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Abstract: In this paper, we further investigate the double splitting iterative methods forsolving linear systems. Building on the
previous work by Song and Song [Convergence for nonnegative double splittings of matrices, Calcolo, (2011) 48: 245-260], some
new comparison theorems for the spectral radius of double splittings of matrices under suitable conditions are presented.
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1. Introduction

Consider the following linear system

Ax = b, (1)

whereA ∈ R
n×n is a nonsingular matrix,b ∈ R

n×1 is
a given vector andx ∈ R

n×1 is an unknown vector. In
order to solve the linear system (1) by iterative methods,
the coefficient matrixA is split into

A = M −N,

whereM is nonsingular, is called a single splitting ofA in
[1]. Based on the above matrix splitting, the basic iterative
method for solving (1) is

xk+1 = M−1Nxk +M−1b ≡ Txk +M−1b, (2)

where k = 0, 1, . . . and T = M−1N is the iteration
matrix in (2). Obviously, the iterative method (2)
converges to the unique solution of the linear system (1) if
and only if the spectral radiusρ(M−1N) of the iteration
matrix is smaller than 1. The spectral radius of the
iteration matrix is decisive for the convergence and
stability, and the smaller it is, the faster the iterative
method converges when the spectral radius is smaller than
1. So far, many comparison theorems of single splitting of
matrices have been presented in some papers and
books [2–8,13].

In [1], Woźnicki introduced a double splitting ofA,
i.e., splitting the matrixA in the form

A = P −R− S, (3)

where P is a nonsingular matrix. The corresponding
iterative scheme is spanned by three successive iterations,

xk+1 = P−1Rxk+P−1Sxk−1+P−1b, k = 0, 1, 2, . . .(4)

which can be rewritten in the equivalent form
[

xk+1

xk

]

=

[

P−1R P−1S
I 0

] [

xk

xk−1

]

+

[

P−1b
0

]

, (5)

whereI is the identity matrix. The iterative method given
by (5) converges to the unique solution of (1) for all
initial vectorsx0, x1 if and only if the spectral radius of
the iteration matrix,

W =

[

P−1R P−1S
I 0

]

(6)

is less than one, i.e.,ρ(W ) < 1.
Recently, some convergence and comparison results

for double splittings of matrices are presented. In [9],
Shen and Huang presented some convergence theorems
for the double splitting of a monotone matrix or a
Hermitian positive definite matrix and obtained two
comparison theorems for two double splittings of a
monotone matrix. Compared with some results [9], some
improved convergence and comparison results for double
splitting of a Hermitian positive definite matrix are
proposed in [10]. In [12], some convergence results for
double splittings of a non-Hermitian positive semidefinite
matrix are established. In [11], a comparison theorem for
double splittings of different monotone matrices is given.
In [13], some convergence and comparison results for
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nonnegative double splittings of matrices are given. In
this paper, building on the previous work [13], our basic
purpose here is to derive some new comparison theorems
for the spectral radius of double splittings of matrices.

2. Preliminaries

For convenience, we give some of the notations,
definitions and lemmas which will be used in the sequel.

The matrixA is called nonnegative and denotedA ≥ 0
if aij ≥ 0 for i, j = 1, 2, . . . , n. We writeA ≥ B (A > B)
if aij ≥ bij (aij > bij) for i, j = 1, 2, . . . , n. The matrix
A is called to be a monotone matrix ifA−1 ≥ 0. Matrix A
is anL-matrix if aii > 0 (i = 1, . . . , n) andaij < 0 for
all i, j = 1, . . . , n; i 6= j.

Definition 1. [9,13] LetA be a nonsingular matrix. Then
the double splittingA = P −R− S is

• convergent if and only ifρ(W ) < 1;
• a regular double splitting ifP−1 ≥ 0,R ≥ 0 andS ≥ 0;
• a weak regular double splitting ifP−1 ≥ 0, P−1R ≥ 0

andP−1S ≥ 0;
• a nonnegative splitting ifP−1R ≥ 0 andP−1S ≥ 0.

Definition 2. Let A be a nonsingular matrix. The double
splittingA = P − R − S is an M-double splitting ifP is
an M-matrix andR ≥ 0 andS ≥ 0.

Lemma 1. [3] LetA ≥ 0. Then

αx ≤ Ax, x ≥ 0, impliesα ≤ ρ(A),

and

Ax ≤ βx, x > 0, impliesρ(A) ≤ β.

Lemma 2. [9] Let A−1 ≥ 0 andA = P − R − S be a
weak regular double splitting. Thenρ(W ) < 1.

Lemma 3. [15] Let A ∈ R
n×n and A = M1 − N1 =

M2 − N2 be M-splittings ofA (i.e.,Mi are M-matrices,
Ni ≥ 0, i = 1, 2) and

N1 ≥ N2, N1 6= N2, N2 6= 0.

Then exactly one of the following statements holds:

(1) 0 ≤ ρ(M−1

2 N2) < ρ(M−1

1 N1) < 1. In addition, ifA
is irreducible, the first inequality is also strict.

(2) ρ(M−1

2 N2) = ρ(M−1

1 N1) = 1.
(3) ρ(M−1

2 N2) > ρ(M−1

1 N1) > 1.

3. Comparison theorems

Let

A = P1 −R1 − S1 = P2 −R2 − S2 (7)

be two double splittings ofA. Then we define

W1 =

[

P−1

1 R1 P−1

1 S1

I 0

]

andW2 =

[

P−1

2 R2 P−1

2 S2

I 0

]

.

In [13], some comparison theorems for the spectral
radius of double splittings of monotone matrices are
given, which are described as follows.

Theorem 1. [13] Let A−1 ≥ 0, and let the two double
splittings(7) be nonnegative and convergent. Suppose

P1 ≤ P2, S1 ≤ S2,

then

ρ(W1) ≤ ρ(W2). (8)

Corollary 1. [13] Let A−1 ≥ 0, and let the two double
splittings(7) be nonnegative and convergent. Suppose

R1 ≤ R2, S1 ≤ S2,

then

ρ(W1) ≤ ρ(W2).

Theorem 2. [13] Let A−1 ≥ 0, A = P1 − R1 − S1 be
regular double splitting, and letA = P2 − R2 − S2 be
nonnegative and convergent double splitting. Suppose

P−1

1 ≥ P−1

2 andP−1

1 S1 ≤ P−1

2 S2,

thenρ(W1) ≤ ρ(W2).

Based on Lemma 3, we have the following results.

Theorem 3. Let A = P1 − R1 − S1 = P2 − R2 − S2

be two M-double splittings. IfR1 ≤ R2, S1 ≤ S2, then
ρ(W1) ≤ ρ(W2).

Proof. For i = 1, 2, let

Mi =

[

Pi Si

0 I

]

,Ni =

[

Ri + Si Si

0 I

]

.

Then

A = Mi − Ni andWi = M
−1

i Ni.

Obviously,A is nonsingular wheneverA is nonsingular.
SinceR1 ≤ R2, S1 ≤ S2, then we haveR1 + S1 ≤
R2 + S2, S1 ≤ S2. That is,

N1 ≤ N2.

From Lemma 3, we obtain thatρ(W1) ≤ ρ(W2). �

Theorem 4. Let A = P1 − R1 − S1 = P2 − R2 − S2

be two M-double splittings. IfP1 ≤ P2, S1 ≤ S2, then
ρ(W1) ≤ ρ(W2).

Proof. By simple computations, we obtain that

R1 + S1 = P1 −A,R2 + S2 = P2 −A.

It is not difficulty to find thatR1 + S1 ≤ R2 + S2.
Therefore,

N1 ≤ N2.

From Lemma 3, we obtain thatρ(W1) ≤ ρ(W2). �

Compared with Theorem 1 and Corollary 1 [13], the
conditionA−1 ≥ 0 in Theorems 3 and 4 is not necessary.

Theorem 5. Let A ≥ 0, and letA = P1 − R1 − S1 =
P2 − R2 − S2 be nonnegative splitting. IfP−1

1 ≥ P−1

2

andP−1

1 R1 ≥ P−1

2 R2, thenρ(W1) ≤ ρ(W2) < 1 for
0 < ρ(W2) < 1.
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Proof. Obviously,W1 ≥ 0 andW2 ≥ 0. By the Perron-
Frobenius theorem [3], there exists a vector,

x =

[

x1

x2

]

≥ 0, x 6= 0,

such thatW2x = ρ(W2)x, i.e.,

P−1

2 R2x1 + P−1

2 S2x2 = ρ(W2)x1,

x1 = ρ(W2)x2.

Then we have

W1x− ρ(W2)x

=

[

P−1
1 R1x1 + P−1

1 S1x2 − ρ(W2)x1

x1 − ρ(W2)x2

]

=

[

(P−1
1 R1 − P−1

2 R2)x1 +
1

ρ(W2)
(P−1

1 S1 − P−1
2 S2)x1

x1 − ρ(W2)x2

]

SinceP−1

1 R1 ≥ P−1

2 R2 and0 < ρ(W2) < 1, then

W1x− ρ(W2)x

≤
1

ρ(W2)

[

(P−1
1 R1 − P−1

2 R2)x1 + (P−1
1 S1 − P−1

2 S2)x1

0

]

=
1

ρ(W2)

[

(P−1
1 R1 + P−1

1 S1)x1 − (P−1
2 R2 + P−1

2 S2)x1

0

]

=
1

ρ(W2)

[

P−1
1 (R1 + S1)x1 − P−1

2 (R2 + S2)x1

0

]

=
1

ρ(W2)

[

P−1
1 (P1 −A)x1 − P−1

2 (P2 −A)x1

0

]

=
1

ρ(W2)

[

(P−1
2 − P−1

1 )Ax1

0

]

≤ 0.

From Lemma 1, we obtain thatρ(W1) ≤ ρ(W2) < 1 for
0 < ρ(W2) < 1. �

Based on Theorem 5, we have the following result.

Corollary 2. Let

A1 = P1 −R1 − S1, A2 = P2 −R2 − S2

be nonnegative splitting. IfP−1

1 A1 ≥ P−1

2 A2 and
P−1

1 R1 ≥ P−1

2 R2, then ρ(W1) ≤ ρ(W2) < 1 for
0 < ρ(W2) < 1.

By investigating Corollary 2, it is easy to see that the
conditioners of Corollary 2 are weaker than that of
Theorem 3.1 [11]. That is, the result of Corollary 2 holds
withoutA−1

1 ≥ 0 andA−1

2 ≥ 0.
Similarly, we have the following result.

Theorem 6. Let A ≥ 0, and letA = P1 − R1 − S1 =
P2 − R2 − S2 be nonnegative splitting. IfP−1

1 ≥ P−1

2

and P−1

1 S1 ≤ P−1

2 S2, thenρ(W1) ≤ ρ(W2) < 1 for
0 < ρ(W2) < 1.

Compared with Theorem 2 [13], the condition
A−1 ≥ 0 in Theorem 6 is not necessary and instead of it
is A ≥ 0. By investigating Theorem 6, it is easy to see
that the conditioners of Theorem 6 are weaker than that of
Theorem 2 [13].

Corollary 3. Let

A1 = P1 −R1 − S1, A2 = P2 −R2 − S2

be nonnegative splitting. IfP−1

1 A1 ≥ P−1

2 A2 and
P−1

1 S1 ≤ P−1

2 S2, then ρ(W1) ≤ ρ(W2) < 1 for
0 < ρ(W2) < 1.

In fact, Corollaries 2 and 3 are mainly results in [16],
which implies that Theorems 5 and 6 extend the results of
Corollaries 2 and 3 in [16]

4. Numerical examples

In this section, we make use of two examples to illustrate
Theorem 3, Theorem 4 and Theorem 5.

Example 4.1Let

A =

[

2 −2
−2 3

]

,

P1 =

[

2 0
−1 4

]

, R1 =

[

0 0
1 0

]

, S1 =

[

0 2
0 1

]

,

P2 =

[

2 0
0 5

]

, R2 =

[

0 0
1 1

]

, S2 =

[

0 2
1 1

]

.

In this case, one can easily see thatR1 ≤ R2, S1 ≤ S2,
which satisfies the conditions of Theorem 3. In the
meanwhile, one can also easily see that
P1 ≤ P2, S1 ≤ S2, which satisfies the conditions of
Theorem 4.

By the simple computations, we haveρ(W1) = 0.8846
andρ(W2) = 0.9164. Clearly,ρ(W1) ≤ ρ(W2) < 1 hold.
That is to say, Theorems 3 and 4 holds true.

Example 4.2Let

A =

[

1 0
0 2

]

,

P1 =

[

3 0
0 3

]

, R1 =

[

1 0
0 1

]

, S1 =

[

1 0
0 0

]

,

P2 =

[

4 0
0 5

]

, R2 =

[

1 0
0 1

]

, S2 =

[

2 0
0 2

]

.

Then

P−1

1 =

[

1

3
0

0 1

3

]

, P−1

2 =

[

1

4
0

0 1

5

]

.

and

P−1

1 R1 =

[

1

3
0

0 1

3

]

, P−1

2 R2 =

[

1

4
0

0 1

5

]

.

That is to say, we haveP−1

1 ≥ P−1

2 and
P−1

1 R1 ≥ P−1

2 R2, which satisfies the conditions of
Theorem 5.

By the simple computations, we have
ρ(W1) = 0.7676 and ρ(W2) = 0.7696. Clearly,
ρ(W1) ≤ ρ(W2) < 1 holds. That is to say, Theorem 5
holds true.
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