
Appl. Math. Inf. Sci.8, No. 5, 2627-2634 (2014) 2627

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080562

A Job Shop Scheduling Game with GA-based Evaluation
Kim Jun Woo∗

Department of Industrial and Management Systems Engineering, Dong-A University, Busan, Korea

Received: 4 Oct. 2013, Revised: 1 Jan. 2014, Accepted: 2 Jan. 2014
Published online: 1 Sep. 2014

Abstract: The job shop scheduling problem is one of the well-known hardest combinatorial optimization problems, and solving the
problem can be complex and time-consuming task. Hence, many undergraduates can not fully experience the scheduling procedures.
This paper aims to introduce a computer game designed to enable the players to create and solve the job shop scheduling problems,
and the players can learn the topics such as scheduling and optimization via asense-making experiences provided by the game playing.
The game program provides a simple graphic user interface similar with traditional board games played by manipulating blocks, and
the players can conveniently search the good schedules in a trial-and-error manner. Moreover, the completed schedules are evaluated
by taking the schedules generated by the genetic algorithm into account. Forreasonable evaluation, the game program adopts two
search strategies called forward and backward search to generate schedules with a wide range of makespans. The integrated job shop
scheduling game introduced is well-organized to support overall procedures for job shop scheduling, and the genetic algorithm based
evaluation can make the players to compete for better schedules. As a result, both purposes, entertainment and education, can be
simultaneously served by the game playing.

Keywords: computer game, serious game, job shop scheduling, genetic algorithm, industrial engineering education

1 Introduction

Gaming is one of the most popular activities for
entertainment and fun today, and provides the players
with highly immersive experiences [1]. This immersion
has led many researchers to argue that the use of games
can enhance the students learning [2]. Today, it is
generally accepted that the game-based learning is very
effective learning strategy, and the educational games are
widely studied and adopted for learners range from
children to undergraduates and adults [3].

Especially, the proliferation of management and
industrial engineering courses created a context where
games could be adopted for professional knowledge and
skills at the university or higher levels, and many
educational games called operations management games
have been introduced in these domains [4]. For example,
the famous Beer game provides a good insight into the
concepts and the problems such as bullwhip effect in the
supply chain management [5]. Although the concepts and
procedures of operations management activities are hard
to be experienced by the undergraduates in general, such
games provide good alternative sense-making experiences
that promote the learners learning [1].

This paper aims to introduce a well-organized
operations management game called the integrated job
shop scheduling game, which enable the players to learn
the concept of production scheduling by game playing.
Although the job shop scheduling problem (JSP) is an
important research topic in the domain of management
and industrial engineering, it is one of the well-known
hardest combinatorial optimization problems, and
manually constructing the schedules for these problems is
complex and time-consuming task [6,7]. These have been
the main obstacles that make it difficult for the students to
learn and practice the scheduling procedures.

The previous simple job shop scheduling game [8]
demonstrated a conceptual design for the graphic user
interface based game where the goal of the players is to
construct good schedules by manipulating blocks.
However, there has been an important limitation that the
simple job shop scheduling game can not evaluate the
schedules constructed by the players, that is, the players
can not see if they achieve good schedules or not.

The integrated job shop scheduling game introduced
in this paper is an enhanced version of the previous
simple job shop scheduling game, where the players can
create their own JSP and the schedules constructed by

∗ Corresponding author e-mail:kjunwoo@dau.ac.kr

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080562

2628 K. J. Woo: A Job Shop Scheduling Game with GA-based Evaluation

them can be evaluated. To this end, the integrated job
shop scheduling game searches a variety of schedules
with a wide range of makespans for a given JSP by
applying genetic algorithm.

The genetic algorithm, which simulates the genetic
process of biological organisms in nature, is one of the
meta-heuristic methods appropriate for solving the
combinatorial optimization problems such as JSP [9,10].
In addition, the genetic algorithm maintains the solution
population including various schedules in searching, and
this led the integrated job shop scheduling to adopt the
genetic algorithm to evaluate the players schedules.

The remainder of this paper is organized as follows:
Section 2 provides a literature review on related works,
and the overall structure of the integrated job shop
scheduling game is explained in Section 3. The
experiment results are represented in Section 4, and
finally, the concluding remarks and the future research
directions follow in Section 5.

2 Research Backrounds

2.1 Job Shop Scheduling Problem

Scheduling of operations, determining the start and the
finish time of each operation, is an important task in the
production planning and operations management [11].
The JSP is one of the most well-known scheduling
problems, characterized byn jobs to be processed on
distinct m machines. Each job is composed ofm
operations which must be processed in a pre-specified
order. Moreover, a single machine can process only one
operation at a time, and the operations can not be
interrupted. In general, the goal of JSP is to obtain the
optimal schedule, composed of the start time and finish
time of each operation, which minimize the makespan,
the maximum finish time [12,13].

A specific JSP can be defined by the problem size,n
and m, and the processing timesti js and the processing
machinesmi j s of the operationoi js, wherei and j denote
the job number and the operation number, respectively. For
example, a 3 by 3 JSP is represented in Fig.2.

The schedules, the solutions of a JSP, are constructed
by determining the start timesi j and the finish timefi j of
oi j (i=1,2,· · · ,n, j=1,2,· · · ,m), and they are represented by
using a diagram called Gantt-chart as shown in Fig.5.
That is, a schedule can be constructed by creating a
corresponding Gantt-chart.

It is straightforward that an operation is represented as
a rectangle in a Gantt-chart. Moreover, the heights of all
rectangles are identical and the width of a rectangle is
proportional to the processing time of corresponding
operation. Therefore, it can be said that a schedule is
constructed by placing the ’blocks’, rectangles with
predetermined sizes, on the empty Gantt-chart
appropriately, and this is the basic concept of the previous
simple job shop scheduling game [8].

2.2 Genetic Algorithm

Although the players of the simple job shop scheduling
game can construct the schedules for a given JSP by
manipulating the ’operation blocks’ conveniently, there is
an important limitation that the evaluation for a
constructed schedule is not provided. In this context, the
main objective of the integrated job shop scheduling
game introduced in this paper is to provide reasonable
evaluation for the schedules constructed by the players.

It is well known that the JSP is one of the hardest
NP-hard problems, and this led many researchers to apply
the meta-heuristic methods such as genetic algorithm,
tabu search and simulated annealing for solving JSPs [6,
10,12]. In general, such meta-heuristic methods aim to
search the optimal or near-optimal solutions via iterative
procedures, where a variety of solutions are found, and
the main idea of the evaluation of the integrated job shop
scheduling game is that a specific solution can be
evaluated by comparing it to these solutions. To this end,
the integrated job shop scheduling game adopts the
genetic algorithm since it maintains the population of
many solutions in search procedure.

However, there are two problems to be resolved to use
the genetic algorithm for evaluation. First, the
conventional genetic algorithms for the JSP generally
require relatively long processing times [14]. Since the
optimal schedules belong to active schedules, the genetic
algorithms for solving JSP typically concentrate on
producing active schedules [15]. The Giffler-Thompson
algorithm has been widely used in the previous genetic
algorithms for this purpose, although it requires a
significant processing time [16,17]. On the contrary, the
integrated job shop scheduling game adopts semi active
schedule based genetic algorithm called sa-GA. The
genetic operators, crossover and mutation, of the sa-GA
are similar with those of traditional GT/GA algorithm
[12], however, the sa-GA represents a schedule as a
permutation of operations, which is simply decoded into a
semi-active schedule.

The second problem is that the search of the genetic
algorithm is directed to focus on the schedules with
shorter makespans, although both good and bad schedules
are useful for the purpose of evaluation. Therefore, the
integrated job shop scheduling game uses two search
strategies called forward search and backward search. The
forward search aims to find good schedules with shorter
makespans, and this can be achieved by using traditional
fitness functions used in previous genetic algorithms for
solving JSP. On the contrary, the backward search aims to
find bad schedules with longer makespans, and modified
fitness function is used in this strategy.

3 Integrated Job Shop Scheduling Game

Overall, the integrated job shop scheduling game consists
of 4 phases as shown in Fig.1. First, the game enables the

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2627-2634 (2014) /www.naturalspublishing.com/Journals.asp 2629

users to create user-defined job shop scheduling problems
so that they can deal with a variety of problems. After a
problem is created, the operation blocks and the game
board are prepared and the users can play the game by
trying to construct a schedule with shorter makespan. In
addition, the users must explore the solution space to
obtain evaluation result for their schedule. For a single
problem, a single solution exploration is required. If a
user completes building a schedule and solution
exploration has been done, the game program provides an
evaluation results for the schedule so that the user can see
how good his or her schedule is. Of course, the users can
adjust their schedule after evaluation to find an optimal
schedule in a trial-and-error manner.

Fig. 1: Overall procedure of the game playing

3.1 Problem Creation

The users of the integrated job shop scheduling game can
create their own problems to tackle in game playing.
Since a JSP can characterized by problem size, processing
times of the operations, and processing machines of the
operations, the users must specify these values to create a
problem. Fig.2 shows the ’problem creation window’ for
this purpose.

If all required values are specified, the users click the
’create’ button in the bottom of the window, and the game
program prepares for the schedule building phase.

3.2 Schedule Building

If a problem is created, the main game window is
initialized as shown in Fig.3. Note that the game window
in Fig. 3 is initialized by the job shop scheduling problem
in Fig. 2. The main game window consists of two major
parts, ’game board’ in the upper part and ’operation block
box’ in the lower part.

In the operation block box, there are several
rectangles, operation blocks which corresponds to the
operations of the current problem. The operation blocks
in the same job are placed in the same row with same

Fig. 2: Problem Creation Phase

color. For example, three green blocks in the upper part of
the operation block box corresponds to three operations in
the Job 1. The heights of all operation blocks are
identical, however, the width of operation blockoi j is
proportional to ti j. In addition, the job number, the
operation number, the machine number and the
processing time are specified on each operation block.

Fig. 3: Initialized Game Window

To manipulate an operation block, player must select
the block by clicking it, and then, the font-color of the
selected block becomes white. If a selected block is
clicked again, it is deselected and the font-color becomes
black.

The initial game board corresponds to an empty Gantt-
chart, where horizontal axis denotes time and vertical axis
denotes the machines. The player can place the selected
operation block on the game board by clicking appropriate
time label at the bottom of the game board. If a operation
block oi j is selected and the player clicks the time labelt,

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2630 K. J. Woo: A Job Shop Scheduling Game with GA-based Evaluation

this manipulation makes the block to occupy the (t,mi j),
(t +1, mi j), · · · , (t + ti j −1, mi j) cells in the game board.
At the same time,si j and fi j are determined as follows:

si j = t −1, fi j = t + ti j −1. (1)

For example, if a player selectso21 block and clicks
time label 1, the block is placed on the game board as
shown in Fig.4, and the program setss21 =0 and f21=8.

Fig. 4: Placement of Operation Block

Each placement of an operation block can cause a
movement of the makespan bar in the game board, which
indicates the maximum finish time=max(fi j). If all
operation blocks are appropriately placed on the game
board, the makespan bar indicates the makespan of the
completed schedule, and the color of the font-color of the
makespan bar becomes blue as shown in Fig.5, where the
makespan=26. Otherwise, the font-color of the makespan
bar is red as shown in Fig.4, and the player can check the
length of the current schedule under construction by
looking at the makespan bar.

Fig. 5: Completed Schedule

In addition, the positions of the operation blocks
placed on the game can be adjusted by selecting a block
and clicking other time label, and the players can move
them back to the operation block box by selecting a block
and clicking the operation block box. In this way, the

Table 1: FunctionisOverLap
booleanisOverLap(i, j)
{

for a = 1 to n
for b = 1 to m

if mi j=mab andoi j 6= oab andoab is on the board
if (si j > sab andsi j < fab) or
(fi j > sab and fi j < fab) or
(si j ≤ sab and fi j ≥ fab) return true;

return false;
}

Table 2: FunctionisIn f easible
booleanisIn f easible(i, j)
{

for a = 1 to j-1
if si j < fia return true;

for a = j+1 to m
if oab is on the boad andfi j > sia return true;

return false;
}

players can search the optimal solution by manipulating
the operation blocks in a trial-and-error manner.

Meanwhile, a manipulation of an operation block can
be invalid, and in this case, the game program should
cancel the current manipulation and restore the previous
game state. The invalid manipulation causes violations of
the constraints of the JSP, and can produce infeasible
schedule, so they must be restricted.

The first constraint of the JSP is that two or more
operation blocks can not overlap at all, since each
machine can handle one operation at a time. In the
integrated job shop scheduling game, the violation of this
constraint of the operation blockoi j is checked by the
Boolean functionisOverLap in Table1.

The second constraint is the precedence in a single
job. That is, operation block must start after
max(fi1, fi2, · · · , fi j−1), and must be finished before
min(fi j+1, fi j+2, · · · , fim). The violation of the precedence
constraint of the operation blockoi j is checked by the
Boolean functionisIn f easible in Table2.

Overall, the schedule building phase of the integrated
job shop scheduling game forms most part of the game
playing, and it provides the users with experience similar
with previous simple job shop scheduling game.

3.3 Solution Exploration

The users can perform solution exploration whenever
after a problem is created and initialized as shown in
Fig. 3, even if a schedule is not completed, by clicking the
exploration button. After a single execution of this phase,
the exploration button is disabled.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2627-2634 (2014) /www.naturalspublishing.com/Journals.asp 2631

The objective of this phase is to create a list of
schedules with a wide range of makespan values, and this
list will be used to approximate the percentiles of the
schedules constructed by the players. That is, the
constructed schedules are evaluated by comparing them
to the schedules included in the schedule list produced in
solution exploration phase. The schedule list is created by
applying a well known meta-heuristic method, genetic
algorithm. Moreover, since both good and bad schedules
are useful for the purpose of evaluation, two search
strategies called forward search and backward search are
adopted in creating the schedule list. The solution
exploration phase is summarized in Fig.6.

Fig. 6: Solution Exploration Phase

Among the genetic algorithms for solving JSP, the
integrated job shop scheduling game adopts the sa-GA.
The sa-GA represents a schedule as an operation
assignment sequence, which is easily decoded into a semi
active schedule. For illustration, lets consider an
operation assignment sequence in (2), for the JSP in
Fig. 2. What is important is that the decoded schedule is
constructed by assigning an operation at a time, and an
operation can not precede any previously assigned ones.

o31o21o22o32o11o12o13o33o23 (2)

Note that all operation assignment sequence must not
violate the precedence constraint, and in decoding, the
start time and the finish time of thek th operationoi j in a
operation assignment sequence are determined as follows:

si j = max(M,J) (3)

fi j = si j + ti j, (4)

whereM is the maximum finish time of the previously
assigned operations with processing machine=mi j andJ
is the maximum finish time of the previously assigned

Table 3: An Example of Decoded Schedule
operation start time (si j) finish time (fi j)

o31 0 5
o21 0 8
o22 8 13
o32 8 12
o11 13 14
o12 14 17
o13 17 23
o33 17 25
o23 25 29

Table 4: The Parent Operation Assignment Sequences
ID Operation assignment sequence
P1 o31o21o22o32o11o12o13o33o23
P2 o31o32o33o21o22o23o11o12o13

Table 5: The Child Operation Assignment Sequences
ID Operation assignment sequence
C1 o31o32o21o33o22o23o11o12o13
C2 o31o21o32o22o33o11o23o12o13

operations in jobi. hence, the operation assignment
sequence in (2) is decoded into the schedule in Table3.

Indeed, using the operation assignment sequence in
(2) and simple decoding method can produce semi active
schedules, however, as the population evolves, the active
schedules are preferred and the proportion of the semi
active schedules remains low. Since the sa-GA does not
aim to construct active schedules, it can explore the
solution space in relatively short time. Moreover, it can
search a wide range of makespans effectively in that both
active and semi active schedules will be found.

The genetic operators, crossover and mutation, of
sa-GA are similar with those of the traditional GT/GA
algorithm. The crossover operator creates a child
operation assignment sequence from given two parents by
assigning an operation at a time. The operation to assign
is selected by the parents among the assignable
operations. Note that an operation is assignable if and
only if there is no preceding operation not assigned. For
example, lets consider two parents in Table4.

The uniform crossover of the sa-GA can be performed
as follows: the childC1 is constructed by assigning an
operation selected byP1, an operation selected byP2, an
operation selected byP1, · · · , at a time. Similarly, the
child C2 is constructed by assigning an operation selected
by P2, an operation selected byP1,an operation selected
by P2, · · · , at a time. As a result, we can obtain two child
operation assignment sequences in Table5 from the
parents in Table4.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2632 K. J. Woo: A Job Shop Scheduling Game with GA-based Evaluation

The mutation operator is also done in assigning an
operation to an operation assignment sequence by
selecting an operation not selected by any parent
sequences. For example, bothP1 andP2 selecto31 for the
first assignment from the assignable operations,o11, o21
ando31. If the mutation is applied to the first assignment,
one of the operations not selected,o11 and o21, is
randomly chosen.

To create the schedule list, the game program adopts
two search strategies, forward search and backward search.
Both search strategies start with same initial population but
they use different fitness functions. In the forward search,
a schedule with a shorter makespan should be preferred so
that optimal or nearly-optimal solutions will be included in
the schedule list. This can be achieved by using ordinary
fitness function for the JSP as in (5).

f itness value =
1

makespan
(5)

On the contrary, the backward search aims to find bad
schedules, so a schedule with a longer makespan should
be preferred. The found bad schedules are also included
in the schedule list, and this can be achieved by using
fitness function as in (6). As a result, we can obtain
various schedules and their makespans after the solution
exploration phase.

f itness value = makespan (6)

3.4 Evaluation

If the solution exploration is done and the player
completes a schedule, he or she can evaluate the schedule
by clicking the evaluation button. Then, the game
program approximates the percentile of the makespan of
the schedule constructed by the player as in (7), where
n(worseschedule) is the number of schedules in the
schedule list with makespans larger than the makespan
achieved by the player.

percentile =
(

1−
n(worse schedules)

n(schedule list)

)

×100 (7)

If the makespan achieved by the player equals to the
best makespan in the schedule list, the constructed
schedule may be an optimal schedule. Since this
evaluation method is based on the schedule list produced
in the solution exploration phase, the schedule list must
include a variety of schedules with a wide range of
makespan values. Of course, the schedule list should
contain all possible schedules to make accurate percentile
of the players result, however, this is time-consuming and
sometimes impossible in that the number of schedules
explosively increases as the size of the JSP grows. On the
contrary, the integrated job shop scheduling game adopts
the genetic algorithm to create the schedule list, and good

Table 6: Makespans of the Generated Sequences
makespan number of sequences

24 9
25 28
26 20
27 6
28 8
29 7
30 12
31 1
33 8
34 14
35 5
38 1
39 1
43 2
44 1

Table 7: The Best 9 Operation Assignment Sequences
ID Operation Assignment Sequence
1 o31o21o32o11o22o12o33o13o23
2 o21o31o11o32o22o12o13o33o23
3 o21o31o11o32o12o22o13o33o23
4 o21o31o11o32o12o33o22o23o13
5 o21o31o11o32o12o33o22o13o23
6 o31o21o11o32o12o22o13o33o23
7 o21o31o11o12o22o32o33o23o13
8 o31o21o11o32o12o33o22o23o13
9 o31o21o32o11o12o22o33o13o23

and bad solutions can be effectively found in a reasonable
time.

4 Experiment Result

For illustration, the JSP in Fig.2 is created and the
schedule list is obtained by the solution exploration
phase. To execute the genetic algorithm, we use the
population size=20, crossover rate=0.5 and mutation
rate=0.01. After the 20 iterations of the forward and the
backward sa-GA, 123 distinct operation assignment
sequences have been found, and the distribution of their
makespans is summarized in Table6.

Note that the schedules in the schedule list are in the
form of the operation assignment sequence, and two or
more assignment sequences can be decoded into the
identical schedule. For example, 9 best operation
assignment sequences are listed in Table7, and these are
encoded an identical schedule shown in Fig.7.

The evaluation button provides an approximate
percentile of the schedule constructed by the player based
on the schedule list summarized in Table6. For example,
lets assume that a player constructed a schedule shown in

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2627-2634 (2014) /www.naturalspublishing.com/Journals.asp 2633

Fig. 7: The Best Schedule

Fig. 5. Then, the approximate percentile of the
constructed schedule is 46, and the player can see that the
schedule is among the top 46% of the schedules. Since
this is not optimal, the player can aim to find better
schedule by continuous game playing.

If a player constructs the optimal schedule shown in
Fig. 7, the approximate percentile is 7, and this may be an
optimal schedule since no schedule included in the
schedule list is better than the constructed one. In this
case, the game program informs the player that the
current schedule may be an optimal, and the current JSP
is cleared. In this way, the integrated job shop scheduling
game enables the player to create a JSP and find good
schedules by playing the game, and it can evaluate the
performance of the player. This game can provide fun
experiences in that the players compete for the better
schedule by manipulating the operation blocks. Moreover,
the players can learn about the topic of job shop
scheduling via sense-making experiences and the
integrated job shop scheduling game will be helpful for
the undergraduates in the department of industrial
engineering or management.

On the contrary, we can see an important limitation of
the game. The evaluation phase is based on the schedule
list produced by solution exploration, and it is
straightforward that the schedule list should contain
schedules representing the various possible schedules.
However, in Table6, there are too many schedules with
relatively short makespan, from 24 to 26. Many of them
may be found by the forward search, and this aspect can
make the game program to underestimate the schedules
constructed by the players. Hence, a novel search strategy
may be required to create more appropriate schedule list.

5 Conclusions

The JSP is one of the well-known hardest combinatorial
optimization problems, and it is an important topic in the
industrial engineering education. However, solving JSP
can be complex and time-consuming task even if the size
of the problem is relatively small, and many
undergraduates do not experience the scheduling
procedure enough.

Instead, this paper introduced an integrated job shop
scheduling game which enables the players to create
problems and construct schedules, which can be evaluated
by the game program. Since the game provides fun
experiences which can attract the students interests.
Moreover, the sense-making experiences provided by the
simple graphic user interface will be very helpful for
learning the job shop scheduling.

However, further topics still need to be investigated.
The schedules included in the schedule list are found by a
stochastic search method, genetic algorithm, and the
schedule list must represent the characteristics of the
population of all possible schedules. To this end, the
integrated job shop scheduling game adopts two search
strategies, forward search and backward search, but the
produced schedule list seems to contain too many good
schedules. Therefore, appropriate search strategies for a
variety of JSP should be studied in future research.

Acknowledgement

This work was supported by the Dong-A University
research fund.

References

[1] Kim J. W. and Ha S. H., The Journal of Future Game
Technology,1, 87-96 (2011).

[2] Kim H. T., Ying K. T. and Pui L. C., Computers and
Education,55, 109-117 (2010).

[3] N. Vos, H. V. D. Meijden and E. Denessen, Computers and
Education,56, 127-137 (2011).

[4] M. A. Lewis and H. R. Maylor, International Journal of
Production Economics,105, 134-149 (2007).

[5] J. S. Goodwin and S. G. Franklin, Journal of Management
Development,13, 7-15 (1994).

[6] R. Cheng, M. Gen and Y. Tsujimura, Computers and
Industrial Engineering,30, 983-997 (1996).

[7] F. Pezzela, G. Morganti and G. Ciaschetti, Computers and
Operations Research,35, 3202-3212 (2008).

[8] Kim J. W. and Sok Y. Y., The Journal of Future Game
Technology,2, 165-170 (2012).

[9] J. H. Holland, Scientific American,267, 66-72 (1992).
[10] J. A. Ruiz-Vanoye, O. Diaz-Parra and J. C. Zavala-

Diaz, International Journal of Combinatorial Optimization
Problems and Informatics,2, 25-31 (2011).

[11] K. R. Baker, Principles of Sequencing and Scheduling,
Wiley Publishing, (2009).

[12] T. Yamada and R. Nakano, Parallel Problem Solving from
Nature,2, 281-290 (1992).

[13] M. Kammer, M. V. D. Akker and H. Hoogeveen, Computers
and Operations Research,38, 1556-1561 (2011).

[14] T. F. Abdelmaguid, Journal of Software Engineering and
Applications,3, 1155-1162 (2010).

[15] A. Sprecher, R. Kolisch and A. Drexel, European Journal of
Operational Research,80, 94-102 (1995).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2634 K. J. Woo: A Job Shop Scheduling Game with GA-based Evaluation

[16] B. Giffler and G. L. Thompson, Operations Research,8,
487-503 (1960).

[17] Lee H. P. and S. Sutinah, MATEMATIKA,22, 91-107
(2006).

Kim Jun Woo received
the Master’s degree in
industrial engineering
from Korean Advanced
Institute of Science and
Technology in 2003, and
the Ph.D in industrial systems
and management engineering
from Korean Advanced
Institute of Science and

Technology in 2009. He is currently an assistant professor
of the department of the industrial and management
systems engineering, Dong-A University. His current
research interests include intelligent systems, data
mining, meta-heuristics, serious games and service
science, etc.

c© 2014 NSP
Natural Sciences Publishing Cor.

	Introduction
	Research Backrounds
	Integrated Job Shop Scheduling Game
	Experiment Result
	Conclusions

