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Abstract: In this paper, we study a generalized Nicholson’s blowflies model with ardiharvesting term, which is defined on the

positive function space. Under proper conditions, we employ a naealffio establish some criteria for the existence and global
exponential stability of positive periodic solutions for this model. Moreower give an example and its numerical simulations to
illustrate our main results.
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1 Introduction in a stable environment. Thus, the assumption of
periodicity of the parameters of the system (in a way)
It is well known that the Nicholson’s blowflies equation incorporates the periodicity of the environment (e.g.,
has been introduced by Gurney et dl] {o describe the seasonal effects of weather, food supplies, mating habits,
population of the Australian sheep-blowfly and to agreeetc.). A very basic and important ecological problem
with the experimental data obtained ig].[ Later, the  associated with study of multi species population
theory of Nicholson’s blowflies equation has been made anteractions in a periodic environment is the existence of
remarkable progress in the past many years. Recently, Lpositive periodic solution which plays the role of the
Berezansky et al.3] had made a review about the equilibrium in the autonomous models. Consequently,
Nicholsons blowflies differential equations, and presénte (1.1) has been naturally extended to the generalized
the following model proposed the following Nicholson’s equations with time-varying coefficient and delays. In

blowflies model: particular, some criteria were established 4n5[6,7] to
guarantee the existence of positive periodic solutions for
X (t) = —Ox(t) + px(t — 1)e >0 — Hx(t - 0), (1.1) and its generalized equations by applying the
method of coincidence degree and the fixed-point theorem
o,p,T,a,H,0 € (0, +=), (L1)  in cones; several sufficient conditions were also obtained

in [9,10] to ensure that the solutions of its generalized
system converge locally exponentially to a positive almost
periodic solution. However, as pointed out HA], it is
difficult to study the global dynamic behaviors of the
Nicholson’s blowflies model with a linear harvesting
term. So far, there is no literature considering the global
exponential stability of positive periodic solutions for
(1.1) and its generalized equations. Thus, it is also a
unsolved open problem to reveal the global dynamic
behaviors of positive periodic solutions for Nicholson'’s
blowflies model with the linear harvesting term.

whereHx(t — o) is a linear harvesting term(t) is the size
of the population at timé, p is the maximum per capita
daily egg production%l is the size at which the population
reproduces at its maximum rat@,is the per capita daily
adult death rate, andis the generation time.

In the real world phenomena, the variation of the
environment plays an important role in many biological
and ecological dynamical systems. In particular, the
effects of a periodically varying environment are
important for evolutionary theories, as the selectivedsrc
on systems in a fluctuating environment differ from those
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Motivated by the above discussions, the main purposeéMoreover, sincexe * increases of, 1] and decreases on
of this paper is to establish some criteria for the global[1, +), letk be the unique number ifi, +) such that
exponential stability of positive periodic solutions for a ~
general Nicholson's blowflies model with the linear ke " =ke . (1.7)

harvesting term given b
g g Y The remaining of this paper is organized as follows.

X(t) = —a(t)x(t) + iﬁj(t)x(t—q(t))e*"i(‘)x(‘*fi(t)) In Section 2, we give some lemmas, which tell us the
i= attracting set for (1.2). These results play an important
FBLOX(E — T (t))e OXO _H(t)x(t — (1)), (1.2) role in Section 3 to establish the existence of positive

_ ) periodic solutions of (1.2). Here we also study the global
wherea, H g, : R — (0, +) andfj, 7j: R — [0, +0)  gxponential stability of positive periodic solutions. The
are continuous -periodic functions forj =1, 2,..., M paner concludes with an example to illustrate the

with T > 0. Obviously, (1.1) is a special case of (1.2) with effectiveness of the obtained results by numerical
constant coefficients and delays. simulation.

For convenience, we introduce some notations. In the
following part of this paper, given a bounded continuous

functiong defined orR, letg*t andg~ be defined as 2 Preliminary results
+ _ - .
9= ?:Rpg( )9 = JQJQQ(U' In this section, we present some lemmas which will play

an important role in the next section.

Itwill be assumed that Lemma 2.1 (see[[11], Theorem 2.1]). Assume that

B zll=212...m,r= max{ max Ty’ “+}' inf {Bl(t)e? - H(t)} >0, and u(t) = oft) (2.2)

(13) teR

Throughout this paper, & = C([—r, 0|,R) be the  for all t ¢ R. Then, the solution(to,¢) € C. for all t €
continuous  functions space equipped with the usualy, n(¢)), the setofx(to, @) :t € [to, N(¢))} is bounded,
supremun nornfj - ||, and letC,. = C([—r, 0], (0, +)). I andn(g) = +oo.
X is continuous and defined oft-r +tg, o) with
to,d R, then we define € C wherex (6) = x(t +6) conditions in Lemma 2.1 are satisfied. Let
forall 8 € [—r, O]. ’ '

Due to the biological interpretation of model (1.2), I D Bit) Bat) H()
only positive solutions are meaningful and therefore l{TJﬂI ; a(t) [a(t) - a(t)] >1 (2.2)
admissible. Thus we just consider admissible initial =

Lemma 2.2 (see[[11], Theorem 3.1]) . Suppose that all

conditions Then, there exist two positive constamts and K, such
X, =, ¢eCs. (14)  that
Define a continuous map: R x C, — Rby setting Ky < liminf x(t;to, ¢) <limsupx(t;to, ¢) < Ko.
e t—+oo
m
f(t,9)=—a(t)¢(0)+ Zzﬁj (0o (—1j(t))e WPCHO) Lemma 2.3. Let (2.1) hold. Suppose that there exists a
J:

positive constanil such that

L)@ (—Ta(t)) e VPO —H(t)p(—a(1)). K

. _K

Then, f is a locally Lipschitz map with respect pe C, 12?&"1 = M’ (23)
which ensures the existence and uniqueness of the solution
of (1.2) with admissible initial conditions (1.4). and m g

We write x(to, ¢)(X(t;to,$)) for an admissible sup{~a(t) + gy ¥ e} <O,
solution of the admissible initial value problem (1.2) and teR 'Tnl : . (2.4)
(1.4). Also, letlty, n(¢)) be the maximal right-interval of tirg;{{—a(t) +e X _zz%} >0

J:

existence ok (to, ¢).
Since the functionl‘;—x is decreasing with the range Then, the set ofx(to,¢) :t € [to, N(¢))} is bounded, and

[0, 1], it follows easily that there exists a unique n(¢) = -+c. Moreover, there existy > tg such that

K € (0, 1) such that

K < X(t;to,¢) <Mfor all t >ty. (2.5)
1-xk 1
e« e (1.5 Proof. Let x(t) = x(t;to,¢). From Lemma 2.1, we have
. that the set ofx (to,¢) : t € [to, N(¢))} is bounded with
Obviously, n(¢) =+, and
1-x_ 1 1.6
ol el (16) X(t) >0 forall t € fto, +c0). (2.6)
@© 2014 NSP
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Clearly, (1.3), (2.1) and (2.4) yield to a contradiction and hende= limsupx(t) < M. Then, we
t—o0
can choosé¢” > to such that
1< < ; t ;@(i)) °
X(t) <M, for all t >t*. (2.9)
But) H()
[W_E] for all teR (27)  we finally show thatl = liminfx(t) > k. By way of

contradiction, we assume that0l < k. Again from the
fluctuation lemma [12, Lemma A.l.], there exists a

0 < liminfx(t) < limsupx(t) < +e.  (2.8)  Sequencety}-1 such that
t—-+o0 t—teo

It follows from Lemma 2.2 that

# _
We now prove that = limsupx(t) < M. By way of b=t k=12, )
t—ro0
contradiction, we assume thiat> M. By the fluctuation  5ng
lemma[[12], Lemma A.1.], there exists a sequeddg k-1
such that b+, X(t) > liminfx(t), ¥(t) >0 ask— +e.

fk— 4o, X&) —limsupx(t), X (&) —0 ask— +oo.
(e Since{x, } is bounded and equicontinuous, by the Ascoli-
Since{x;} is bounded and equicontinuous, by the Ascoli- Arzela theorem there exists a subsequence, still denoted
Arzela theorem, there exists a subsequence, still denoteBl itself for simplicity of notation, such that
by itself for simplicity of notation, such that
X, — ¢ for someg* € C,.
X — @ for somep € C,..

Moreover, Moreover,
P(0)=L>9(0) forOe[-r, 0). $*(0)=1<9¢*(6)<M  for6¢c|-r,0).

By the boundedness of the coefficients and delays, ther@yiinout loss of generality. we assume tha H, t
is a subsequence ¢f} , still denoted by{t} , such that 7;(t) and y,(tk)gare cont\yergent @, B, T tai;* )afé(yfi

a(fi), Bj(f), 1j(t) andy;(t) are convergent ta, Bj, T; respectlvely This can be achieved because of per|0d|C|ty
and y;, respectively. This can be achieved because OfThen (1.3), (2.3) and (2.9) lead to
periodicity. In view of sue™ = =, it follows from
_ =0 W) S VEM <K, k=12
X (t)
1 (tk 1 (f)e W@ E-n@)  and
%, vi(t)
B X rl( e B — H (X - o) AT sYMsk j=23m
< —a(fix®) + 5 Bl yj (Bo)x(E — Tj () ) eV TX(ETi (W) It follows from
% vi() "
1By (GoX(E — T () )e 80X X (t) = —a(ty)x(tk)
that (taking limits) RS BJ((tk;yj(tk) (1 — ())&~ 8T 50)
S Vi(k
» l31 — L J
0< —-aL Be(-1) 7
A3 PR T G e x(te— 1a(1) [Ba(t)e™ ) H(g)]
3 _ > —a(t)x(t)
< — ;t Ij)e Ve (1)) B—_lﬁLefylL m Bj (t)
Vi Vi i i\ yj(tk)x(tk_TJ.(tk))e*Vj(tk)X(tk*Tj(tk))
m g1 = Vi)
< —aM + Z o= _z
=vie +X(t — T (t)) [Br(t)e™ —H (k)]
1 Bt > —a(ti)X(t)
< Msup{—a(t)+w > B_J—(t))} m B (1)
=7 + 3 Sy (e Ty (e 0T
<0, % Vi)
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that (taking limits)

0> a**l+22 A
> —a™l + ;#Ie"
=Y
¢ Bi)
2y
)
)

VK(I) )W¢( i)

> (-

. il B(t K
> Itlgé{—a(t)JrJ: Vj]Te }

> 0,

a contradiction. This proves thiat- k. Hence, from (2.9),

we can choosg > tg such that
K <X(t;to,¢) <M for all t>ty.

This ends the proof of Lemma 2.3.
Lemma24. Suppos€2.1), (2.3) and(2.4) hold, and
(M+1)+H(t)} <0.

sup ~alt) 3 Bil0 g
(2.10)

Moreover, letx* (t) = X(t;to, "), X(t) =X(t;to,¢). Then,
there exists a positive constahisuch that

+Bl

X(t) —x*(t) = O(e™). (2.11)

Proof. Define a continuous functiof by setting

teR

r ()= sup{ ~[at) ~ 4] + 3 B0 e
2

Bie <M+e“f>+H<>e“}7ue[o71].

Then, we have

r)= sup{

teR

m 1
—at)+ 3 B
X

Bt <M+n+Hm}<q

which implies that there exist two constants- 0 andA €
(0, 1] such that

I'(/\)_sup{

teR

Al+ ;[3,

+Pi()e K (M+eM)+ ()eN}<—r;<o. (2.12)

Sety(t) = x(t) — x*(t), wheret € [to—r,+). Then
y(t) = —a(t)y(t)

+) Bj(t
J=

—X(t— T (t))e Vi OX =Tt
+B1 () [X(t — Ta(t))e XV
—X*(t— 1y (1)) e X O _H(t)y(t — o(t)). (2.13)

It follows from Lemma 2.3 that there exidfgy+ > to such
that

3

X(t — 1 (t))e N OXET0)

K <X(t), X*(t) <M, forall teftyg—r, +). (2.14)

We consider the Lyapunov functional

V(t) = ly()le.

Calculating the upper left derivative &f(t) along the
solutiony(t) of (2.13), we have

DT (V(1)
< a( ly(t)le

+ ;B,

X (t—Tj (t))e OX -1 1) |t

(2.15)

))eHOXE=T 1)

X(t—1j(t)

+B1(t)
FH)Y(t— o) +Aly(t) |, for all t >ty 4.
We claim that

V(t) = |y(t)|eM

< o (

X(t — 1y (t))e OXU _xer(t — 1y (1))@ BOX O] M

(2.16)

max X(t) —
tG[tofl', t¢)¢*] | ( )

=Ky o+ for all t >ty ¢+ (2.17)
Contrarily, there must exist >ty ¢+ such that

X(t)]+1)

V(t,) =Kpg and V(t) <Ky e+ forall tefto—r,t,).
_ (2.18)
Since

K <y (t)x(t — 1j(t)), v ()X (t — 1j(ty))

< yj+M <K, j=1,2,---,m
Together with (1.5), (1.6), (1.7), (2.16), (2.18) and the
inequalities
|e—s_ e—t| _ ef(s+9(t—s))|s_t|
<e ¥|s—t| wherest €[k, K],0< 0 <1,
and
_ _ s+6
|se S—te t|:|$H s—t|
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1 .
§?|sft| where st € [k, +0),0< 6 <1, 3 Main Results
we obtain In this section, we establish sufficient conditions on the

existence, uniqueness, and global exponential stability o
positiveT- periodic solutions of (1.2).

Theorem 3.1. Suppose that all conditions in Lemma 2.4
i () IX(t — T (t,)e M X —Ti(t) are §at|sf|ed. Then (1.2) ha_s exactly ome peI’IO.dIC

£ Byttt =i (1)) solution x*(t). Moreover,x*(t) is globally exponentially

K (L — ) (t,))e Y ) )M stable, i. e., there exist constamts> 0, K > 0 and
- * — L)L

T* > tg such that
+31(t*)\x(t*—r1(t*))e ntxt.)

X (- T () KX L) gt X(t;to,d) —X*(t)| < Ke™ forall t>T*.  (3.1)
HHE)Iy(t ~ (t*))|e7“ +Aly(t) e Proof. Letx(t) = X(t;to,¢). By Lemma 2.3, we obtain
< —a(t)ly(t.)|eM that there existdp > to such that
m
Bit), R )
+JZZ v (L. )\y,(t*)x(t*—rj(t*))e T K <X(t)<M, forall t>To—r.
—¥j(t)X (t — Tj(t,))e X LTt gt By the periodicity of coefficients and delays for (1.2), we
B () X(E — Ta(ty))e X have, for any natural numbér
—X(t, — Ty (t.))e X ) \e”\t* X(t+(h+1)T))
Bty [X(t, — Ty (t,))e HEXE) = —a(t+(h+)T)x(t+ (h+1)T)
m
—X' (b, — T (t,))e X ()|t + _22/31- (t+(h+1)T)X(t+ (h+1)T —1j(t+ (h+1)T))
HH (L) ly(t — o (L)€M + A ly(t,) e =
m 1 e N tHMHDTX(t+ (DT -1 (t+(h+1)T))
t. vt 1 t.
< —[a(t) —Ally(t.) [ + _ZZBJ(t*)eZ‘y(t* T7j(t))] ! FBut+ (h+ D)TIX(t + (h+ DT — 1y (t+ (h+ 1) T))
FBu(t Mg HEXE) _ g ()X (L) gt x g D TX(EHR+T)
1\ Lk
+ﬁ1(t*)\x(t*—rl(t*))—x (t*—Tl(t*)”e Vl(t*)X*(t*)eAt* —H(t+(h+1) ) ( (h+ 1)T—U(t+(h+ 1)T))

FH(L)ly(t — o) = —a() (t+(h+1T)
—[a(t,) — )\]\y(t*)|e/“* + ZZBJ + (h+ 1T —1j(t)) e NOXEHFDT-1,1))

+3 Bl gt~y B LBUOX(E+ (4 DT — 1y(t))e HOXHDT)
—H@t)x(t+ (h+1)T —o(t)), t+(h+1)T € [tg,+»). (3.2)

| /\

HatIMe (e Thus, f tural bér, btain thak(t + (h+
CKir (b—Ta(t) A Ta(t) us, for any natural numbéx, we obtain thai

+Rut)e "yt — ()R 1)T) is a solution of (1.2) for alt > to—r — (h+ 1)T.

+H (t)|y(t — (t*))le" t-ot)grot) Hencex(t+T) (t € [to—r, +)) is also a solution of (1.2)

with initial values
< {-lalts) —A]+ ;B, t) 5

WY(s) =x(s+to+T), se[-r, 0.
+B1(t)e KM+ M)+ H(t)eM Kp g

It follows from the proof of Lemma 2.4 that, for any

Thus, . . nonnegative integdrandt -+ hT > To,
0< —[a(t) —A]+ ;Bj(t*)g@r X(t+ (h+1)T;to, @) — x(t +hT;to, )|
1= . .
= [X(t+hT;to, ) —X(t +hT;to, @)
+HBu(t)e (M +€) +H(t,)e, < Ko pe T,
which contradicts with (2.12). Hence, (2.17) holds. It where
follows that Koy =€ ( max_ [x(sto, ) - x(sito.9)] + 1) .
sello—r; o
V(1) < Ko g-€ At forall t >ty g (2.19 Now, we show thai(t 4+ qT;to,¢) is convergent on
any compact interval ag — +. Let [a, b] C R be an
This completes the proof of Lemma 2(4. arbitrary subset dR. Choose a honnegative integgrsuch
@© 2014 NSP
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thatt +qoT > Tp for t € [a, b]. Then fort € [a, b] and +1i00(3+00§t) X(t — 26508y gV
g > go we have
1 _m(z+cos4t) (t — 2e08'T). (4.1)
t4+qT) =x(t T) +(h+1 t+hT)].
X(t+0T) =x(t+do +hzqo FUD =X Soviously,
Thenx(t +qT) will converge uniformly to a continuous at =045 a =03, B, = ﬁ, By = £17
function, sayx*(t), on [a, b]. Because of arbitrariness of 101 99
[a, b], we see thax(t+qT) — x*(t) asq — +o fort e R o1 =12
Moreover, e =LI=LS
. L 3 cod L 24 cod
K<X(t)<M forallt c R (3.3) Bu(t) = 100( +cos't), H(t) = 100( +cos't)
It remains to show thax* is a T-periodic solution To(t) = 265'"‘”7 T(t) = a(t) :2e‘3°§4t7 r=2e

of (1.2). The periodicity is obvious since
Note k ~ 0.7215355 anck ~ 1.342276. LetM = 1.33.

X (t+T) :qﬂm X((t+T)+qT) Then
a M = 0.3x 1.33~0.399,
= lim x(t+(q+1)T)=x(t) +
g+1—+o0 B%} = %} ~0.3753113 Bﬁlf %} ~0.016
forallt € R Now, note thak(t +qT) is a solution to (1.2), > € , e
that is, By T2 gK = gefx ~ £e70.7215355% 0.4763816
X(t+0qT) —X(to+qT) v 101 101
! L1 1011
= | [~a(9x(s+qT) B} 5 = g o ~ 01380693

!

m Be *(M+1)+H" ~ 009,

which imply that (4.1) satisfies the assumptions of
Theorem 3.1. Therefore, equation (4.1) has a unique
+B1(S)X(s+ AT — 14(s))e (SX(EHAT) positive 2r-periodic solutionx*(t), which is globally
—H(s)x(s+qT — a(s))]ds exponentially stable with the exponential convergent rate
A = 0.005. The numerical simulation in Fig. 1 strongly
supports the conclusion.

" ZZBJ X(s+qT = 1j(g))e W OXEHaT-1(9)

fort > tp. Lettingq — +oo gives us

X (t) = X" (to)

B to + ;BJ S TI ))eiw&)x*(SﬁTj(S)) 11
+B1(9)X (5= Ta(5)e M —H(s)x" (s— 0(s))]ds i
fort > to, namelyx* is a solution to (1.2) oftg —r, +0). ir

Finally, from (3.3), again using a similar argument as WWWWWWWWWWV\MMMMMMM/\W
in (2.28) of Lemma 2.3, we can prove th@1) holds. 2
This completes the proafl

091

0.85

4 An example

0.8

In this section, we present an example to check the validity ‘ ‘ ‘

of our results we obtained in the previous sections. "o 50 100 150 200
Example 4.1. Consider the following Nicholson’s t

blowflies model with a linear harvesting term:

Fig. 1: Numerical solutiorx(t) of equation (4.1) for initial value

30+ 15| cost| $(s) =038, se[-2e0].
X(t) =~ =155 Xt)
100- sint ity Xt 265t Remark 4.1. To the best of our knowledge, few
100+ sint X(t—2e" e authors have considered the problems on the global
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dynamic behaviors of positive periodic solution for [12]H. L. Smith, An Introduction to Delay Differential
Nicholson’s blowflies model with a linear harvesting Equations with Applications to the Life Sciences, Springer

term. It is clear that all the results in{4.0, 13] and the New York, (2011). _ N N o
references therein cannot be applicable to prove thd13]B. Liu, Global exponential stability of positive periodic
global stability of positive 2-periodic solution for (4.1). solutions for a delayed Nicholson’s blowflies model, J. Math.

Moreover, in this present paper, we employ a novel proof ~Anal. Appl., 412, 212-221 (2014).
to establish some criteria to guarantee the existence and

global exponential stability of positive periodic solut®
for Nicholsons blowflies model with a linear harvesting
term.

Ani Jiang received the
B.S. degree in mathematics,
from Tianjin normal
University, Tianjin China,
in 2000, and the M.S. degrees
in applied mathematics from

Acknowledgement

This work was supported by the Scientific Research Fund
of Hunan Provincial Natural Science Foundation of PR
China (Grant No. 11JJ6006), the Natural Scientific
Research Fund of Hunan Provincial Education

Hunan University, Changsha
China, in 2006, respectively.
She is currently an Associate
Professor in the College of

Department of PR China (Grants No. 11C0916, Mathematics and Computer Science, Hunan University of
11C0915). Arts and Science, Changde, Hunan 415000, P. R. China.

The authors are grateful to the anonymous referee for ®he is also the author or collaborator of more than 2

careful checking of the details and for helpful commentsjournal papers. Her research interests are in the areas of
that improved this paper. dynamics of neural networks, and qualitative theory of

differential equations and difference equations.

References

[1]W. Gurney, S. Blythe, R. Nisbet, Nicholsons blowflies
revisited, Nature287, 17-21 (1980).

[2] A. Nicholson, An outline of the dynamics of animal
populations, Aust. J. Zool2, 9-65 (1954).

[3] L. Berezansky, E. Braverman, L. Idels, Nicholson’s Blowflies
Differential Equations Revisited: Main Results and Open
Problems, Appl. Math. Modelling34, 1405-1417 (2010).

[4] F. Long, M. Yang, Positive periodic solutions of delayed
Nicholson’s blowflies model with a linear harvesting term,
Electron. J. Qual. Theory Differ. Equi], 1-11 (2011).

[5] P. Amster, A. Beboli, Existence of positive -periodic solutions
of a generalized Nicholsons blowflies model with a nonlinear
harvesting term , Appl. Math. Lett25, 1203-1207 (2012).

[6] W. Zhao, C. Zhu, H. Zhu, On positive periodic solution for
the delay Nicholsons blowflies model with a harvesting term
Appl. Math. Modell.,36, 3335-3340 (2012).

[71 Q. Zhou, The positive periodic solution for Nicholson-type
delay system with linear harvesting terms, Appl. Math.
Modell., 37, 5581-5590 (2013).

[8] X. Liu, J. Meng, The Positive Almost Periodic Solution
for Nicholson-type Delay Systems with Linear Harvesting
Terms, Appl. Math. Modell.36, 3289-3298 (2012).

[9] F. Long, Positive almost periodic solution for a class of
Nicholsons blowflies model with a linear harvesting term,
Nonlinear Anal. Real World Appl13, 686-693 (2012).

[10] L. Wang, Almost periodic solution for Nicholson’s blowflies
model with patch structure and linear harvesting terms, Appl.
Math. Modell.,37, 2153-2165 (2013).

[11] B. Liu, Global dynamic behaviors for a delayed Nicholson’s
blowflies model with a linear harvesting term, Electron. J.
Qual. Theory Differ. Equ45, 1-13 (2013).

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminary results
	 Main Results
	 An example

