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Abstract: Flower pollination algorithm is a new nature-inspired algorithm, based on the characteristics of flowering 

plants. In this paper, a new method is developed based on the flower pollination algorithm combined with chaos theory 

(IFPCH) to solve integer programming problems. IFPCH rounds the parameter values to the closest integer after 

producing new solutions. Numerical simulation results show that the algorithm proved to be superior in almost all tested 

problems. 
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1 Introduction 

The real world optimization problems are often 

very challenging to solve, and many applications 

have to deal with NP-hard problems [1]. To solve 

such problems, optimization tools have to be used 

even though there is no guarantee that the optimal 

solution can be obtained. In fact, for NP problems, 

there are no efficient algorithms at all. As a result 

of this, many problems have to be solved by trial 

and errors using various optimization techniques 

[2]. In addition, new algorithms have been 

developed to see if they can cope with these 

challenging optimization problems. Among these 

new algorithms, many algorithms such as particle 

swarm optimization, cuckoo search and firefly 

algorithm, have gained popularity due to their high 

efficiency. In this paper, we have used IFPCH 

algorithm for solving integer programming 

problems. Integer programming is NP-hard 

problems [3-10]. The name “linear integer 

programming “is referred” to the class of 

combinatorial constrained optimization problems 

with integer variables, where the objective 

function is a linear function and the constraints are 

linear inequalities.” The Linear Integer 

Programming (also known as LIP) optimization 

problem can be stated in the following general 

form:  

Max cx                       (1) 

s.t.Ax ≤  b,                  (2) 

xZ
n
                           (3) 

where the solution x∈  Z
n
 is a vector of n 

integer variables: x = (x1, x2 , …, xn)
T 

and the data 

are rational and are given by the m×n matrix A, 

the 1×n matrix c, and the m×1 matrix b. This 

formulation includes also equality constraints, 

because each equality constraint can be 

represented by means of two inequality constraints 

like those included in eq. (2). 

Integer programming addresses the problem 

raised by non-integer solutions in situations where 

integer values are required. Indeed, some 

applications do allow a continuous solution. For 

instance, if the objective is to find the amount of 

money to be invested or the length of cables to be 

used, other problems preclude it: the solution must 

be discrete [3]. Another example, if we are 

considering the production of jet aircraft and x1 = 

8.2 jet airliners, rounding off could affect the profit 

or the cost by millions of dollars. In this case we 
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need to solve the problem so that an optimal 

integer solution is guaranteed.  

The possibility to obtain integer values is 

offered by integer programming: as a pure integer 

linear programming, in which all the variables 

must assume an integer value, or as a mixed-

integer linear programming which allows some 

variables to be continuous, or a 0-1 integer model, 

all the decision variables have integer values of 

zero or one[8-9]. 

A wide variety of real life problems in logistics, 

economics, social sciences and politics can be 

formulated as linear integer optimization 

problems. The combinatorial problems, like the 

knapsack-capital budgeting problem, warehouse 

location problem, travelling salesman problem, 

decreasing costs and machinery selection problem, 

network and graph problems, such as maximum 

flow problems, set covering problems, matching 

problems, weighted matching problems, spanning 

tree problems and many scheduling problems can 

also be solved as linear integer optimization 

problems [8-9].  

Exact integer programming techniques such as 

cutting plane techniques [8-9]. The branch and the 

bound both have high computational cost, in large-

scale problems [8-9]. The branch and the bound 

algorithms have many advantages over the 

algorithms that only use cutting planes. One 

example of these advantages is that the algorithms 

can be removed early as long as at least one 

integral solution has been found and an attainable 

solution can be returned although it is not 

necessarily optimal. Moreover, the solutions of the 

LP relaxations can be used to provide a worst-case 

estimate of how far from optimality the returned 

solution is. Finally, the branch method and the 

bound method can be used to return multiple 

optimal solutions.  

Since integer linear programming is NP-

complete, for that reason many problems are 

intractable. So instead of the integer linear 

programming, the heuristic methods must be used. 

For example, Swarm intelligence metaheuristics, 

amongst which an ant colony optimization, 

artificial bee colony optimization particle swarm 

optimization [8-9]. Also Evolutionary algorithms, 

differential evolution and tabu search were 

successfully applied into solving integer 

programming problems [8-9]. Heuristics typically 

have polynomial computational complexity, but 

they do not guarantee that the optimal solution will 

be captured. In order to solve integer programming 

problems, most of the heuristics truncate or round 

the real valued solutions to the nearest integer 

values. In this paper, Bat algorithm is applied to 

integer programming problems and the 

performance was compared with other harmony 

search algorithms [9]. 

Flower pollination is an intriguing process in 

the natural world. Its evolutionary characteristics 

can be used to design new optimization 

algorithms. The algorithm obtained good results 

were dealing with lower-dimensional optimization 

problems, but may become problematic for higher-

dimensional problems because of its tendency to 

converge very fast initially. This paper introduced 

an improved Flower pollination algorithm by 

integrating it with chaos to improve the reliability 

of the global optimality, and also enhances the 

quality of the results. 

 

This paper is organized as follows: after 

introduction, the original Flower pollination 

algorithm is briefly introduced. Than in section 3 

introduces the meaning of chaos. In section 4, the 

proposed algorithm is described, while the results 

are discussed in section 5. Finally, conclusions are 

presented in section 6. 
 

2 The Original Flower Pollination 

Algorithm 

Flower Pollination Algorithm (FPA) was 

founded by Yang in the year 2012. Inspired by the 

flow pollination process of flowering plants are the 

following rules: 

 

Rule 1: Biotic and cross-pollination can be 

considered as a process of global 

pollination process, and pollen-carrying 

pollinators move in a way that obeys Le'vy 

flights.  

Rule 2: For local pollination, a biotic and 

self-pollination are used. 

Rule 3: Pollinators such as insects can 

develop flower constancy, which is 

equivalent to a reproduction probability 

that is proportional to the similarity of two 

flowers involved. 

Rule 4: The interaction or switching of 

local pollination and global pollination can 
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be controlled by a switch probability 

p[0,1], with a slight bias toward local 

pollination . 

 

In order to formulate updating formulas, we 

have to convert the aforementioned rules into 

updating equations. For example, in the global 

pollination step, flower pollen gametes are carried 

by pollinators such as insects, and pollen can 

travel over a long distance because insects can 

often fly and move in a much longer 

range[10].Therefore, Rule 1 and flower constancy 

can be represented mathematically as: 

))((1 BxLxx t

i

t

i

t

i    (1) 

Where 
t

ix is the pollen i or solution vector xi at 

iteration t, and B is the current best solution found 

among all solutions at the current 

generation/iteration. Here γ is a scaling factor to 

control the step size. In addition, L(λ) is the 

parameter that corresponds to the strength of the 

pollination, which essentially is also the step size. 

Since insects may move over a long distance with 

various distance steps, we can use a Le'vy flight to 

imitate this characteristic efficiently. That is, we 

draw L > 0 from a Levy distribution: 

)0(,
1)2/sin()(

~ 01





SS
S

L



 (2) 

Here, Γ(λ) is the standard gamma function, and 

this distribution is valid for large steps s > 0. 

Then, to model the local pollination, both Rule 2 

and Rule 3 can be represented as 

)(1 t

k

t

j

t

i

t

i xxUxx 
(3) 

Where 
t

jx and 
t

kx are pollen from different 

flowers of the same plant species. This essentially 

imitates the flower constancy in a limited 

neighborhood. Mathematically, if 
t

jx and 
t

kx

comes from the same species or selected from the 

same population, this equivalently becomes a local 

random walk if we draw U from a uniform 

distribution in [0, 1].Though Flower pollination 

activities can occur at all scales, both local and 

global, adjacent flower patches or flowers in the 

not-so-far-away neighborhood are more likely to 

be pollinated by local flower pollen than those 

faraway. In order to imitate this, we can effectively 

use the switch probability like in Rule 4 or the 

proximity probability p to switch between 

common global pollination to intensive local 

pollination. To begin with, we can use a naive 

value of p = 0.5as an initially value. A preliminary 

parametric showed that p = 0.8 might work better 

for most applications [10]. 

The basic steps of FP can be summarized as the 

pseudo-code shown in Figure 1. 

 

Flower pollination algorithm 

Define Objective function f (x), x = (x1, x2, ..., xd) 

Initialize a population of n flowers/pollen gametes with 

random solutions 

Find the best solution Bin the initial population 

Define a switch probability p ∈  [0, 1] 

Define a stopping criterion (either a fixed number of 

generations/iterations or accuracy) 

while (t <MaxGeneration) 

for i= 1 : n (all n flowers in the population) 

if rand <p, 

Draw a (d-dimensional) step vector L which obeys a 

L´evy distribution 

Global pollination via )(1 t

i

t

i

t

i xBLxx 
 

else 

Draw U from a uniform distribution in [0,1] 

Do local pollination via )(1 t

k

t

j

t

i

t

i xxUxx 
 

end if 

Evaluate new solutions 

If new solutions are better, update them in the 

population 

end for 

Find the current best solution B 

end while 

Output the best solution found 

Fig. 1 Pseudo code of the Flower pollination algorithm 

 

3 Chaos Theory 

Generating random sequences with a longer 

period and good consistency is very important for 

easily simulating complex phenomena, sampling, 

numerical analysis, decision making and especially 

in heuristic optimization [11]. Its quality 

determines the reduction of storage and 

computation time to achieve a desired accuracy 

[12]. Chaos is a deterministic, random-like process 

found in nonlinear, dynamical system, which is 

non-period, non-converging and bounded. 

Moreover, it depends on its initial condition and 

parameters [12-19]. Applications of chaos in 

several disciplines including operations research, 

physics, engineering, economics, biology, 

philosophy and computer science [19-22]. 

Recently chaos has been extended to various 

optimization areas because it can more easily 

escape from local minima and improve global 

convergence in comparison with other stochastic 

optimization algorithms [22-25]. Using chaotic 
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sequences in flower pollination algorithm can be 

helpful to improve the reliability of the global 

optimality, and they also enhance the quality of the 

results. 

3.1 Chaotic maps 

At random-based optimization algorithms, the 

methods using chaotic variables instead of random 

variables are called chaotic optimization 

algorithms (COA) [12]. In these algorithms, due to 

the non-repetition and ergodicity of chaos, it can 

carry out overall searches at higher speeds than 

stochastic searches that depend on probabilities 

[25-29]. To achieve this issue, herein one-

dimensional, non-invertible maps are utilized to 

generate chaotic sets. We will illustrate some of 

well-known one-dimensional maps as: 

 

3.1.1 Logistic map 

The Logistic map is defined by: 

𝑌𝑛+1 =  𝜇𝑌𝑛(1 − 𝑌𝑛)𝑌(0,1) 0 <  ≤  4(4) 

 

3.1.2 The Sine map 

The Sine map is written as the following equation: 

𝑌𝑛+1 =
𝜇

4
sin(𝜋𝑌𝑛) 𝑌𝜖(0,1) 0 < 𝜇 ≤ 4(5) 

3.1.3 Iterative chaotic map  

The iterative chaotic map with infinite collapses is 

described as: 

𝑌𝑛+1 = sin (
𝜇𝜋

𝑌𝑛
) 𝜇 ∈ (0,1)(6) 

3.1.4 Circle map 

The Circle map is expressed as: 

𝑌𝑛+1 = 𝑌𝑛 + 𝛼 − (
𝛽

2𝜋
) sin(2𝜋𝑌𝑛) 𝑚𝑜𝑑 1    (7) 

3.1.5 Chebyshev map 

The family of Chebyshev map is written as the 

following equation: 

 

𝑌𝑛+1 = cos(𝑘𝑐𝑜𝑠−1(𝑌𝑛)) 𝑌 ∈ (−1,1)(8) 

3.1.6 Sinusoidal map 

This map can be represented by 

𝑌𝑛+1 = 𝜇𝑌𝑘
2sin (𝜋𝑌𝑛)(9) 

3.1.7 Gauss map 

The Gauss  map is represented by: 

𝑌𝑛+1 =  {
0                      𝑌𝑛 = 0

𝜇

𝑌𝑛
𝑚𝑜𝑑 1      𝑌𝑛 ≠ 0 (10) 

3.1.8 Sinus map 

Sinus map is formulated as follows: 

𝑌𝑛+1 = 2.3(𝑌𝑛)2 sin(𝜋𝑌𝑛)(11) 

 

3.1.9 Dyadic map 

Also known as the dyadic map, bit shift map, 2x 

mod 1 map, Bernoulli map, doubling map or saw 

tooth map. Dyadic map can be formulated by a 

mod function: 

𝑌𝑛+1 = 2𝑌𝑛𝑚𝑜𝑑 1                                   (12) 

3.1.10 Singer map 

Singer map can be written as: 

𝑌𝑛+1 = 𝜇(7.86𝑌𝑛 − 23.31𝑌𝑛
2 + 28.75𝑌𝑛

3 −

13.3𝑌𝑛
4)(13) 

between 0.9 and 1.08 

 

3.1.11 Tent map 

This map can be defined by the following 

equation: 

𝑌𝑛+1 = {
𝜇𝑌𝑛𝑌𝑛 < 0.5

𝜇(1 − 𝑌𝑛)𝑌𝑛 ≥ 0.5 
(14) 

 

4 The Proposed Algorithm (IFPCH) for 

Solving Definite Integral 

In the proposed chaotic Flower pollination 

algorithm, we used chaotic maps to tune the 

Flower pollination algorithm parameter and 

improve the performance [11-12]. The steps of the 

proposed chaotic Flower pollination algorithm for 

solving integer programming are as follows: 

Step 1 define the objective function and initializes 

a population and find the best solution B in the 

initial population. 

Step 2 Calculate p by the selected chaotic maps. 

Step 3If (rand <p) then global pollination via 

))(()(1 BxLfxx t

i

t

i

t

i    

else do local pollination via selected chaotic map. 

Step 4Evaluate new solutions if better, update 

them in the population. 

Step 5Find the current best solution B. 

Step 6Output the best solution found. 

 

5 Numerical Results 

In this section, we will carry out numerical 

simulation based on some well-known 

unconstrained optimization problems to investigate 

the performances of the proposed algorithm. The 

best results obtained by IFPCH for test problems 

(1–7) are presented in Table 1. In these problems, 

the initial parameters are set at n= 50 and the 

number of iterations is set to t = 1000.The selected 
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chaotic map for all problems is the logistic map, 

according to the following equation: 

𝑌𝑛+1 =  𝜇𝑌𝑛(1 − 𝑌𝑛(15) 

Clearly, 𝑌𝑛 [0,1] under the conditions that the 

initial𝑌0 [0,1], where 𝑛 is the iteration number 

and 𝜇 =  4.The results of IFPCH algorithm are 

conducted from 30 independent runs for each 

problem. The comparison between the results 

determined by the proposed approach and the 

standard flower pollination algorithm are reported 

in Table 1. The results have demonstrated the 

superiority of the proposed approach to finding the 

optimal solution. 

All the experiments were performed on a 

Windows 7 Ultimate 64-bit operating system; 

processor Intel Core i5 760 running at 2.81 GHz; 6 

GB of RAM and code was implemented in C#. 

 

5.1. Test problem 1 

The problem formulation is: 

DxxxxxP ...)( 2111  , Where D is the 

dimension and x[-100,100]
D
. The global 

minimum = 0. 

 

5.2. Test problem 2 

The mathematical formulation of the optimization 

problem can be stated as follows:

 























D

D

T

x

x

xxxxxP

.

.

.

.....)(

1

12 , where D is the 

dimension and   x[-100,100]
D
. The global 

minimum = 0. 

5.3. Test problem 3 

The problem can be stated as follows: 
22

21

22

2

2

13 )7.4.3()11.2.9()(  xxxxxP .  

The global minimum = 0. 

 

5.4. Test problem 4 

The problem formulation is: 

4

41

4

32

2

43

2

214

)(10

)2(5)(5)10()(

xx

xxxxxxxP





The global minimum = 0. 

 

5.5. Test problem 5 

The problem can be expressed as: 
22

2

2

2

2

15 )71()11()(  xxxxxP .  

The global minimum = 0. 

5.6. Test problem 6 

The problem formulation is: 

21

2

2

2

1

216

25.18264.20308.123

92.23208.13884.3803)(

xxxx

xxxP




.  

The global minimum = 0. 

 

5.7. Test problem 7 

The problem can be stated as follows: 
2

1

22

127 )1()(100)( xxxxP  . 

The global minimum = 0. 

 
Table 1 the best solution of proposed algorithm and FP algorithm for solving integer programming problems 

Test 

problem 
Dimension 

Standard FP Algorithm IFPCH Algorithm 

Success 

Rate 

Mean of 

Iteration 

Numbers 

Standard 

Deviation of 

Iteration 

Numbers 

Success 

Rate 

Mean of 

Iteration 

Numbers 

Standard 

Deviation of 

Iteration 

Numbers 

P1 
15 17/30 97.18 3.68 29/30 51.08 10.00 

20 0/30 100.00 0.00 29/30 51.94 9.82 

25 0/30 100.00 0.00 28/30 53.2 11.83 

P2 

10 28/30 78.04 0.00 29/30 48.04 7.49 

15 0/30 100.00 0.00 29/30 50.00 7.19 

20 0/30 100.00 0.00 29/30 52.84 11.92 

P3 2 30/30 8.74 3.25 30/30 4.34 4.45 

P4 4 19/30 95.56 8.02 30/30 32.76 4.45 

P5 2 30/30 11.4 4.52 30/30 8.28 4.45 
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P6 2 30/30 9.72 4.20 30/30 8.80 3.82 

P7 2 25/30 26.42 21.11 30/30 8.68 3.88 

 

6. Conclusions 

This paper introduced an improved Flower 

pollination algorithm by blending with chaos for 

solving integer programming problems. Several 

problems have been used to prove the 

effectiveness of the proposed method. IFPCH 

algorithm is superior to standard FP in terms of 

both efficiency and success rate. This implies that 

IFPCH is potentially more powerful in solving 

NP-hard problems. 

The reason for getting better results than standard 

flower pollination algorithm, using chaos helps the 

algorithms to escape from local solutions. Table 1 

shows the results of IFPCH algorithm are 

privileged compared with the results of Standard 

flower pollination algorithm.  
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