of inventory models under joint
replenishment is provided by Goyal and Satir[4] .

Kalpakam and Arivarignan[5] have introduced an(s,S) policy with a single reorder levels defined in terms of the
total number of items in the stock. This policy avoids separate ordering for each commodity and hence a single
processing of orders for both commodities has some advantages in situation where the procurement is made from the
same suppliers, items are produced on the same machine, or items have to be supplied by the same transport facility.

Krishnamoorthy [6] et al. have considered a two commodity continuous review inventory system without lead time.
In their model, each demand is for one unit of the first commodity or one unit of second commodity or one unit of each
commodity 1 and 2, with prefixed probabilities.Krishnamoorthy and Varghese[7] have considered a two commodity
inventory problem without lead time and with Markov shift indemand for the type of commodity namely
“commodity-1”, “commodity-2” or “both commodities”, using the direct Markov renewal theoretical results. For the
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same problem, Sivasamy and Pandiyan[8] have derived various results by applying filtering techniques.

A natural extension of(s,S) policy to two-commodity inventory system is to have two reorder levels and to place
orders for each commodity independent of the other. But thispolicy will increase the total cost as separate processing of
two orders is required.

Anbazhagan and Arivarignan [9] have considered a two commodity inventory system with independent reorder levels
where a joint order for both commodities is placed only when the levels of both commodities fall below their respective
reorder levels. The demand points for each commodity form independent Poisson processes and the lead time is
distributed as negative exponential. They have also assumed unit demands for both commodities. Yadavalli [10,11] et al.
have analyzed two commodity inventory system under variousordering policies. Sivakumar[12] et al. have considered a
two commodity coordinated and individual ordering policies with renewal demands. Anbazhagan and Vigneshwaran[13]
have considered a two commodity markovian inventory systemwith joint reorder levels.

In this article we considered a two commodity continuous review inventory system with independent reorder levels
si − k,k = 0,1, · · · ,r where a joint order for both commodities is placed only when the levels of both commodities fall
below their respective reorder levels. It is assumed that the demand for commodityi is of unit size and the time points
of demand occurrences form a Poisson process with parameterλi (i = 1,2). The two commodities are assumed to be
substitutable. That is, if the inventory level of one commodity reaches zero, then any demand for this commodity will
be satisfied by an item of the other commodity.The lead time isassumed to be distributed as negative exponential with
parameterµk, k = 0,1, · · · ,r. The joint probability distribution of the two inventory levels is obtained in the steady state
case. Various measures of systems performance in the steadystate are also derived.

2 Problem formulation

Consider a two commodity inventory system with capacitySi units for commodityi, (i = 1,2). It is assumed that the
demands fori-th commodity are of unit size and having Poisson distribution with parameterλi (i = 1,2). The demand
process of the two commodities are further assumed to be independent. The two commodities are assumed to be
substitutable. That is, if the inventory level of one commodity reaches zero, then any demand for this commodity will be
satisfied by the item of the other commodity. The reordering policy is to place order for both commodities when both
inventory levels are less than or equal to their respective reorder levelssi − k,k = 0,1, · · · ,r, with probability pk,
∑ pk = 1, (0 ≤ r ≤ min {s1 − 2,s2 − 2} andSi − si + k > si + 1, i = 1,2). The ordering quantity is
Qi

si−k(= Si − si + k), i = 1,2. The lead time initiated at levelsi − k is assumed to be distributed as exponential with
parameterµk(> 0). The demands that occur during stock out periods are lost.

Let Li(t) denote the net inventory level of commodityi at timet. Then the process

L = {(L1(t),L2(t)), t ≥ 0} has the state space

E = {0,1, · · · ,S1} x {0,1, · · · ,S2}.

The space of inventory levels of commodity 1 and 2 is shown in Figure 1.

Notations

0 : zero matrix

1
′

N : (1,1, · · · ,1)1×N

eT : (1,1, . . . ,1).
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IN : identity matrix of orderN

δi j : Kronecker delta

i
∑
j=0

a j =

{

a0+ a1+ · · ·+ ai, if i is nonnegative integer
0, otherwise

[A]i j : (i, j)−th element of the matrixA

H(x) =

{

1 if x ≥ 0
0 if x < 0

k
Ω
i= j

ci =

{

c jc j−1 · · ·ck if j ≥ k
1 if j < k

(S1,S2)
(0,S2)

(0,0)

(0,s2)

(0,s2−1)

(0,s2−k)

(S1,0)(s1−k,0) (s1,0)

Fig. 1: Space of inventory levels of commodity 1 and 2

From the assumptions made on demand and the replenishment processes it follows thatL is a Markov process. To
determine the infinitesimal generatorÃ = (( a((i, j);(k, l)) )), (i, j),(k, l) ∈ E, of this process.
Theorem 1: The infinitesimal generator of this Markov processa((i, j),(k, l)) is given by,
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λ1+ δ0 jλ2, k = i−1, l = j,
i = 1,2, · · · ,S1, j = 0,1, · · · ,S2

δioλ1+λ2, k = i, l = j−1,
i = 0,1, · · · ,S1, j = 1,2, · · · ,S2

−(λ1+λ2), k = i, l = j,
i = s1+1, · · · ,S1, j = 0,1, · · · ,S2

−(λ1+λ2), k = i, l = j,
i = 0,1, · · · ,s1, j = s2+1, · · · ,S2

−(λ1+λ2+

H(s1− i− s2+ j−1)
s2− j
∑

n=0
µn pn+

H(s2− j− s1+ i)
s1−i
∑

n=0
µn pn), k = i, l = j

i = s1− r, · · · ,s1 j = 0,1 · · · ,s2

−((1− δ0iδ0 j)(λ1+λ2)+

H(s1− i− s2+ j−1)
s2− j

∑
n=0

µn pn+

H(s2− j− s1+ i)
r
∑

n=0
µn pn), k = i, l = j,

i = 0,1, · · · ,s1− r−1 j = 0,1, · · · ,s2

µs2−m ps2−m k = i+Q1
m−s2+s1

, l = j+Q2
m

i = s1,s1−1, · · · ,s1− r j = m,m−1, · · · ,0
with m = s2− s1+ i, · · · ,s2

µs2−m ps2−m k = i+Q1
m−s2+s1

, l = j+Q2
m

i = s1− r−1, · · · ,0 j = m,m−1, · · · ,0
with m = s2− r, · · · ,s2

0, otherwise

Proof:

The infinitesimal generatora((i, j),(k, l)) of this process can be obtained using the following arguments:

(i)Let i > 0 and j > 0. A demand takes the inventory level(i, j) to (i−1, j) with intensityλ1 the demand being for the
first commodity or to(i, j−1) with intensityλ2 the demand being for the second commodity.

(ii)From the state(i, j), (≤ (s1 − k,s2− k)) a replenishment takes the joint inventory level to(i+Q1
s1−k, j +Q2

s2−k) and
the intensity of transition is given byµk, k = 0,1, · · · ,r.

(iii)We observe that no transition other than the above is possible except(i, j) 6= (k, l).
(iv)Finally the value ofa((i, j),(i, j)) is obtained by

a((i, j),(i, j)) =− ∑
k

∑
l

(k,l) 6=(i, j)

a((i, j),(k, l))

Hence we get the infinitesimal generatora((i, j),(k, l)). �

In order to write the infinitesimal generatorÃ in matrix form, we arrange the states in lexicographic orderand group
S2+1 states as
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i = ((i,0),(i,1), · · · ,(i,S2)), i = 0,1, · · · ,S1.

Then the rate matrix̃A has a block partitioned form with the following sub matrix [Ã]i j at thei-th row and j-th column
position.

[Ã]i j =



































































B if j = i−1, i = S1,S1−1, · · · ,1

A if j = i, i = S1,S1−1, · · · ,s1+1

As1+1−i if j = i, i = s1,s1−1, · · · ,1,0

M[ j−i−Q1
s1
] if j = S1,S1−1, · · · ,S1− (s1− i), i = s1,s1−1, · · · ,s1− r

M[ j−i−Q1
s1
] if j = S1− (s1− i)+ r, · · · ,S1− (s1− i), i = s1− r−1, · · · ,1,0

0 otherwise.

where

[B]ab =



















λ1 if b = a, a = S2,S2−1, · · · ,1

λ1+λ2 if b = a, a = 0

0 otherwise.

[A]ab =



















λ2 if b = a−1, a = S2,S2−1, · · · ,1

−(λ1+λ2) if b = a, a = S2,S2−1, · · · ,0

0 otherwise.

[Mi]ab =







piµi if b = Q2+ i+ a a = s2− i, · · · ,1,0,

0 otherwise.

with i = 0,1, · · · ,r

[Ai]ab =



































































λ2 if b = a−1, a = S2,S2−1, · · · ,1

−(λ1+λ2) if b = a, a = S2,S2−1, · · · ,s2+1

−(λ1+λ2+

H(i− s2+ b−2)
s2−a
∑

k=0
pkµk+

H(s2− b− i+1)
i−1
∑

k=0
pkµk) if b = a, a = s2,s2−1, · · · ,1,0

0 otherwise.

with i = 1,2, · · · ,r+1
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[Ai]ab =



































































λ2 if b = a−1, a = S2,S2−1, · · · ,1

−(λ1+λ2) if b = a, a = S2,S2−1, · · · ,s2+1

−(λ1+λ2+

H(i− s2+ b−2)
s2−a
∑

k=0
pkµk+

H(s2− b− i+1)
r
∑

k=0
pkµk) if b = a, a = s2,s2−1, · · · ,1,0

0 otherwise.

with i = r+2, · · · ,s1

[As1+1]ab =























































































λ1+λ2 if b = a−1, a = S2,S2−1, · · · ,1

−(λ1+λ2) if b = a, a = S2,S2−1, · · · ,s2+1

−(λ1+λ2+

H(s1− s2+ b−1)
s2−a
∑

k=0
pkµk+

H(s2− s1− b)
r
∑

k=0
pkµk) if b = a, a = s2,s2−1, · · · ,1

r
∑

k=0
pkµk if b = a, a = 0

0 otherwise.

3 Steady state Results

It can be seen from the structure of A that the homogeneous Markov process{(L1(t),L2(t)), t ≥ 0} on the state space E is
irreducible. Hence the limiting distribution

Φ = (φ (S1),φ (S1−1), . . . ,φ (0))

with φ (q) = (φ (q,S2),φ (q,S2−1), · · · ,φ (q,0)), whereφ (i, j) denotes the steady state probability for the state(i, j) of the
inventory level process, exists and is given by

Φ Ã = 0 and ∑
(i, j)∈E

∑φ (i, j) = 1 (1)

Theorem 2: The steady state probabilityΦ is given by
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φ (i) = (−1)iφ (0)
s1+2−i

Ω
m=s1+1

AmB−1
, i = 1,2, · · · ,s1+1

φ (i) = (−1)iφ (0)

(

1
Ω

m=s1+1
AmB−1

)

(AB−1)i−s1−1
, i = s1+2, · · · ,Q1

s1

φ (i) = φ (0)

{

(−1)i
(

1
Ω

m=s1+1
AmB−1

)

(AB−1)i−s1−1+

i

∑
l=Q1

s1
+1

l−Q1
s1
−1

∑
k=0

(−1)i−l+1[δk0+(1− δk0)(−1)k
s1+2−k

Ω
m=s1+1

AmB−1]

M[l−Q1
s1
−1−k]B

−1(AB−1)i−l
}

i = Q1
s1
+1, · · · ,Q1

s1
+ r+1

φ (i) = φ (0)

{

(−1)i
(

1
Ω

m=s1+1
AmB−1

)

(AB−1)i−s1−1+

Q1
s1
+r+1

∑
l=Q1

s1
+1

l−Q1
s1
−1

∑
k=0

(−1)i−l+1[δk0+(1− δk0)(−1)k
s1+2−k

Ω
m=s1+1

AmB−1]

M[l−Q1
s1
−1−k]B

−1(AB−1)i−l +

i

∑
l=Q1

s1
+r+2

l−Q1
s1
−1

∑
k=l−Q1

s1
−r−1

(−1)i−l+k+1[
s1+2−k

Ω
m=s1+1

AmB−1]

M[l−Q1
s1
−1−k]B

−1(AB−1)i−l
}

i = Q1
s1
+ r+2, · · · ,S1

The value ofφ (0) can be obtained from the relation∑∑
(i, j)∈E

φ (i, j) = 1, as

φ (0) =







I+
s1+1
∑

i=1
(−1)i

(

s1+2−i
Ω

m=s1+1
AmB−1

)

+
Q1

s1

∑
i=s1+2

(−1)i

((

1
Ω

m=s1+1
AmB−1

)

(AB−1)i−s1−1

)

+

Q1
s1
+r+1

∑
i=Q1

s1
+1

(

(−1)i

(

1
Ω

m=s1+1
AmB−1

)

(AB−1)i−s1−1+

i
∑

l=Q1
s1
+1

l−Q1
s1
−1

∑
k=0

(−1)i−l+1[δk0+(1− δk0)(−1)k
s1+2−k

Ω
m=s1+1

AmB−1]M[l−Q1
s1
−1−k]B

−1(AB−1)i−l



+

S1

∑
i=Q1

s1
+r+2

(

(−1)i

(

1
Ω

m=s1+1
AmB−1

)

(AB−1)i−s1−1+

Q1
s1
+r+1

∑
l=Q1

s1
+1

l−Q1
s1
−1

∑
k=0

(−1)i−l+1[δk0+(1− δk0)(−1)k
s1+2−k

Ω
m=s1+1

AmB−1]M[l−Q1
s1
−1−k]B

−1(AB−1)i−l+
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i
∑

l=Q1
s1
+r+2

l−Q1
s1
−1

∑
k=l−Q1

s1
−r−1

(−1)i−l+k+1[
s1+2−k

Ω
m=s1+1

AmB−1]M[l−Q1
s1
−1−k]B

−1(AB−1)i−l











−1

Proof:

The first equation of (1) yields the following set of equations:

φ (i)B+φ (i−1)As1−i+2 = 0, i = 1,2, · · · ,s1+1

φ (i)B+φ (i−1)A = 0, i = s1+2,s1+3, · · · ,Q1
s1

φ (i)B+φ (i−1)A+

i−Q1
s1
−1

∑
k=0

φ (k)M[i−Q1
s1
−1−k] = 0, i = Q1

s1
+1, · · · ,Q1

s1
+ r+1

φ (i)B+φ (i−1)A+

i−Q1
s1
−1

∑
k=i−Q1

s1
−r−1

φ (k)M[i−Q1
s1
−1−k] = 0, i = Q1

s1
+ r+2, · · · ,S1

and φ (S1)A+
s1

∑
k=s1−r

φ (k)M[s1−k] = 0,

Solving the above set of equations we get the required result. �

4 System Performance Measures

In this section, some performance measures of the system arederived under consideration.

4.1 Mean Inventory Level

Let β1 denote the average inventory level of the commodity 1 in the steady state. Then we have

β1 =
S1

∑
i=1

i

(

S2

∑
j=0

φ (i, j)

)

. (2)

Let β2 denote the average inventory level of the commodity 2 in the steady state. Then we have

β2 =
S2

∑
j=1

j

(

S1

∑
i=0

φ (i, j)

)

. (3)

4.2 Mean Reorder Rate

Let β3 denote the mean reorder rate then we have

β3 =
r

∑
k=0

pk

(

s1−k

∑
i=0

(δi0λ1+λ2)φ (i,s2−k+1)+
s2−k

∑
i=0

(λ1+ δ0 jλ2)φ (s1−k+1, i)

)

(4)
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4.3 Mean Shortage level

Let β4 denote the mean shortage level, then we have

β4 = (λ1+λ2)φ (0,0)
. (5)

5 Cost Analysis

We assume a specified cost structure for the proposed inventory system as follows:

k : ordering cost per order.
hi : holding cost for the commodityi per unit item per unit time.
c : shortage cost per unit item.

Under the above cost structure, the expected total cost per unit time(expected total cost rate ) in the steady state for
this model is defined to be

TC(S1,S2,s1,s2,r) = h1β1+ h2β2+ kβ3+ cβ4.

Substituting the values forβi’s we can compute the value ofTC(S1,S2,s1,s2,r).

6 Numerical Illustration

As the expected total cost rate is obtained in a complex form,the convexity of the expected total cost rate cannot be studied
analytically. Hence, numerical search procedures are usedto find the local optimal values for(S1,S2) with fixed(s1,s2,r),
s1 with fixed(S1,S2,r) , s2 with fixed(S1,S2,r) andr with fixed(S1,S2,s1,s2). With a large number of numerical examples
it is found that the expected total cost rate in the long run iseither a convex function of bothS1 andS2 or any one of the
variablesr and(s1,s2).

Table 1 gives the expected total cost rate as a function ofS1 andS2 by fixing constant values for the other variables
and costs. After obtaining the local optima,S∗1 andS∗2, the sensitivity analysis are carried out to see how the changes inS1
andS2 affect the expected total cost rate(see figure 2). For this the values of

TC(S1,S2,8,7,5)
TC(S∗1,S

∗
2,8,7,5)

by fixing the parameters and costs asλ1 = 1.5;λ2 = 1.5;pi = (0.6)(0.4)i, i = 0,1, · · · ,r − 1;pr = 1−
r−1
∑

i=0
pi;µi =

5.2+ i(0.2), i = 0,1, · · · ,r;h1 = 3.85;h2 = 3.0;k = 1400;c = 13.2, are computed.

S2 21 22 23 24 25
S1
31 1.004901 1.003075 1.002683 1.003793 1.006230
32 1.003084 1.001339 1.000775 1.001521 1.003599
33 1.002129 1.000584 1.000000 1.000514 1.002226
34 1.001902 1.000635 1.000150 1.000569 1.002011
35 1.002304 1.001361 1.001060 1.001499 1.002789

Table 1: Sensitivity ofS1 andS2 on expected total cost rate

HereS∗1 = 33 andS∗2 = 23 andTC(33,23,8,7,5) = 181.71435. It appears that the expected total cost rate is more
sensitive to the changes inS2 thanS1.

Fixing all parameters and other cost values excepts1 and s2, the expected total cost rates are computed as shown
in tables 2 and 3 respectively. The four curves in figures 3 and4 correspond to(S1,S2) = (38,38), (S1,S2) = (38,40),
(S1,S2) = (40,40) and(S1,S2) = (40,38) represent the different convex functions ofs1 ands2 respectively.
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Fig. 2: Effect of S1 andS2 on total expected cost rate

(S1,S2) (38,38) (38,40) (40,40) (40,38)
s1
10 97.994613 96.139090 96.431995 98.081569
11 97.994360 96.023943 96.289144 98.065952
12 98.000400 95.923640 96.151807 98.035658
13 98.025336 95.843428 96.028996 98.012370
14 98.075970 95.786353 95.925645 98.008380
15 98.155708 95.754412 95.844185 98.028728
16 98.267247 95.749442 95.786557 98.077060
17 98.412948 95.773273 95.754432 98.155900
18 98.595169 95.827835 95.74942698.267220
19 98.816480 95.915211 95.773260 98.412886

Table 2: Effect of s1 values on Expected total cost rate

(S1,S2) (38,38) (38,40) (40,40) (40,38)
s2
7 102.231805 102.480491 101.029476 100.907859
8 102.085301 102.077340 100.840682 100.870128
9 102.109983 101.909026 100.778083100.924047
10 102.253535 101.908423 100.804334 101.044312
11 102.480068 102.023224 100.894234 101.215964
12 102.768004 102.216954 101.032716 101.431622
13 103.106375 102.466501 101.212020 101.688819
14 103.492655 102.763268 101.430368 101.988307
15 103.927836 103.104920 101.688470 102.332150

Table 3: Effect of s2 values on Expected total cost rate

In Table 4 the expected total cost rates by fixing constant values for all variables and costs exceptr are presented. The
four curves in figure 5 correspond to(S1,S2) = (45,47), (S1,S2) = (45,45), (S1,S2) = (47,45) and(S1,S2) = (47,47)
represent different convex functions of r.

Next the impact of the holding costsh1 andh2 on the optimal values(S∗1,S
∗
2) and the corresponding expected total

cost rate are studied. For the parameters and the probability distribution s1 = 8;s2 = 7r = 5;λ1 = 1.5;λ2 = 1.5;pi =

(0.6)(0.4)i
, i = 0,1, · · · ,r − 1;pr = 1−

r−1
∑

i=0
pi;µi = 5.2+ i(0.2), i = 0,1, · · · ,r;k = 1400;c = 13.2, the total cost rate

increases whenh1 andh2 increase(see table 5). The impact of ordering cost per orderand the shortage cost per unit item
on the optimal values(S∗1,S2∗) and the corresponding expected total cost rate are studied by fixing the parameters and the

probability distribution:s1 = 8;s2 = 7;r = 5;λ1 = 1.5;λ2 = 1.5;pi = (0.6)(0.4)i, i = 0,1, · · · ,r−1;pr = 1−
r−1
∑

i=0
pi;µi =

5.2+ i(0.2), i = 0,1, · · · ,r;h1 = 3.85;h2 = 3. Table 6 shows that the total cost rate increases whenk andc increase.
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Fig. 3: Effect of s1 on total expected cost rate

Fig. 4: Effect of s2 on total expected cost rate

Fig. 5: Effect of r on total expected cost rate
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(S1,S2) (45,47) (45,45) (47, 45) (47, 47)
r
11 233.665264632532280 252.592956907586910 250.136940405272130 254.204713535347680
12 233.665264624049230 252.592956903543780 250.136940396980090 254.204713531245800
13 233.665264622816750 252.592956902972840 250.136940395784110 254.204713530661730
14 233.665264622637580 252.592956902892440 250.136940395612160 254.204713530578770
15 233.665264622611800 252.592956902881010 250.136940395587940 254.204713530567120
16 233.665264622608160 252.592956902879620 250.136940395584360 254.204713530565530
17 233.665264622607680 252.592956902879450 250.136940395584080 254.204713530565240
18 233.665264622607540 252.592956902879370 250.136940395583990 254.204713530565160
19 233.665264622607590 252.592956902879420 250.136940395584020 254.204713530565160
20 233.665264622607590 252.592956902879420 250.136940395584020 254.204713530565270

Table 4: Effect of r on Expected total cost rate

h2 2.9 3.0 3.1 3.2 3.3
h1
3.75 178.7545 179.5042 180.2539 180.9377 181.5953

34 23 34 23 34 23 34 22 35 21
3.8 179.8534 180.6229 181.3726 182.0617 182.7397

33 23 34 23 34 23 34 22 34 22
3.85 180.9400 181.7144 182.4887 183.1857 183.8637

33 23 33 23 33 23 34 22 34 22
3.90 182.0266 182.8010 183.5753 184.3097 184.9877

33 23 33 23 33 23 34 22 34 22
3.95 183.1132 183.8876 184.6620 185.4032 186.1021

33 24 33 23 33 23 33 22 33 22

Table 5: Effect of holding costsh1 andh2 on optimal values

c 13.0 13.1 13.2 13.3 13.4
k
1300 176.370606 176.370608 176.370610 176.370612 176.370613

33 23 33 23 33 23 33 23 33 23
1350 179.042477 179.042479 179.042481 179.042483 179.042485

33 23 33 23 33 23 33 23 33 23
1400 181.714348 181.714350 181.714352 181.714354 181.714356

33 23 33 23 33 23 33 23 33 23
1450 184.386219 184.386221 184.386224 184.386226 184.386228

33 23 33 23 33 23 33 23 33 23
1500 187.058091 187.058093 187.058095 187.058097 187.058099

33 23 33 23 33 23 33 23 33 23

Table 6: Effect of ordering cost and shortage cost on optimal values

7 Conclusion

In this paper, a substitutable inventory system of two commodities with reorder levels of band widthr has been studied.
The joint probability distribution of the inventory levelsin the steady state and the stationary measures of system
performances have been derived. An example has also been provided to prove the existence of local optima when the
total cost function is treated as a function of two variablesS1 andS2 or a single variables1 or s2 or r. Future work will
consider the demand process as renewal type.
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