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Abstract: In this paper, we further investigate the double splitting iterative methodsdieing linear systems. Building on the
previous work by Song and Song [Convergence for nonnegatiueldsplittings of matrices, Calcolo, (2011) 48: 245-260], some
new comparison theorems for the spectral radius of double splittingsinfo@s under suitable conditions are presented.
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1. Introduction where P is a nonsingular matrix. The corresponding
iterative scheme is spanned by three successive iterations

2"t = PTIRF PSR P, k=0,1,2,...(4)
which can be rewritten in the equivalent form

Consider the following linear system
Az = b, (1)

where A € R"*" is a nonsingular matrixy € R™*! is kb1 . . . o

a given vector and: € R"*! is an unknown vector. In {m N } — {P RP S} { 9}5_1} + [P b] NG
order to solve the linear systerh) (by iterative methods, x 1 0 x 0

the coefficient matrix is split into where! is the identity matrix. The iterative method given
A=M— N, by (5) converges to the unique solution of)(for all

. _ _ _ n _ initial vectorsz?, x! if and only if the spectral radius of
whereM is nonsingular, is called a single splitting 4fin the iteration matrix

[1]. Based on the above matrix splitting, the basic iterative
method for solving 1) is W= {P‘lR P—ls] ©)

I 0
2 = MNP + MY = T2% + M1, (2)

wherek = 0,1,... andT = M~!'N is the iteration
matrix in (2). Obviously, the iterative method2)
converges to the unique solution of the linear syst&if (
and only if the spectral radiys(M ~N) of the iteration
matrix is smaller than 1. The spectral radius of the
iteration matrix is decisive for the convergence and

stability, and the smaller it is, the faster the iterative monotone matrix. Compared with some resugls fome

method converges when the spectral radigs is sma}llgr thaf?nproved convergence and comparison results for double
rln. astrci) Cf:g’ mgcg Cg?gﬁ”;?gsgﬁg;er?ﬁ oigmgleps;glétrlgg grf]rsgplitting of a Hermitian positive definite matrix are
books P-8,13]. roposed _|n.10]. In [12], some convergence resylts.fqr
In [1], Woznicki introduced a double splitting of doub_Ie splittings _of a non-Hermitian positive semidefinite
ie. splitt,ing the matrixd in the form ’ matrix are .e.stabhshe_d. In]], a comparison t.heor_em _for
' double splittings of different monotone matrices is given.
A=P—-R-S5, 3) In [13], some convergence and comparison results for

is less than one, i.ep(W) < 1.

Recently, some convergence and comparison results
for double splittings of matrices are presented. 9 [
Shen and Huang presented some convergence theorems
for the double splitting of a monotone matrix or a
Hermitian positive definite matrix and obtained two
comparison theorems for two double splittings of a
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nonnegative double splittings of matrices are given. |
this paper, building on the previous work3, our basic
purpose here is to derive some new comparison theore
for the spectral radius of double splittings of matrices.

2. Preliminaries

For convenience, we give some of the notations,

definitions and lemmas which will be used in the sequel.
The matrixA is called nonnegative and denotéd> 0

if a;;j > 0fori,j =1,2,...,n. WewriteA > B (A > B)

if a;; = bij ((lij > b”) for 1,7 =1,2,...,n. The matrix

A is called to be a monotone matrix4f~! > 0. Matrix A

is anL-matrix if a;; > 0 (¢ = 1,...,n) anda;; < 0 for

alli,j=1,...,n;i # j.

Definition 1. [9,13] Let A be a nonsingular matrix. Then

the double splittingd = P — R — S'is

e convergent if and only is(W) < 1;

e aregular double splitting iP~' > 0, R > 0 and.S > 0;

e a weak regular double splitting P~ > 0, P"'R >0
andP~1S > 0;

e a nonnegative splitting iP~*R > 0and P~1S > 0.

Definition 2. Let A be a nonsingular matrix. The double

splitting A = P — R — S is an M-double splitting ifP is

an M-matrix andR > 0 andS > 0.

Lemma 1.[3] Let A > 0. Then

ar < Az, x > 0,impliesa < p(A4),

and

Az < Bz, x > 0,impliesp(A) < 3.

Lemma2.[9] LetA~! > 0andA = P - R— Sbhea
weak regular double splitting. Ther{iW) < 1.

Lemma3.[15 Let A € R"*™ and A = M; — N; =

My — Ny be M-splittings ofA (i.e., M; are M-matrices,

N; >0,i=1,2)and

Ny > Ny, Ny # Ny, Ny #0.

Then exactly one of the following statements holds:

(1) 0 < p(My*No) < p(M;'Ny) < 1. In addition, if A
is irreducible, the first inequality is also strict.

(2) p(M; ' Na) = p(M; LNy = 1.

(3) p(My ' Na) > p(M; LNy) > 1.

3. Comparison theorems

Let

A=P1—R1—31=P2—R2_52

be two double splittings ofi. Then we define

W, — P 'R, P['S, Py Ry P tS,
I 0 I 0

()

|

|

In [13], some comparison theorems for the spectral> — R2 — S> be nonnegative splitting. IP;

radius of double splittings of monotone matrices ar
given, which are described as follows.

nTheorem 1.[13] Let A= > 0, and let the two double
splittings(7) be nonnegative and convergent. Suppose

mﬁ1 <Py, 51 <5y,
then
p(W1) < p(Wa). 8)

Corollary 1. [13] Let A=! > 0, and let the two double
splittings(7) be nonnegative and convergent. Suppose

Rl S R27 Sl S 527
then
p(W1) < p(W2).

Theorem 2.[13] Let A=t > 0, A = P, — R, — S; be
regular double splitting, and ledd = P, — Ry, — S be
nonnegative and convergent double splitting. Suppose

Pt > PytandPtS) < PylSs,
thenp(Wy) < p(W2).

Based on Lemma 3, we have the following results.

Theorem 3.Let A = P1 — R1 — 51 = P2 — R2 — SQ
be two M-double splittings. IR, < Ry, S1 < S, then
p(W1) < p(W2).
Proof. Fori = 1,2, let
B S: | R+ 5 8
K (IR ]
Then
A=M; - N; andW; = M; 'N,.
Obviously, A is nonsingular wheneved is nonsingular.
SinceR; < Ry, S1 < Ss, then we haveR; + 57 <
RQ + SQ, 51 < SQ. That iS,
N; < Ns.
From Lemma 3, we obtain that;) < p(WW53). O
Theorem4.LetA = P, — Ry — S1 = P, — Ry — 5
be two M-double splittings. 1P} < P, S; < S, then
p(W1) < p(W2).
Proof. By simple computations, we obtain that
Ri+S1 =P —A Ry + Sy, =P, — A.
It is not difficulty to find thatR; + S; < Ry + Ss.
Therefore,
N; < Ns.
From Lemma 3, we obtain that1;) < p(WWs). O
Compared with Theorem 1 and Corollary 13], the
conditionA~! > 0 in Theorems 3 and 4 is not necessary.

Theorem5.LetA > 0,and letA = P, — Ry — S| =

1 Z P2_1

eand P, 'Ry > Py 'Ry, thenp(W,) < p(Ws) < 1 for
0<p(Wy) < 1.
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Proof. Obviously,W; > 0 andW, > 0. By the Perron-  Corollary 3. Let
Frobenius theoreng], there exists a vector, A= P, — Ry — Sy. Ay = Py — Ry — Sy

T = Bl] >0, z#0, be nonnegative splitting. 1P, *4, > P;'A, and
? P7S, < PylS,, then p(Wy) < p(W,) < 1 for
such thatVox = p(Wo)x, i.e., 0 < p(Ws) < 1.
Py ' Roxy + Py ' Soxy = p(Wo)ay, In fact, Corollaries 2 and 3 are mainly results 6],
z1 = p(Wa)za. which implies that Theorems 5 and 6 extend the results of

Corollaries 2 and 3 in16]
Then we have

Wiz — p(Wa)x .
[ PC R+ P S — p(Wa)n 4. Numerical examples
Tr1 — p(W2)$2 . . .
. . L o . In this section, we make use of two examples to illustrate
_ {(Pl Ry — Py Ro)ay + Sy (Pr S — By 52)951] Theorem 3, Theorem 4 and Theorem 5.
z1 — p(Wa)z2 Example 4.1Let
SinceP; 'Ry > P, 'Ry and0 < p(W3) < 1, then 4 [ 2 2}
Wiz — p(Wa)x —2 3]
1 [(P'Ri — Py 'Ro)as + (P15 —P—lsz)xl] 20 00 02
< 1 2 1 2 _ _ _
= (W) | 0 P1—[14}7R1—[10},51—{01},
- 1 _(PflRl -+ P17151)1’1 — (P;lRQ + P{lsz)l’l
! e (53] m=[14] - 1]
_ 1 _Pfl(R1 + S1)x1 — P;l(Rz + S2)x1
p(W2) | 0 In this case, one can easily see tiigt < Ry, S7 < So,
1 [P7YP — Ay — PPy — A which satisfies the conditions of Theorem 3. In the
= o(W2) 0 } meanwhile, one can also easily see that
LT p1_piyg P < P, 51 < 5., which satisfies the conditions of
= — (P e ) x1:|§0‘ Theorem 4.
p(W2) | By the simple computations, we haw81;) = 0.8846

From Lemma 1, we obtain tha{WW;) < p(W>) < 1for  andp(Ws) = 0.9164. Clearly,p(W;) < p(W>) < 1 hold.

0 < p(Wy) < 1. O  Thatis to say, Theorems 3 and 4 holds true.
Based on Theorem 5, we have the following result. Example 4.2Let
Corollary 2. Let _ |10
v - [29)

A1:P1_R1_517A2:P2_R2_52

. " 30 10 10
be nonnegative splitting. 1P, '4; > P;'A, and 1= [0 3} I = [0 1} S1= 1 0} ;
P'Ry > Py 'Ry, then p(Wy) < p(Wa) < 1 for
0<p(Wy) < 1. |40 |10 120

Py = [05 =115 =02
By investigating Corollary 2, it is easy to see that the
conditioners of Corollary 2 are weaker than that of Then
Theorem 3.111]. That is, the result of Corollary 2 holds |, [£ 0 1 [Yo0
without A7 > 0 andA; " > 0. o=l 2 =01

Similarly, we have the following result. and

Theorem6.Let A > 0,and letA = P, — Ry — S1 = 1 1y . 1y
P, — Ry — S, be nonnegative splitting. P, > Pyt D1 fi= 0 L] Py Re = 1

and P 1S, < Py 'Sy, thenp(Wy) < p(Wa) < 1 for . 5
0<p(1W2)1<_1. 2 P2 p(W1) < p(W2) That is to say, we havePfl > P{l and

P 'R, > P;'R,, which satisfies the conditions of
Compared with Theorem 218], the condition Theorem 5.
A~ > 0in Theorem 6 is not necessary and instead of it By the simple computations, we have

is A > 0. By investigating Theorem 6, it is easy to see p(W;) = 0.7676 and p(W2) = 0.7696. Clearly,
that the conditioners of Theorem 6 are weaker than that op(W;) < p(W;) < 1 holds. That is to say, Theorem 5
Theorem 213]. holds true.
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