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Abstract: In this paper, a semi-discretization process is applied to the Duffing systemto obtain its continuous time difference equations
counterpart with two different delays. Fixed points and their asymptotic stability of the resulting system are investigated. Bifurcation
and chaos are discussed.

Keywords: Continuous time difference equations , semi-discretization process, Duffing system, fixed points, stability, bifurcation,
chaos.

1 Introduction

A new class of discontinuous (sectionally continuous)
dynamical systems generated by a semi-discretization
process has been defined in [14]. Here we are concerned
with the Duffing system in the unforced case given by

dx
dt

= y,

dy
dt

= −ky− x(1+ x2),

wherek is the damping coefficient [12]. The solution of
this system has been studied in many papers and its hopf
bifurcation was analyzed as well. In this work, we are
interested in the discontinuous (sectionally continuous)
counterpart of this system.
Consider the problem of retarded functional equation

x(t) = f (x(t − r)), t ∈ (0,T ], (1)

with the initial condition

x(τ) = φ(τ), τ ≤ 0. (2)

If T is a positive integer,r = 1, φ(0) = xo and
t = n = 1,2,3, ..., then the problem (1)-(2) will be the

discrete dynamical system

xn = f (n,xn−1), n = 1,2,3, ...,T (3)

x(0) = xo. (4)

This shows that the discrete dynamical system (3)-(4) is
a special case of the problem of the retarded functional
equation (1)-(2).
Let t ∈ (0,r], thent−r ∈ (−r,0] and the solution of (1)-(2)
is given by

x(t) = x1(t) = f (φ(0)), t ∈ (0,r].

For t ∈ (r,2r], thent − r ∈ (0,r] and the solution of (1) is
given by

x(t)= x2(t)= f (x1(t))= f ( f (φ(0)))= f 2(φ(0)), t ∈ (r,2r].

Repeating the process we can easily deduce that the
solution of (1) is given by

x(t) = xn(t) = f n(φ(0)), t ∈ ((n−1)r,nr],

which is continuous on each subinterval((k−1)r,kr] , k =
1,2,3, ...,n, but

lim
t→kr+

x(k+1)r(t) = f k+1(φ(0)) 6= xkr,
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which implies that the solution of the problem (1)-(2) is
discontinuous (sectionally continuous) on(0,T ] and thus
we have proved the following theorem [7].

Theorem 1.The solution of the problem of retarded
functional equation (1)-(2) is discontinuous (sectionally
continuous) even if the functions f and φ are continuous.

2 A semi-discretization process

Consider the Duffing system given by

dx
dt

= y, (5)

dy
dt

= −ky− x(1+ x2). (6)

The discontinuous (sectionally continuous) counterpart of
this system may be obtained by applying a
semi-discretization process as follows
Let r > 0 be given. Using The approximations

x′(t)≃
x(t + r1)− x(t)

r1
,

y′(t)≃
y(t + r2)− y(t)

r2
,

in (5) we get

x(t + r1)− x(t)
r1

≃ y,

x(t) = x(t − r1)+ r1y(t − r1).

Similarly,

y(t + r2)− y(t)
r2

≃ −ky− x(1+ x2),

y(t) = (1− kr2)y(t − r2)− r2x(t − r2)(1+ x2(t − r2)).

That is, we have the following discontinuous (sectionally
continuous) counterpart of the Duffing system

x(t) = x(t − r1)+ ry(t − r1), t ∈ (0,T ], (7)

y(t) = (1− kr2)y(t − r2)− r2x(t − r2)(1+ x2(t − r2)). (8)

with the initial conditions

x(0) = xo, t ≤ 0, (9)

y(0) = yo, t ≤ 0. (10)

By the same way as in section 2, we can show that the
solution of system (7)-(8) for t ∈ (nr,(n+1)r] is given by
the loop

xn+1(t) = xn(nr1)+ r1yn(nr1), n = 1,2,3, ...

yn+1(t) = (1− kr2)yn(nr2)− r2xn(nr2)(1+ x2
n(nr2)).

It is worth to mention here that the previous
semi-discretization process can be obtained by Taylor

Fig. 1: Trajectory of (7)-(8) with k = 2.36 andr1 = r2 = 0.3

expansion as follows:

x(t) = x(t − r1)+ x′(t − r1)
t − (t − r1)

1!
+ ...

≃ x(t − r1)+ r1y(t − r1).

The same thing can be said to the second equation.

We should explain here the main difference between our
new approach which is called a semi-discretization
process and the well-known Euler’s method. Indeed,
Euler’s method neglects the step size ”h” which we do
consider and rename itr, the delay parameter. The reason
is that r plays a very important rule in the discretization
process and as we will see below the stability of the fixed
points depends on it. In addition, bifurcation, chaos , and
chaotic attractor depend on it.

To summarize, we showed that there exists a
semi-discretization process which generate a
discontinuous (sectionally continuous) dynamical system.
This discontinuous (sectionally continuous) dynamical
system generalizes the discrete one studied in [5].
Figures (1)and (2) show the trajectory of the
discontinuous (sectionally continuous) system (7)-(8)
whenr1 = r2 = 1, while Figure (3) shows the trajectory of
the continuous system (5)-(6).

2.1 Approximate Solution

In this part we show that the proposed semi-discretization
process best approximates the solution of the
discontinuous (sectionally continuous) dynamical system
(7)-(8) to the exact solution of the continuous system
(5)-(6) as shown in the table below. Now fort = n+n+1

2 r,
the following table gives the absolute error =
||exact −approximate|| for some different values ofn and
r. Here we take the 2-norm defined by
||.||2 =

√

(xapproximate − xexact)2+(yapproximate − yexact)2.
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Fig. 2: Trajectory of (7)-(8) with k = 2.36 andr1 = r2 = 0.3

Fig. 3: Trajectory of (5)-(6) with k = 2.36

Table 1: Absolute error

n r=0.1 r=0.2 r=0.3

10 0.8924451086 0.10550839949793 0.1071
20 0.0463050773 0.03078535254359 0.0140
30 0.02603177630 0.00829843070025 0.0018
40 0.0134458198 0.00222970626991 0.7673
50 0.0070740497 5.808440584525678e-004 0.1092

3 Fixed points and stability

The discontinuous (sectionally continuous) dynamical
system (7)-(8) has three fixed points namely,(0,0), (i,0)
and (−i,0) which can be easily obtained by solving the
system

x = x+ ry,

y = (1− kr)y− rx(1+ x2).

To determine the stability of a fixed point, consider a small
perturbation from the fixed point by letting

x(t) = x f ix + ε0λ t
.

and
y(t) = y f ix +η0λ t

.

Substituting in (7)-(8), we get

x f ix + ε0λ t = x f ix + ε0λ t−r1 + r1(y f ix +η0λ t),

y f ix +η0λ t = (1− kr2)(y f ix +η0λ t−r2)− r2(x f ix +

ε0λ t−r2)(1+(x f ix + ε0λ t−r2)2).

Expanding the right hand side for each equation using
Taylor expansion and neglecting higher orders we get

1= λ−r1, (11)

1= (1− kr2)λ−r2 (12)

So, we conclude that the fixed points are asymptotically
stable if all roots of the equations (11) and (12) satisfy
|λ |< 1.

4 Bifurcation and chaos

In this section we show by numerical experiments
illustrated by bifurcation diagrams that the dynamical
behaviors of the discontinuous (sectionally continuous)
dynamical system (7)-(8) are completely affected by the
change in bothr andT . We takek = 2.36 in all numerical
simulations showing attractors. We are considering three
cases for different delaysr1 andr2 as follows

• Case1: r1 = r2 = r

Let r1 = r2 = r and varyk from 2 to 3 with step length
0.001. The initial state of the system is(x0,y0) = (0.1,0).
The period doubling bifurcation occurs atk = 2.8 while
its occurrence is delayed tok = 3 whenr is decreased.
Figures from (4) to (16) illustrate the relation betweenr
and the occurrence of the period doubling bifurcation, it’s
a reversal relation, whenr is decreased, the period
doubling bifurcation shows after some delay.
Taker = 1 andt ∈ [0,300] in (7)-(8) (Figures (4),(5)).
Taker = 0.9 andt ∈ [0,120] in (7)(8) (Figure (6),(7)).
Taker = 0.8 andt ∈ [0,300] in (7)-(8) (Figure (8),(9)).
Taker = 1.1 andt ∈ [0,300] in (7)-(8) (Figure (10),(11)).
Taker = 0.1 andt ∈ [0,150] in (7)-(8) (Figure (12),(13)).
Taker = 1.2 andt ∈ [0,300] in (7)-(8) (Figure (14),(15)).
Taker = 0.5 andt ∈ [0,300] in (7)-(8) (Figure (16),(17)).

• Case2: r1 > r2

Now let r1 > r2 and varyk from 8 to 10 with step length
0.001. The initial state of the system is the same as above
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Fig. 4: Bifurcation diagram of (7)-(8) whenr1 = r2 = 1 andt ∈
[0,300].

Fig. 5: Chaotic attractor of (7)-(8) when r1 = r2 = 1 and t ∈
[0,300].

Fig. 6: Bifurcation diagram of (7)-(8) when r1 = r2 = 0.9 and
t ∈ [0,120].

Fig. 7: Chaotic attractor of (7)-(8) whenr1 = r2 = 0.9 andt ∈
[0,120].

Fig. 8: Bifurcation diagram of (7)-(8) when r1 = r2 = 0.8 and
t ∈ [0,300].

Fig. 9: Chaotic attractor of (7)-(8) whenr1 = r2 = 0.8 andt ∈
[0,300].
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Fig. 10: Bifurcation diagram of (7)-(8) whenr1 = r2 = 1.1 and
t ∈ [0,300].

Fig. 11: Chaotic attractor of (7)-(8) whenr1 = r2 = 1.1 andt ∈
[0,300].

Fig. 12: Bifurcation diagram of (7)-(8) whenr1 = r2 = 0.1 and
t ∈ [0,150].

Fig. 13: Chaotic attractor of (7)-(8) whenr1 = r2 = 0.1 andt ∈
[0,150].

Fig. 14: Bifurcation diagram of (7)-(8) whenr1 = r2 = 1.2 and
t ∈ [0,300].

Fig. 15: Chaotic attractor of (7)-(8) whenr1 = r2 = 1.2 andt ∈
[0,300].
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Fig. 16: Bifurcation diagram of (7)-(8) whenr1 = r2 = 0.5 and
t ∈ [0,300].

Fig. 17: Chaotic attractor of (7)-(8) whenr1 = r2 = 0.5 andt ∈
[0,300].

Fig. 18: Bifurcation of (7)-(8) when r1 = 0.35,r2 = 0.20 and
t ∈ [0,200].

Fig. 19: Chaotic attractor of (7)-(8) when r1 = 0.35,r2 = 0.20
andt ∈ [0,200].

Fig. 20: Bifurcation of (7)-(8) whenr1 = 0.05,r2 = 0.1 andt ∈
[0,200].

and the bifurcation is shown in Figure (18).
Take r1 = 0.35,r2 = 0.20 and t ∈ [0,200] in (7)-(7)
(Figures (18)-(19)).

• Case3: r1 < r2

Let r1 < r2 and varyk from 20 to 23 with step length
0.001. The initial state of the system is again as above.
The bifurcation occurs atk = 20.6 and chaos shows at
k = 22.5.
Taker1 = 0.05,r2 = 0.1 andt ∈ [0,200] in (7)-(8) (Figure
(20)-(21)).
Take r1 = 0.15,r2 = 0.20 and t ∈ [0,200] in (7)-(8)
(Figure (22)-(23)).
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Fig. 21: Chaotic attractor of (7)-(8) whenr1 = 0.05,r2 = 0.1 and
t ∈ [0,200].

Fig. 22: Bifurcation of (7)-(8) when r1 = 0.15,r2 = 0.20 and
t ∈ [0,200].

Fig. 23: Chaotic attractor of (7)-(8) when r1 = 0.15,r2 = 0.20
andt ∈ [0,200].

5 Conclusion

Applying the semi-descretization process to the duffing
system resulting in a discontinuous (sectionally
continuous) dynamical system representing the duffing
equations. Moreover, changing both the retardation
parameterr together with the timet ∈ [0,T ], has the
strong effect on bifurcation, chaos, and chaotic attractor
of the system. the discontinuous (sectionally continuous)
dynamical system of the duffing model describes the
dynamic Properties for different values of the retardation
parametersr1 and r2 when the time is continuous. our
analytical result ((11) and (12)) agrees with the numerical
simulations. This shows the richness of the models of
discontinuous (sectionally continuous) dynamical
systems.
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