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Abstract: The digamma function is defined forx > 0 as a locally summable function on the real line by

ψ(x) = −γ +

∫ ∞

0

e−t − e−xt

1− e−t
dt .

In this paper we use the neutrix calculus to extend the definition for digamma function for the negative integers. Also we consider the
derivatives of the digamma function for negative integers.
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1. Introduction

The gamma functionΓ (x) was introduced by Leonard Eu-
ler as a generalization of the factorial function on the set
of all real numbers. It is defined forx > 0 by:(see [3] and
[13])

Γ (x) =
∫ ∞

0

tx−1e−t dt .

Due to the difficulties in dealing withΓ ′(x) in particulary
because it is a large function that increases very rapidly,
the logarithmic derivative ofΓ (x) is studied instead. This
function is known as the digamma function (or psi func-
tion) ψ(x) (see [5,2]) and is defined for positive real num-
bersx by:

ψ(x) =
d [ln Γ (x)]

dx
=

Γ ′(x)
Γ (x)

.

The infinite family of approximations of the Digammma
function were recently considered by I. Muqattash and
M.Yahdi (see [1]).

In this paper we consider the values of the digamma
function for negative integers. Also we consider the deriva-
tives of the digamma function for negative integers. To
define the digamma function for this values we use neu-
trix calculus. The technique of neglecting appropriately

defined infinite quantities was devised by Hadamard and
the resulting finite value extracted from the divergent inte-
gral is usually referred to as Hadamard finite part.

Using the concepts of the neutrix and the neutrix limit
due to van der Corput [4], Fisher gave the general princi-
ple for the discarding of unwanted infinite quantities from
asymptotic expansions and has been exploited in context
of distributions, see [7,6].

We also note that recently Ng and van Dam applied
the neutrix calculus, in conjunction with the Hadamar in-
tegral, developed by van der Corput, to the quantum field
theories, in particular to obtain finite results for the coeffi-
cients in the perturbation series. They also applied neutrix
calculus to quantum field theory, and obtained finite renor-
malization in the loop calculations, see [16,17].

2. Neutrix calcucus

In the following, we letN be the neutrix, see van der Cor-
put [4], having domainN ′ = {ε : 0 < ε < ∞} and
negligible functions finite linear sums of the functions

ελ lnr−1 ε, lnr ε : λ < 0, r = 1, 2, . . .

and all functionsf(ε) which tend to zero in the normal
sense asε tends to zero.
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If f(ε) is a real (or complex) valued function defined
on N ′ and if it is possible to find a constantc such that
f(ε) − c is in N , thenc is called the neutrix limit off(ε)
asε → 0 , and we writeN−lim

ε→0
f(ε) = c . Note that taking

the neutrix limit of a functionf(ε) is equivalent to taking
the usual limit of Hadamar’s finite part off(ε), and if a
functionf(ε) tends toc in the normal sense asε tends to
zero, also it converges toc in the neutrix sense. The reader
may find the general definition of a neutrix limit with some
examples in [9].

In the following we apply Fishers’s principle to define
the digamma function for negative integers.

It was proved in [9] that

Γ (x) = N−lim
ε→0

∫ ∞

ε

tx−1e−t dt

for x 6= 0,−1,−2, . . . , whereΓ denotes the Gamma func-
tion. This suggested thatΓ (−m) be defined by:

Γ (−m) = N−lim
ε→0

∫ ∞

ε

t−m−1e−t dt (1)

for m = 0, 1, 2, . . . .
It was also proved that

Γ (0) =
∫ ∞

0

e−t ln t dt = Γ ′(1) = −γ,

whereγ denotes Euler’s constant, and

Γ (−m) =
∫ ∞

1

t−m−1e−t dt +

+
∫ 1

0

t−m−1
[
e−t −

m∑

i=0

(−t)i

i!

]
dt +

−
m−1∑

i=0

(−1)i

i!(m− i)
(2)

for m = 0, 1, 2, . . . .
Fisher and Kuribayashi [9] proved the existence of

Γ (r)(0) and then definedΓ (r)(0) by the equation:

Γ (r)(0) = N−lim
ε→0

∫ ∞

ε

t−1 lnr te−t dt

=
∫ ∞

1

t−1 lnr te−t dt +
∫ 1

0

t−1 lnr t[e−t − 1] dt ,

for r = 0, 1, 2, . . . This suggested thatΓ (r)(−m) be de-
fined by:

Γ (r)(−m) = N−lim
ε→0

∫ ∞

ε

t−m−1 lnr te−t dt

=
∫ ∞

1

t−m−1 lnr te−t dt +

+
∫ 1

0

t−m−1 lnr t

[
e−t −

m∑

i=0

(−t)i

i!

]
dt +

+
m−1∑

i=0

(−1)i

i!
r!(m− i)−r−1 ,

for r = 0, 1, 2, . . . andm = 1, 2, . . .
In [10] and [8] Fisher et al. defined the incomplete

gamma functionγ(−m,x) for m = 0, 1, 2, . . . Some con-
volutions and neutrix convolution of this function and other
functions were considered in [11] and [12]. Recently, Ozcag
et al. in [15] defined the incomplete beta function and its
derivatives.

3. Main result

The digamma function (see [14]) has its integral represen-
tation

ψ(x) = −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt ,

and the integral is convergent forx > 0 . Also, for x > 0 ,
this can be written as:

ψ(x) = −γ +
∫ 1

0

1− tx−1

1− t
dt . (3)

It can be easily proved from equation (3) that:

ψ(x + 1) = ψ(x) +
1
x

, (4)

for x > 0 and this equation can be used to defineψ(x)
for negative, non-integer values ofx. Thus if−1 < x < 0
then

ψ(x) = ψ(x + 1)− 1
x

.

So, we have that if−n < x < −n + 1 , n = 1, 2, . . . ,
then:

ψ(x) = −γ +
∫ 1

0

1− tx−1+n

1− t
dt−

n∑

k=1

1
x + k − 1

. (5)

It follows that if −n < x < −n + 1 , n = 1, 2, . . . , and
x > 0, then:

−γ +
∫ 1

ε

1− tx−1

1− t
dt = −γ +

∫ 1

ε

1− tx−1+n

1− t
dt−

−
∫ 1

ε

tx−1(1− tn)
1− t

dt =

= −γ +
∫ 1

ε

1− tx−1+n

1− t
dt−

n∑

k=1

1
x + k − 1

+

+
n∑

k=1

εx+k−1

x + k − 1
,

and it follows that

N−lim
ε→0

∫ 1

ε

1− tx−1

1− t
dt =

= lim
ε→0

[∫ 1

ε

1− tx−1+n

1− t
dt−

n∑

k=1

1
x + k − 1

]
+

+N−lim
ε→0

n∑

k=1

εx+k−1

x + k − 1
=

= ψ(x) + γ
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on using equation (5). We have therefore shown that

ψ(x) = −γ + N−lim
ε→0

∫ 1

ε

1− tx−1

1− t
dt (6)

for x 6= 0,−1,−2, . . . . This suggest the following defini-
tion.

Definition 1The digamma functionψ(x) is defined by

ψ(−n) = −γ + N−lim
ε→0

∫ 1

ε

1− t−n−1

1− t
dt (7)

for n = 0, 1, 2, . . . , provided that the neutrix limit exists.

Now we have the following theorem.

Theorem 1.The digamma functionψ(x) have values for
negative integers, and

ψ(−n) = −γ +
n∑

k=1

1
k

. (8)

for n = 0, 1, 2, . . .

Proof. We will now prove the existence ofψ(0). We
have ∫ 1

ε

1− t−1

1− t
dt = −

∫ 1

ε

dt

t
= − ln ε ,

and it follows thatN−lim
ε→0

∫ 1

ε

1− t−1

1− t
dt = 0 . ψ(0) there-

fore exists andψ(0) = −γ .
Next we have:

∫ 1

ε

1− t−n−1

1− t
dt =

n∑

k=1

1
k
−

n∑

k=1

1
kεk

+ ln ε ,

and

N−lim
ε→0

∫ 1

ε

1− t−n−1

1− t
dt =

n∑

k=1

1
k

.

Finally, we have thatψ(−n) exists andψ(−n) = −γ +∑n
k=1

1
k , proving the theorem.

Further it follows from (3) that forx > 0 we have

ψ′(x) = −
∫ 1

0

tx−1 ln t

1− t
dt .

Let now−n < x < −n + 1 , n = 1, 2, . . . Then

−
∫ 1

ε

tx−1 ln t

1− t
dt =

∞∑

i=0

∫ 1

ε

tx−1+i ln t dt

=
∞∑

i=0

[
εx+i ln ε

x + i
+

εx+i − 1
(x + i)2

]
,

and it follows from above that when−n < x < −n + 1 ,
n = 1, 2, . . . we have:

ψ′(x) = N−lim
ε→0

∫ 1

ε

tx−1 ln t

1− t
dt .

This suggests the following definition:

Definition 2The derivative of the digamma functionψ(x)
is defined by

ψ′(−n) = N−lim
ε→0

∫ 1

ε

t−n−1 ln t

1− t
dt (9)

for n = 0, 1, 2, . . . , provided that the neutrix limit exists.

Now we have the following theorem.

Theorem 2.The derivative of the digamma functionψ(x)
have values for negative integers, and

ψ′(−n) =
∞∑

k=1

1
(k − n)2

. (10)

for n = 0, 1, 2, . . .

Proof. Using the equation

−
∫ 1

ε

t−n−1 ln t

1− t
dt =

∞∑

i=0

∫ 1

ε

t−n−1+i ln t dt

=
∞∑

i=0

[
ε−n+i ln ε

−n + i
+

ε−n+i − 1
(−n + i)2

]
,

and taking the neutrix limit we have that

N−lim
ε→0

∫ 1

ε

t−n−1 ln t

1− t
dt =

∞∑

k=1

1
(k − n)2

,

proving the theorem.
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