
Appl. Math. Inf. Sci. Lett. 3, No. 1, 31-37 (2015) 31

An Improved Flower Pollination Algorithm for Solving Integer Programming

Problems

Khalil AL-Wagih*

Faculty of Computer science & Information System, Thamar University, Thamar, Republic of Yemen

*E-mail: khalilwagih@gmail.com

Received: 8 Mar. 2014, Revised: 16 Dec. 2015, Accepted: 19 Dec. 2015

Published online: 1 Jan. 2015

__

Abstract: Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering

plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory

(IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after

producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested

problems.

Keywords: Flower pollination algorithm; meta-heuristics; optimization; chaos; integer programming.

__

1 Introduction

The real world optimization problems are often

very challenging to solve, and many applications

have to deal with NP-hard problems [1]. To solve

such problems, optimization tools have to be used

even though there is no guarantee that the optimal

solution can be obtained. In fact, for NP problems,

there are no efficient algorithms at all. As a result

of this, many problems have to be solved by trial

and errors using various optimization techniques

[2]. In addition, new algorithms have been

developed to see if they can cope with these

challenging optimization problems. Among these

new algorithms, many algorithms such as particle

swarm optimization, cuckoo search and firefly

algorithm, have gained popularity due to their high

efficiency. In this paper, we have used IFPCH

algorithm for solving integer programming

problems. Integer programming is NP-hard

problems [3-10]. The name “linear integer

programming “is referred” to the class of

combinatorial constrained optimization problems

with integer variables, where the objective

function is a linear function and the constraints are

linear inequalities.” The Linear Integer

Programming (also known as LIP) optimization

problem can be stated in the following general

form:

Max cx (1)

s.t.Ax ≤ b, (2)

xZ
n
 (3)

where the solution x∈ Z
n
 is a vector of n

integer variables: x = (x1, x2 , …, xn)
T

and the data

are rational and are given by the m×n matrix A,

the 1×n matrix c, and the m×1 matrix b. This

formulation includes also equality constraints,

because each equality constraint can be

represented by means of two inequality constraints

like those included in eq. (2).

Integer programming addresses the problem

raised by non-integer solutions in situations where

integer values are required. Indeed, some

applications do allow a continuous solution. For

instance, if the objective is to find the amount of

money to be invested or the length of cables to be

used, other problems preclude it: the solution must

be discrete [3]. Another example, if we are

considering the production of jet aircraft and x1 =

8.2 jet airliners, rounding off could affect the profit

or the cost by millions of dollars. In this case we

Applied Mathematics & Information Sciences Letters

 An International Journal

 http://dx.doi.org/10.12785/amisl/030106

http://dx.doi.org/10.12785/amisl/030106

K. AL-Wagih :An Improved Flower Pollination Algorithm…

_32__

need to solve the problem so that an optimal

integer solution is guaranteed.

The possibility to obtain integer values is

offered by integer programming: as a pure integer

linear programming, in which all the variables

must assume an integer value, or as a mixed-

integer linear programming which allows some

variables to be continuous, or a 0-1 integer model,

all the decision variables have integer values of

zero or one[8-9].

A wide variety of real life problems in logistics,

economics, social sciences and politics can be

formulated as linear integer optimization

problems. The combinatorial problems, like the

knapsack-capital budgeting problem, warehouse

location problem, travelling salesman problem,

decreasing costs and machinery selection problem,

network and graph problems, such as maximum

flow problems, set covering problems, matching

problems, weighted matching problems, spanning

tree problems and many scheduling problems can

also be solved as linear integer optimization

problems [8-9].

Exact integer programming techniques such as

cutting plane techniques [8-9]. The branch and the

bound both have high computational cost, in large-

scale problems [8-9]. The branch and the bound

algorithms have many advantages over the

algorithms that only use cutting planes. One

example of these advantages is that the algorithms

can be removed early as long as at least one

integral solution has been found and an attainable

solution can be returned although it is not

necessarily optimal. Moreover, the solutions of the

LP relaxations can be used to provide a worst-case

estimate of how far from optimality the returned

solution is. Finally, the branch method and the

bound method can be used to return multiple

optimal solutions.

Since integer linear programming is NP-

complete, for that reason many problems are

intractable. So instead of the integer linear

programming, the heuristic methods must be used.

For example, Swarm intelligence metaheuristics,

amongst which an ant colony optimization,

artificial bee colony optimization particle swarm

optimization [8-9]. Also Evolutionary algorithms,

differential evolution and tabu search were

successfully applied into solving integer

programming problems [8-9]. Heuristics typically

have polynomial computational complexity, but

they do not guarantee that the optimal solution will

be captured. In order to solve integer programming

problems, most of the heuristics truncate or round

the real valued solutions to the nearest integer

values. In this paper, Bat algorithm is applied to

integer programming problems and the

performance was compared with other harmony

search algorithms [9].

Flower pollination is an intriguing process in

the natural world. Its evolutionary characteristics

can be used to design new optimization

algorithms. The algorithm obtained good results

were dealing with lower-dimensional optimization

problems, but may become problematic for higher-

dimensional problems because of its tendency to

converge very fast initially. This paper introduced

an improved Flower pollination algorithm by

integrating it with chaos to improve the reliability

of the global optimality, and also enhances the

quality of the results.

This paper is organized as follows: after

introduction, the original Flower pollination

algorithm is briefly introduced. Than in section 3

introduces the meaning of chaos. In section 4, the

proposed algorithm is described, while the results

are discussed in section 5. Finally, conclusions are

presented in section 6.

2 The Original Flower Pollination

Algorithm

Flower Pollination Algorithm (FPA) was

founded by Yang in the year 2012. Inspired by the

flow pollination process of flowering plants are the

following rules:

Rule 1: Biotic and cross-pollination can be

considered as a process of global

pollination process, and pollen-carrying

pollinators move in a way that obeys Le'vy

flights.

Rule 2: For local pollination, a biotic and

self-pollination are used.

Rule 3: Pollinators such as insects can

develop flower constancy, which is

equivalent to a reproduction probability

that is proportional to the similarity of two

flowers involved.

Rule 4: The interaction or switching of

local pollination and global pollination can

mk:@MSITStore:D:/Reality/management/Introduction%20to%20Management%20Science%20with%20Student%20CD,%209e/Prentice-Hall-Introduction.to.Management.Science.9th.Edition.Feb.2006.chm::/0131737961/gloss01__gdz.html#gloss01_256
http://en.wikipedia.org/wiki/NP-complete
http://en.wikipedia.org/wiki/NP-complete

Appl. Math. Inf. Sci. Lett. 3, No. 1, 31-37 (2015) 33

be controlled by a switch probability

p[0,1], with a slight bias toward local

pollination .

In order to formulate updating formulas, we

have to convert the aforementioned rules into

updating equations. For example, in the global

pollination step, flower pollen gametes are carried

by pollinators such as insects, and pollen can

travel over a long distance because insects can

often fly and move in a much longer

range[10].Therefore, Rule 1 and flower constancy

can be represented mathematically as:

))((1 BxLxx t

i

t

i

t

i   (1)

Where
t

ix is the pollen i or solution vector xi at

iteration t, and B is the current best solution found

among all solutions at the current

generation/iteration. Here γ is a scaling factor to

control the step size. In addition, L(λ) is the

parameter that corresponds to the strength of the

pollination, which essentially is also the step size.

Since insects may move over a long distance with

various distance steps, we can use a Le'vy flight to

imitate this characteristic efficiently. That is, we

draw L > 0 from a Levy distribution:

)0(,
1)2/sin()(

~ 01





SS
S

L



 (2)

Here, Γ(λ) is the standard gamma function, and

this distribution is valid for large steps s > 0.

Then, to model the local pollination, both Rule 2

and Rule 3 can be represented as

)(1 t

k

t

j

t

i

t

i xxUxx 
(3)

Where
t

jx and
t

kx are pollen from different

flowers of the same plant species. This essentially

imitates the flower constancy in a limited

neighborhood. Mathematically, if
t

jx and
t

kx

comes from the same species or selected from the

same population, this equivalently becomes a local

random walk if we draw U from a uniform

distribution in [0, 1].Though Flower pollination

activities can occur at all scales, both local and

global, adjacent flower patches or flowers in the

not-so-far-away neighborhood are more likely to

be pollinated by local flower pollen than those

faraway. In order to imitate this, we can effectively

use the switch probability like in Rule 4 or the

proximity probability p to switch between

common global pollination to intensive local

pollination. To begin with, we can use a naive

value of p = 0.5as an initially value. A preliminary

parametric showed that p = 0.8 might work better

for most applications [10].

The basic steps of FP can be summarized as the

pseudo-code shown in Figure 1.

Flower pollination algorithm

Define Objective function f (x), x = (x1, x2, ..., xd)

Initialize a population of n flowers/pollen gametes with

random solutions

Find the best solution Bin the initial population

Define a switch probability p ∈ [0, 1]

Define a stopping criterion (either a fixed number of

generations/iterations or accuracy)

while (t <MaxGeneration)

for i= 1 : n (all n flowers in the population)

if rand <p,

Draw a (d-dimensional) step vector L which obeys a

L´evy distribution

Global pollination via)(1 t

i

t

i

t

i xBLxx 

else

Draw U from a uniform distribution in [0,1]

Do local pollination via)(1 t

k

t

j

t

i

t

i xxUxx 

end if

Evaluate new solutions

If new solutions are better, update them in the

population

end for

Find the current best solution B

end while

Output the best solution found

Fig. 1 Pseudo code of the Flower pollination algorithm

3 Chaos Theory

Generating random sequences with a longer

period and good consistency is very important for

easily simulating complex phenomena, sampling,

numerical analysis, decision making and especially

in heuristic optimization [11]. Its quality

determines the reduction of storage and

computation time to achieve a desired accuracy

[12]. Chaos is a deterministic, random-like process

found in nonlinear, dynamical system, which is

non-period, non-converging and bounded.

Moreover, it depends on its initial condition and

parameters [12-19]. Applications of chaos in

several disciplines including operations research,

physics, engineering, economics, biology,

philosophy and computer science [19-22].

Recently chaos has been extended to various

optimization areas because it can more easily

escape from local minima and improve global

convergence in comparison with other stochastic

optimization algorithms [22-25]. Using chaotic

K. AL-Wagih :An Improved Flower Pollination Algorithm…

_34__

sequences in flower pollination algorithm can be

helpful to improve the reliability of the global

optimality, and they also enhance the quality of the

results.

3.1 Chaotic maps

At random-based optimization algorithms, the

methods using chaotic variables instead of random

variables are called chaotic optimization

algorithms (COA) [12]. In these algorithms, due to

the non-repetition and ergodicity of chaos, it can

carry out overall searches at higher speeds than

stochastic searches that depend on probabilities

[25-29]. To achieve this issue, herein one-

dimensional, non-invertible maps are utilized to

generate chaotic sets. We will illustrate some of

well-known one-dimensional maps as:

3.1.1 Logistic map

The Logistic map is defined by:

𝑌𝑛+1 = 𝜇𝑌𝑛(1 − 𝑌𝑛)𝑌(0,1) 0 <  ≤ 4(4)

3.1.2 The Sine map

The Sine map is written as the following equation:

𝑌𝑛+1 =
𝜇

4
sin(𝜋𝑌𝑛) 𝑌𝜖(0,1) 0 < 𝜇 ≤ 4(5)

3.1.3 Iterative chaotic map

The iterative chaotic map with infinite collapses is

described as:

𝑌𝑛+1 = sin (
𝜇𝜋

𝑌𝑛
) 𝜇 ∈ (0,1)(6)

3.1.4 Circle map

The Circle map is expressed as:

𝑌𝑛+1 = 𝑌𝑛 + 𝛼 − (
𝛽

2𝜋
) sin(2𝜋𝑌𝑛) 𝑚𝑜𝑑 1 (7)

3.1.5 Chebyshev map

The family of Chebyshev map is written as the

following equation:

𝑌𝑛+1 = cos(𝑘𝑐𝑜𝑠−1(𝑌𝑛)) 𝑌 ∈ (−1,1)(8)

3.1.6 Sinusoidal map

This map can be represented by

𝑌𝑛+1 = 𝜇𝑌𝑘
2sin (𝜋𝑌𝑛)(9)

3.1.7 Gauss map

The Gauss map is represented by:

𝑌𝑛+1 = {
0 𝑌𝑛 = 0

𝜇

𝑌𝑛
𝑚𝑜𝑑 1 𝑌𝑛 ≠ 0 (10)

3.1.8 Sinus map

Sinus map is formulated as follows:

𝑌𝑛+1 = 2.3(𝑌𝑛)2 sin(𝜋𝑌𝑛)(11)

3.1.9 Dyadic map

Also known as the dyadic map, bit shift map, 2x

mod 1 map, Bernoulli map, doubling map or saw

tooth map. Dyadic map can be formulated by a

mod function:

𝑌𝑛+1 = 2𝑌𝑛𝑚𝑜𝑑 1 (12)

3.1.10 Singer map

Singer map can be written as:

𝑌𝑛+1 = 𝜇(7.86𝑌𝑛 − 23.31𝑌𝑛
2 + 28.75𝑌𝑛

3 −

13.3𝑌𝑛
4)(13)

between 0.9 and 1.08

3.1.11 Tent map

This map can be defined by the following

equation:

𝑌𝑛+1 = {
𝜇𝑌𝑛𝑌𝑛 < 0.5

𝜇(1 − 𝑌𝑛)𝑌𝑛 ≥ 0.5
(14)

4 The Proposed Algorithm (IFPCH) for

Solving Definite Integral

In the proposed chaotic Flower pollination

algorithm, we used chaotic maps to tune the

Flower pollination algorithm parameter and

improve the performance [11-12]. The steps of the

proposed chaotic Flower pollination algorithm for

solving integer programming are as follows:

Step 1 define the objective function and initializes

a population and find the best solution B in the

initial population.

Step 2 Calculate p by the selected chaotic maps.

Step 3If (rand <p) then global pollination via

))(()(1 BxLfxx t

i

t

i

t

i  

else do local pollination via selected chaotic map.

Step 4Evaluate new solutions if better, update

them in the population.

Step 5Find the current best solution B.

Step 6Output the best solution found.

5 Numerical Results

In this section, we will carry out numerical

simulation based on some well-known

unconstrained optimization problems to investigate

the performances of the proposed algorithm. The

best results obtained by IFPCH for test problems

(1–7) are presented in Table 1. In these problems,

the initial parameters are set at n= 50 and the

number of iterations is set to t = 1000.The selected

Appl. Math. Inf. Sci. Lett. 3, No. 1, 31-37 (2015) 35

chaotic map for all problems is the logistic map,

according to the following equation:

𝑌𝑛+1 = 𝜇𝑌𝑛(1 − 𝑌𝑛(15)

Clearly, 𝑌𝑛 [0,1] under the conditions that the

initial𝑌0 [0,1], where 𝑛 is the iteration number

and 𝜇 = 4.The results of IFPCH algorithm are

conducted from 30 independent runs for each

problem. The comparison between the results

determined by the proposed approach and the

standard flower pollination algorithm are reported

in Table 1. The results have demonstrated the

superiority of the proposed approach to finding the

optimal solution.

All the experiments were performed on a

Windows 7 Ultimate 64-bit operating system;

processor Intel Core i5 760 running at 2.81 GHz; 6

GB of RAM and code was implemented in C#.

5.1. Test problem 1

The problem formulation is:

DxxxxxP ...)(2111  , Where D is the

dimension and x[-100,100]
D
. The global

minimum = 0.

5.2. Test problem 2

The mathematical formulation of the optimization

problem can be stated as follows:

 























D

D

T

x

x

xxxxxP

.

.

.

.....)(

1

12 , where D is the

dimension and x[-100,100]
D
. The global

minimum = 0.

5.3. Test problem 3

The problem can be stated as follows:
22

21

22

2

2

13)7.4.3()11.2.9()( xxxxxP .

The global minimum = 0.

5.4. Test problem 4

The problem formulation is:

4

41

4

32

2

43

2

214

)(10

)2(5)(5)10()(

xx

xxxxxxxP





The global minimum = 0.

5.5. Test problem 5

The problem can be expressed as:
22

2

2

2

2

15)71()11()( xxxxxP .

The global minimum = 0.

5.6. Test problem 6

The problem formulation is:

21

2

2

2

1

216

25.18264.20308.123

92.23208.13884.3803)(

xxxx

xxxP




.

The global minimum = 0.

5.7. Test problem 7

The problem can be stated as follows:
2

1

22

127)1()(100)(xxxxP  .

The global minimum = 0.

Table 1 the best solution of proposed algorithm and FP algorithm for solving integer programming problems

Test

problem
Dimension

Standard FP Algorithm IFPCH Algorithm

Success

Rate

Mean of

Iteration

Numbers

Standard

Deviation of

Iteration

Numbers

Success

Rate

Mean of

Iteration

Numbers

Standard

Deviation of

Iteration

Numbers

P1
15 17/30 97.18 3.68 29/30 51.08 10.00

20 0/30 100.00 0.00 29/30 51.94 9.82

25 0/30 100.00 0.00 28/30 53.2 11.83

P2

10 28/30 78.04 0.00 29/30 48.04 7.49

15 0/30 100.00 0.00 29/30 50.00 7.19

20 0/30 100.00 0.00 29/30 52.84 11.92

P3 2 30/30 8.74 3.25 30/30 4.34 4.45

P4 4 19/30 95.56 8.02 30/30 32.76 4.45

P5 2 30/30 11.4 4.52 30/30 8.28 4.45

K. AL-Wagih :An Improved Flower Pollination Algorithm…

_36__

P6 2 30/30 9.72 4.20 30/30 8.80 3.82

P7 2 25/30 26.42 21.11 30/30 8.68 3.88

6. Conclusions

This paper introduced an improved Flower

pollination algorithm by blending with chaos for

solving integer programming problems. Several

problems have been used to prove the

effectiveness of the proposed method. IFPCH

algorithm is superior to standard FP in terms of

both efficiency and success rate. This implies that

IFPCH is potentially more powerful in solving

NP-hard problems.

The reason for getting better results than standard

flower pollination algorithm, using chaos helps the

algorithms to escape from local solutions. Table 1

shows the results of IFPCH algorithm are

privileged compared with the results of Standard

flower pollination algorithm.

References

[1] L. A. Wolsey, "Integer programming," IIE

Transactions, vol. 32, pp. 2-58, 2000.

[2] G. B. Dantzig, Linear programming and

 extensions: Princeton university press, 1998.

[3] G. L. Nemhauser and L. A. Wolsey,

Integer and combinatorial optimization

vol. 18: Wiley New York, 1988.

[4] E. Beale, "Integer programming," in

Computational Mathematical

Programming, ed: Springer, 1985, pp. 1-

24.

[5] C. H. Papadimitriou and K. Steiglitz,

Combinatorial optimization: algorithms

and complexity: Courier Dover

Publications, 1998.

[6] H. Williams, "Logic and Integer

Programming, International Series in

Operations Research & Management

Science," ed: Springer, 2009.

[7] A. Schrijver, Theory of linear and integer

programming: Wiley. com, 1998.

[8] O. Abdel-Raouf, M. Abdel-Baset, and I.

El-henawy."An Improved Flower

Pollination Algorithm with Chaos." 2014.

[9] O. Abdel-Raouf, M.Abdel-Baset, and I.

 El-Henawy. "An Improved Chaotic Bat

 Algorithm for Solving Integer

 Programming Problems."2014 ‏

[10] X-S. Yang," Flower pollination algorithm

for global optimization", Unconventional

Computation and Natural Computation,

Lecture Notes inComputer Science, Vol.

7445, pp. 240-249,2012.

[11] L. M. Pecora and T. L. Carroll,

"Synchronization in chaotic systems,"

Physical review letters, vol. 64, pp. 821-

824, 1990.

[12] D. Yang, G. Li, and G. Cheng, "On the

efficiency of chaos optimization

algorithms for global optimization,"

Chaos, Solitons & Fractals, vol. 34, pp.

1366-1375, 2007.

[13] A. H. Gandomi, G. J. Yun, X.-S. Yang,

and S. Talatahari, "Chaos-enhanced

accelerated particle swarm optimization,"

Communications in Nonlinear Science and

Numerical Simulation, 2012.

[14] B. Alatas, "Chaotic harmony search

algorithms," Applied Mathematics and

Computation, vol. 216, pp. 2687-2699,

2010.

[15] W. Gong and S. Wang, "Chaos Ant

Colony Optimization and Application," in

Internet Computing for Science and

Engineering (ICICSE), 2009 Fourth

International Conference on, 2009, pp.

301-303.

[16] B. Alatas, "Chaotic bee colony algorithms

for global numerical optimization," Expert

Systems with Applications, vol. 37, pp.

5682-5687, 2010.

[17] A. Gandomi, X.-S. Yang, S. Talatahari,

and A. Alavi, "Firefly algorithm with

chaos," Communications in Nonlinear

Science and Numerical Simulation, vol.

18, pp. 89-98, 2013.

[18] J. Mingjun and T. Huanwen, "Application

of chaos in simulated annealing," Chaos,

Solitons & Fractals, vol. 21, pp. 933-941,

2004.

[19] L. d. S. Coelho and V. C. Mariani, "Use of

chaotic sequences in a biologically

inspired algorithm for engineering design

optimization," Expert Systems with

Appl. Math. Inf. Sci. Lett. 3, No. 1, 31-37 (2015) 37

Applications, vol. 34, pp. 1905-1913,

2008.

[20] M. S. Tavazoei and M. Haeri,

"Comparison of different one-dimensional

maps as chaotic search pattern in chaos

optimization algorithms," Applied

Mathematics and Computation, vol. 187,

pp. 1076-1085, 2007.

[21] R. Hilborn, "Chaos and nonlinear

dynamics, 1994," ed: Oxford University

Press, New York.

[22] D. He, C. He, L.-G. Jiang, H.-W. Zhu, and

G.-R. Hu, "Chaotic characteristics of a

one-dimensional iterative map with

infinite collapses," Circuits and Systems I:

Fundamental Theory and Applications,

IEEE Transactions on, vol. 48, pp. 900-

906, 2001.

[23] A. Erramilli, R. Singh, and P. Pruthi,

Modeling packet traffic with chaotic maps:

Citeseer, 1994.

[24] R. M. May, "Simple mathematical models

with very complicated dynamics," Nature,

vol. 261, pp. 459-467, 1976.

[25] A. Wolf, "Quantifying chaos with

Lyapunov exponents," Chaos, pp. 273-

290, 1986.

[26] R. L. Devaney, "An introduction to

chaotic dynamical systems," 2003.

[27] R. Barton, "Chaos and fractals," The

Mathematics Teacher, vol. 83, pp. 524-

529, 1990.

[28] E. Ott, Chaos in dynamical systems:

Cambridge university press, 2002.

[29] C. Letellier, Chaos in nature vol. 81:

World Scientific Publishing Company,

2013.

