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Abstract: In this paper, we study a generalized Nicholson’s blowflies model with a linear harvesting term, which is defined on the
positive function space. Under proper conditions, we employ a novel proof to establish some criteria for the existence and global
exponential stability of positive periodic solutions for this model. Moreover, we give an example and its numerical simulations to
illustrate our main results.
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1 Introduction

It is well known that the Nicholson’s blowflies equation
has been introduced by Gurney et al. [1] to describe the
population of the Australian sheep-blowfly and to agree
with the experimental data obtained in [2]. Later, the
theory of Nicholson’s blowflies equation has been made a
remarkable progress in the past many years. Recently, L.
Berezansky et al. [3] had made a review about the
Nicholsons blowflies differential equations, and presented
the following model proposed the following Nicholson’s
blowflies model:

x′(t) =−δx(t)+ px(t − τ)e−ax(t−τ)−Hx(t −σ),

δ , p,τ ,a,H,σ ∈ (0, +∞), (1.1)

whereHx(t−σ) is a linear harvesting term,x(t) is the size
of the population at timet, p is the maximum per capita
daily egg production,1a is the size at which the population
reproduces at its maximum rate,δ is the per capita daily
adult death rate, andτ is the generation time.

In the real world phenomena, the variation of the
environment plays an important role in many biological
and ecological dynamical systems. In particular, the
effects of a periodically varying environment are
important for evolutionary theories, as the selective forces
on systems in a fluctuating environment differ from those

in a stable environment. Thus, the assumption of
periodicity of the parameters of the system (in a way)
incorporates the periodicity of the environment (e.g.,
seasonal effects of weather, food supplies, mating habits,
etc.). A very basic and important ecological problem
associated with study of multi species population
interactions in a periodic environment is the existence of
positive periodic solution which plays the role of the
equilibrium in the autonomous models. Consequently,
(1.1) has been naturally extended to the generalized
equations with time-varying coefficient and delays. In
particular, some criteria were established in [4,5,6,7] to
guarantee the existence of positive periodic solutions for
(1.1) and its generalized equations by applying the
method of coincidence degree and the fixed-point theorem
in cones; several sufficient conditions were also obtained
in [9,10] to ensure that the solutions of its generalized
system converge locally exponentially to a positive almost
periodic solution. However, as pointed out by [11], it is
difficult to study the global dynamic behaviors of the
Nicholson’s blowflies model with a linear harvesting
term. So far, there is no literature considering the global
exponential stability of positive periodic solutions for
(1.1) and its generalized equations. Thus, it is also a
unsolved open problem to reveal the global dynamic
behaviors of positive periodic solutions for Nicholson’s
blowflies model with the linear harvesting term.
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Motivated by the above discussions, the main purpose
of this paper is to establish some criteria for the global
exponential stability of positive periodic solutions for a
general Nicholson’s blowflies model with the linear
harvesting term given by

x′(t) = −a(t)x(t)+
m

∑
j=2

β j(t)x(t − τ j(t))e
−γ j(t)x(t−τ j(t))

+β1(t)x(t − τ1(t))e
−γ1(t)x(t)−H(t)x(t −σ(t)),(1.2)

wherea, H σ , γ j : R→ (0, +∞) andβ j, τ j : R→ [0, +∞)
are continuousT -periodic functions forj = 1, 2, . . ., m
with T > 0. Obviously, (1.1) is a special case of (1.2) with
constant coefficients and delays.

For convenience, we introduce some notations. In the
following part of this paper, given a bounded continuous
functiong defined onR, let g+ andg− be defined as

g+ = sup
t∈R

g(t), g− = inf
t∈R

g(t).

It will be assumed that

γ−j ≥ 1 ( j = 1,2, . . . ,m), r := max

{
max

1≤ j≤m
τ+j , σ+

}
.

(1.3)
Throughout this paper, letC = C([−r, 0],R) be the

continuous functions space equipped with the usual
supremun norm|| · ||, and letC+ =C([−r, 0],(0, +∞)). If
x is continuous and defined on[−r + t0, σ) with
t0,σ ∈ R, then we definext ∈ C wherext(θ) = x(t + θ)
for all θ ∈ [−r, 0].

Due to the biological interpretation of model (1.2),
only positive solutions are meaningful and therefore
admissible. Thus we just consider admissible initial
conditions

xt0 = ϕ, ϕ ∈C+. (1.4)

Define a continuous mapf : R1×C+ → R by setting

f (t,ϕ)=−a(t)ϕ(0)+
m

∑
j=2

β j(t)ϕ(−τ j(t))e
−γ j(t)ϕ(−τ j(t))

+β1(t)ϕ(−τ1(t))e
−γ1(t)ϕ(0)−H(t)ϕ(−σ(t)).

Then, f is a locally Lipschitz map with respect toϕ ∈C+,
which ensures the existence and uniqueness of the solution
of (1.2) with admissible initial conditions (1.4).

We write xt(t0, ϕ)(x(t; t0,ϕ)) for an admissible
solution of the admissible initial value problem (1.2) and
(1.4). Also, let[t0, η(ϕ)) be the maximal right-interval of
existence ofxt(t0,ϕ).

Since the function1−x
ex is decreasing with the range

[0, 1], it follows easily that there exists a unique
κ ∈ (0, 1) such that

1−κ
eκ =

1
e2 . (1.5)

Obviously,

sup
x≥κ

∣∣∣∣
1− x

ex

∣∣∣∣=
1
e2 . (1.6)

Moreover, sincexe−x increases on[0, 1] and decreases on
[1, +∞), let κ̃ be the unique number in(1, +∞) such that

κe−κ = κ̃e−κ̃
. (1.7)

The remaining of this paper is organized as follows.
In Section 2, we give some lemmas, which tell us the
attracting set for (1.2). These results play an important
role in Section 3 to establish the existence of positive
periodic solutions of (1.2). Here we also study the global
exponential stability of positive periodic solutions. The
paper concludes with an example to illustrate the
effectiveness of the obtained results by numerical
simulation.

2 Preliminary results

In this section, we present some lemmas which will play
an important role in the next section.
Lemma 2.1 (see [[11], Theorem 2.1]). Assume that

inf
t∈R

{
β1(t)e

−κ̃ −H(t)

}
> 0, and τ1(t)≡ σ(t) (2.1)

for all t ∈ R. Then, the solutionxt(t0,ϕ) ∈C+ for all t ∈
[t0,η(ϕ)), the set of{xt(t0,ϕ) : t ∈ [t0, η(ϕ))} is bounded,
andη(ϕ) = +∞.
Lemma 2.2 (see [[11], Theorem 3.1]) . Suppose that all
conditions in Lemma 2.1 are satisfied. Let

liminf
t→+∞

{ m

∑
j=2

β j(t)

a(t)
+ [

β1(t)
a(t)

−
H(t)
a(t)

]

}
> 1. (2.2)

Then, there exist two positive constantsK1 and K2 such
that

K1 ≤ liminf
t→+∞

x(t; t0,ϕ)≤ limsup
t→+∞

x(t; t0,ϕ)≤ K2.

Lemma 2.3. Let (2.1) hold. Suppose that there exists a
positive constantM such that

max
1≤ j≤m

γ+j ≤
κ̃
M
, (2.3)

and 



sup
t∈R

{−a(t)+ 1
eM

m
∑
j=1

β j(t)
γ j(t)

}< 0,

inf
t∈R

{−a(t)+ e−κ
m
∑
j=2

β j(t)
γ j(t)

}> 0
. (2.4)

Then, the set of{xt(t0,ϕ) : t ∈ [t0, η(ϕ))} is bounded, and
η(ϕ) = +∞. Moreover, there existstϕ > t0 such that

κ < x(t; t0,ϕ)< M for all t ≥ tϕ . (2.5)

Proof. Let x(t) = x(t; t0,ϕ). From Lemma 2.1, we have
that the set of{xt(t0,ϕ) : t ∈ [t0, η(ϕ))} is bounded with
η(ϕ) = +∞, and

x(t)> 0 for all t ∈ [t0, +∞). (2.6)
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Clearly, (1.3 ), (2.1 ) and (2.4) yield to

1< eκ
<

m

∑
j=2

β j(t)

γ j(t)a(t)
≤

m

∑
j=2

β j(t)

a(t)

+[
β1(t)
a(t)

−
H(t)
a(t)

] for all t ∈ R. (2.7)

It follows from Lemma 2.2 that

0< liminf
t→+∞

x(t)≤ limsup
t→+∞

x(t)<+∞. (2.8)

We now prove thatL = limsup
t→∞

x(t) < M. By way of

contradiction, we assume thatL ≥ M. By the fluctuation
lemma [[12], Lemma A.1.], there exists a sequence{tk}k≥1
such that

tk →+∞, x(tk)→ limsup
t→+∞

x(t), x′(tk)→0 ask →+∞.

Since{xtk} is bounded and equicontinuous, by the Ascoli-
Arzelá theorem, there exists a subsequence, still denoted
by itself for simplicity of notation, such that

xtk → ϕ for someϕ ∈C+.

Moreover,

ϕ(0) = L ≥ ϕ(θ) for θ ∈ [−r, 0).

By the boundedness of the coefficients and delays, there
is a subsequence of{tk} , still denoted by{tk} , such that
a(tk), β j(tk), τ j(tk) andγ j(tk) are convergent to ¯a, β̄ j, τ̄ j
and γ̄ j, respectively. This can be achieved because of
periodicity. In view of sup

u≥0
ue−u = 1

e , it follows from

x′(tk)

= −a(tk)x(tk)+
m

∑
j=2

β j(tk)

γ j(tk)
γ j(tk)x(tk − τ j(tk))e

−γ j(tk)x(tk−τ j(tk))

+β1(tk)x(tk − τ1(tk))e
−γ1(tk)x(tk)−H(tk)x(tk −σ(tk))

≤ −a(tk)x(tk)+
m

∑
j=2

β j(tk)

γ j(tk)
γ j(tk)x(tk − τ j(tk))e

−γ j(tk)x(tk−τ j(tk))

+β1(tk)x(tk − τ1(tk))e
−γ1(tk)x(tk)

that (taking limits)

0 ≤ −āL+
m

∑
j=2

β̄ j

γ̄ j
γ̄ jϕ(−τ̄ j)e

−γ̄ jϕ(−τ̄ j)+
β̄1

γ̄1
γ̄1ϕ(−τ̄1)e

−γ̄1L

≤ −āL+
m

∑
j=2

β̄ j

γ̄ j
γ̄ jϕ(−τ̄ j)e

−γ̄ jϕ(−τ̄ j)+
β̄1

γ̄1
γ̄1Le−γ̄1L

≤ −āM+
m

∑
j=1

β̄ j

γ̄ j

1
e

≤ M sup
t∈R

{−a(t)+
1

eM

m

∑
j=1

β j(t)

γ j(t)
}

< 0,

a contradiction and henceL = limsup
t→∞

x(t)< M. Then, we

can chooset# > t0 such that

x(t)< M, for all t ≥ t#
. (2.9)

We finally show thatl = liminf
t→∞

x(t) > κ . By way of

contradiction, we assume that 0< l ≤ κ . Again from the
fluctuation lemma [12, Lemma A.1.], there exists a
sequence{tk}k≥1 such that

tk ≥ t#
, k = 1,2, · · · · · · ,

and

tk →+∞, x(tk)→ liminf
t→+∞

x(t), x′(tk)→0 ask →+∞.

Since{xtk} is bounded and equicontinuous, by the Ascoli-
Arzelá theorem, there exists a subsequence, still denoted
by itself for simplicity of notation, such that

xtk → ϕ∗ for someϕ∗ ∈C+.

Moreover,

ϕ∗(0) = l ≤ ϕ∗(θ)≤ M for θ ∈ [−r, 0).

Without loss of generality, we assume that alla(tk), β j(tk),
τ j(tk) andγ j(tk) are convergent toa∗∗, β ∗∗

j , τ∗∗j andγ∗∗j ,
respectively. This can be achieved because of periodicity.
Then, (1.3), (2.3) and (2.9) lead to

γ1(tk)x(tk)≤ γ+1 M ≤ κ̃ , k = 1,2, · · · ,

and

l ≤ γ∗j ϕ∗(−τ∗j )≤ γ∗j M ≤ κ̃, j = 2,3, · · · ,m.

It follows from

x′(tk) = −a(tk)x(tk)

+
m

∑
j=2

β j(tk)

γ j(tk)
γ j(tk)x(tk − τ j(tk))e

−γ j(tk)x(tk−τ j(tk))

+x(tk − τ1(tk))[β1(tk)e
−γ1(tk)x(tk)−H(tk)]

≥ −a(tk)x(tk)

+
m

∑
j=2

β j(tk)

γ j(tk)
γ j(tk)x(tk − τ j(tk))e

−γ j(tk)x(tk−τ j(tk))

+x(tk − τ1(tk))[β1(tk)e
−κ̃ −H(tk)]

≥ −a(tk)x(tk)

+
m

∑
j=2

β j(tk)

γ j(tk)
γ j(tk)x(tk − τ j(tk))e

−γ j(tk)x(tk−τ j(tk))
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that (taking limits)

0 ≥ −a∗∗l +
m

∑
j=2

β ∗∗
j

γ∗∗j
γ∗∗j ϕ∗(−τ∗∗j )e−γ∗∗j ϕ∗(−τ∗∗j )

≥ −a∗∗l +
m

∑
j=2

β ∗∗
j

γ∗∗j
le−l

≥ l inf
t∈R

{−a(t)+
m

∑
j=2

β j(t)

γ j(t)
e−l}

≥ l inf
t∈R

{−a(t)+
m

∑
j=2

β j(t)

γ j(t)
e−κ}

> 0,

a contradiction. This proves thatl > κ . Hence, from (2.9),
we can choosetϕ > t0 such that

κ < x(t; t0,ϕ)< M for all t ≥ tϕ .

This ends the proof of Lemma 2.3.�.

Lemma 2.4. Suppose(2.1), (2.3) and(2.4) hold, and

sup
t∈R

{
−a(t)+

m

∑
j=2

β j(t)
1
e2 +β1(t)e

−κ(M+1)+H(t)

}
< 0.

(2.10)
Moreover, letx∗(t) = x(t; t0,ϕ∗), x(t) = x(t; t0,ϕ). Then,
there exists a positive constantλ such that

x(t)− x∗(t) = O(e−λ t). (2.11)

Proof. Define a continuous functionΓ by setting

Γ (µ) = sup
t∈R

{
− [a(t)−µ ]+

m

∑
j=2

β j(t)
1
e2 eµr

+β1(t)e
−κ(M+ eµr)+H(t)eµr

}
, µ ∈ [0, 1].

Then, we have

Γ (0) = sup
t∈R

{
−a(t)+

m

∑
j=2

β j(t)
1
e2

+β1(t)e
−κ(M+1)+H(t)

}
< 0,

which implies that there exist two constantsη > 0 andλ ∈
(0, 1] such that

Γ (λ ) = sup
t∈R

{
− [a(t)−λ ]+

m

∑
j=2

β j(t)
1
e2 eλ r

+β1(t)e
−κ(M+ eλ r)+H(t)eλ r

}
<−η < 0. (2.12)

Sety(t) = x(t)− x∗(t), wheret ∈ [t0− r,+∞). Then

y′(t) = −a(t)y(t)

+
m

∑
j=2

β j(t)[x(t − τ j(t))e
−γ j(t)x(t−τ j(t))

−x∗(t − τ j(t))e
−γ j(t)x∗(t−τ j(t))]

+β1(t)[x(t − τ1(t))e
−γ1(t)x(t)

−x∗(t − τ1(t))e
−γ1(t)x

∗(t)]−H(t)y(t −σ(t)). (2.13)

It follows from Lemma 2.3 that there existstϕ,ϕ∗ > t0 such
that

κ ≤ x(t), x∗(t)≤ M, for all t ∈ [tϕ,ϕ∗ − r, +∞). (2.14)

We consider the Lyapunov functional

V (t) = |y(t)|eλ t
. (2.15)

Calculating the upper left derivative ofV (t) along the
solutiony(t) of (2.13), we have

D−(V (t))

≤ −a(t)|y(t)|eλ t

+
m

∑
j=2

β j(t)

∣∣∣∣x(t − τ j(t))e
−γ j(t)x(t−τ j(t))

−x∗(t − τ j(t))e
−γ j(t)x∗(t−τ j(t))

∣∣∣∣e
λ t

+β1(t)

∣∣∣∣x(t − τ1(t))e
−γ1(t)x(t)− x∗(t − τ1(t))e

−γ1(t)x∗(t)
∣∣∣∣e

λ t

+H(t)|y(t −σ(t))|eλ t +λ |y(t)|eλ t
, for all t > tϕ,ϕ∗ . (2.16)

We claim that

V (t) = |y(t)|eλ t

< eλ tϕ,ϕ∗ ( max
t∈[t0−r, tϕ,ϕ∗ ]

|x(t)− x∗(t)|+1)

:= Kϕ,ϕ∗ for all t > tϕ,ϕ∗ . (2.17)

Contrarily, there must existt∗ > tϕ,ϕ∗ such that

V (t∗) = Kϕ,ϕ∗ and V (t)< Kϕ,ϕ∗ for all t ∈ [t0− r, t∗).
(2.18)

Since

κ ≤ γ j(t∗)x(t∗− τ j(t∗)), γ j(t∗)x
∗(t∗− τ j(t∗))

≤ γ+j M ≤ κ̃ , j = 1,2, · · · ,m.

Together with (1.5), (1.6), (1.7), (2.16), (2.18) and the
inequalities

|e−s − e−t |= e−(s+θ(t−s))|s− t|

≤ e−κ |s−t| where s, t ∈ [κ , κ̃ ],0< θ < 1,

and

|se−s−te−t |= |
1− (s+θ(t − s))

es+θ(t−s)
||s−t|
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≤
1
e2 |s− t| where s, t ∈ [κ , +∞),0< θ < 1,

we obtain

0 ≤ D−(V (t∗))

≤ −a(t∗)|y(t∗)|e
λ t∗

+
m

∑
j=2

β j(t∗)|x(t∗− τ j(t∗))e
−γ j(t∗)x(t∗−τ j(t∗))

−x∗(t∗− τ j(t∗))e
−γ j(t∗)x∗(t∗−τ j(t∗))|eλ t∗

+β1(t∗)|x(t∗− τ1(t∗))e
−γ1(t∗)x(t∗)

−x∗(t∗− τ1(t∗))e
−γ1(t∗)x∗(t∗)|eλ t∗

+H(t∗)|y(t∗−σ(t∗))|e
λ t∗ +λ |y(t∗)|eλ t∗

≤ −a(t∗)|y(t∗)|e
λ t∗

+
m

∑
j=2

β j(t∗)

γ j(t∗)
|γ j(t∗)x(t∗− τ j(t∗))e

−γ j(t∗)x(t∗−τ j(t∗))

−γ j(t∗)x
∗(t∗− τ j(t∗))e

−γ j(t∗)x∗(t∗−τ j(t∗))|eλ t∗

+β1(t∗)|x(t∗− τ1(t∗))e
−γ1(t∗)x(t∗)

−x(t∗− τ1(t∗))e
−γ1(t∗)x∗(t∗)|eλ t∗

+β1(t∗)|x(t∗− τ1(t∗))e
−γ1(t∗)x∗(t∗)

−x∗(t∗− τ1(t∗))e
−γ1(t∗)x∗(t∗)|eλ t∗

+H(t∗)|y(t∗−σ(t∗))|e
λ t∗ +λ |y(t∗)|eλ t∗

≤ −[a(t∗)−λ ]|y(t∗)|eλ t∗ +
m

∑
j=2

β j(t∗)
1
e2 |y(t∗− τ j(t∗))|e

λ t∗

+β1(t∗)M|e−γ1(t∗)x(t∗)− e−γ1(t∗)x∗(t∗)|eλ t∗

+β1(t∗)|x(t∗− τ1(t∗))− x∗(t∗− τ1(t∗))|e
−γ1(t∗)x∗(t∗)eλ t∗

+H(t∗)|y(t∗−σ(t∗))|e
λ t∗

≤ −[a(t∗)−λ ]|y(t∗)|eλ t∗

+
m

∑
j=2

β j(t∗)
1
e2 |y(t∗− τ j(t∗))|e

λ (t∗−τ j(t∗))eλτ j(t∗)

+β1(t∗)Me−κ |y(t∗)|e
λ t∗

+β1(t∗)e
−κ |y(t∗− τ1(t∗))|e

λ (t∗−τ1(t∗))eλτ1(t∗)

+H(t∗)|y(t∗−σ(t∗))|e
λ (t∗−σ(t∗))eλσ(t∗)

≤ {−[a(t∗)−λ ]+
m

∑
j=2

β j(t∗)
1
e2 eλ r

+β1(t∗)e
−κ (M+ eλ r)+H(t∗)e

λ r}Kϕ,ϕ∗ .

Thus,

0≤−[a(t∗)−λ ]+
m

∑
j=2

β j(t∗)
1
e2 eλ r

+β1(t∗)e
−κ(M+ eλ r)+H(t∗)e

λ r
,

which contradicts with (2.12). Hence, (2.17) holds. It
follows that

|y(t)|< Kϕ,ϕ∗e−λ t for all t > tϕ,ϕ∗ . (2.19)

This completes the proof of Lemma 2.4.�

3 Main Results

In this section, we establish sufficient conditions on the
existence, uniqueness, and global exponential stability of
positiveT - periodic solutions of (1.2).

Theorem 3.1. Suppose that all conditions in Lemma 2.4
are satisfied. Then (1.2) has exactly oneT - periodic
solution x∗(t). Moreover,x∗(t) is globally exponentially
stable, i. e., there exist constantsλ > 0, K > 0 and
T ∗ > t0 such that

|x(t; t0,ϕ)− x∗(t)|< Ke−λ t for all t > T ∗
. (3.1)

Proof. Let x(t) = x(t; t0,ϕ). By Lemma 2.3, we obtain

that there existsT0 > t0 such that

κ < x(t)< M, for all t ≥ T0− r.

By the periodicity of coefficients and delays for (1.2), we
have, for any natural numberh

[x(t +(h+1)T )]′

= −a(t +(h+1)T )x(t +(h+1)T )

+
m

∑
j=2

β j(t +(h+1)T )x(t +(h+1)T − τ j(t +(h+1)T ))

×e−γ j(t+(h+1)T )x(t+(h+1)T−τ j(t+(h+1)T ))

+β1(t +(h+1)T )x(t +(h+1)T − τ1(t +(h+1)T ))

×e−γ1(t+(h+1)T )x(t+(h+1)T )

−H(t +(h+1)T )x(t +(h+1)T −σ(t +(h+1)T ))

= −a(t)x(t +(h+1)T )

+
m

∑
j=2

β j(t)x(t +(h+1)T − τ j(t))e
−γ j(t)x(t+(h+1)T−τ j(t))

+β1(t)x(t +(h+1)T − τ1(t))e
−γ1(t)x(t+(h+1)T )

−H(t)x(t +(h+1)T −σ(t)), t +(h+1)T ∈ [t0,+∞). (3.2)

Thus, for any natural numberh, we obtain thatx(t +(h+
1)T ) is a solution of (1.2) for allt ≥ t0 − r − (h+ 1)T .
Hence,x(t+T ) (t ∈ [t0−r, +∞)) is also a solution of (1.2)
with initial values

ψ(s) = x(s+ t0+T ), s ∈ [−r, 0].

It follows from the proof of Lemma 2.4 that, for any
nonnegative integerh andt +hT ≥ T0,

|x(t +(h+1)T ; t0,ϕ)− x(t +hT ; t0,ϕ)|
= |x(t +hT ; t0,ψ)− x(t +hT ; t0,ϕ)|
≤ Kϕ,ψ e−λ (t+hT )

,

where

Kϕ,ψ = eλT0

(
max

s∈[t0−r, T0]
|x(s; t0,ψ)− x(s; t0,ϕ)|+1

)
.

Now, we show thatx(t + qT ; t0,ϕ) is convergent on
any compact interval asq → +∞. Let [a, b] ⊂ R be an
arbitrary subset ofR. Choose a nonnegative integerq0 such
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that t + q0T ≥ T0 for t ∈ [a, b]. Then for t ∈ [a, b] and
q > q0 we have

x(t+qT ) = x(t+q0T )+
q−1

∑
h=q0

[x(t+(h+1)T )−x(t+hT )].

Then x(t + qT ) will converge uniformly to a continuous
function, sayx∗(t), on [a, b]. Because of arbitrariness of
[a, b], we see thatx(t +qT )→ x∗(t) asq →+∞ for t ∈ R.
Moreover,

κ ≤ x∗(t)≤ M for all t ∈ R. (3.3)

It remains to show thatx∗ is a T -periodic solution
of (1.2). The periodicity is obvious since

x∗(t +T ) = lim
q→+∞

x((t +T )+qT )

= lim
q+1→+∞

x(t +(q+1)T ) = x∗(t)

for all t ∈ R. Now, note thatx(t+qT ) is a solution to (1.2),
that is,

x(t +qT )− x(t0+qT )

=
∫ t

t0
[−a(s)x(s+qT )

+
m

∑
j=2

β j(s)x(s+qT − τ j(s))e
−γ j(s)x(s+qT−τ j(s))

+β1(s)x(s+qT − τ1(s))e
−γ1(s)x(s+qT )

−H(s)x(s+qT −σ(s))]ds

for t ≥ t0. Lettingq →+∞ gives us

x∗(t)− x∗(t0)

=
∫ t

t0
[−a(s)x∗(s)+

m

∑
j=2

β j(s)x
∗(s− τ j(s))e

−γ j(s)x∗(s−τ j(s))

+β1(s)x
∗(s− τ1(s))e

−γ1(s)x
∗(s)−H(s)x∗(s−σ(s))]ds

for t ≥ t0, namely,x∗ is a solution to (1.2) on[t0− r,+∞).
Finally, from (3.3), again using a similar argument as

in (2.28) of Lemma 2.3, we can prove that(3.1) holds.
This completes the proof.�

4 An example

In this section, we present an example to check the validity
of our results we obtained in the previous sections.

Example 4.1. Consider the following Nicholson’s
blowflies model with a linear harvesting term:

x′(t) =−
30+15|cost|

100
x(t)

+
100−sint
100+sint

x(t −2esin4 t)e−x(t−2esin4 t )

+
1

100
(3+cos4 t)x(t −2ecos4 t)e−x(t)

−
1

100
(2+cos4 t)x(t −2ecos4 t). (4.1)

Obviously,

a+ = 0.45, a− = 0.3, β−
2 =

99
101

, β+
2 =

101
99

,

γ−i = γ+i = 1, i = 1,2,

β1(t) =
1

100
(3+cos4 t), H(t) =

1
100

(2+cos4 t)

τ2(t) = 2esin4 t
, τ1(t) = σ(t) = 2ecos4 t

, r = 2e.

Note κ ≈ 0.7215355 andκ̃ ≈ 1.342276. LetM = 1.33.
Then

a−M = 0.3×1.33≈ 0.399,

β+
2

γ−2

1
e
=

101
99

1
e
≈ 0.3753113,

β+
1

γ−1

1
e
=

101
99

1
e
≈ 0.016,

β−
2

γ+2
e−κ =

99
101

e−κ ≈
99
101

e−0.7215355≈ 0.4763816,

β+
2

1
e2 =

101
99

1
e2 ≈ 0.1380693,

β+
1 e−κ(M+1)+H+ ≈ 0.09,

which imply that (4.1) satisfies the assumptions of
Theorem 3.1. Therefore, equation (4.1) has a unique
positive 2π-periodic solution x∗(t), which is globally
exponentially stable with the exponential convergent rate
λ ≈ 0.005. The numerical simulation in Fig. 1 strongly
supports the conclusion.

0 50 100 150 200
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

t

x

Fig. 1: Numerical solutionx(t) of equation (4.1) for initial value
ϕ(s)≡ 0.8, s ∈ [−2e,0].

Remark 4.1. To the best of our knowledge, few
authors have considered the problems on the global
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dynamic behaviors of positive periodic solution for
Nicholson’s blowflies model with a linear harvesting
term. It is clear that all the results in [4−10, 13] and the
references therein cannot be applicable to prove the
global stability of positive 2π-periodic solution for (4.1).
Moreover, in this present paper, we employ a novel proof
to establish some criteria to guarantee the existence and
global exponential stability of positive periodic solutions
for Nicholsons blowflies model with a linear harvesting
term.
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