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Abstract: The transmission of ’Human Immunodeficiency Virus (HIV)’ that causes the ‘Acquired Immunodeficiency Syndrome
(AIDS)’ is strongly associated with un-protected sex and at the presentunderstanding this epidemic can reach higher prevalence
threshold level when there are extensive sexual contacts between the sex workers and general population. In the present work, we
investigate a nonlinear model for studing the transmission dynamics of HIV/AIDS epidemic with emphasis on the role of female sex
workers. Here, we consider only the heterosexual transmissions of HIV/AIDS and formulate the mathematical model by dividing the
total adult population under consideration into three different classes: male, female and female sex workers. We assume different rates
of recruitment for different classes of the population. The equilibria ofthe model and their stability are discussed in detail. The basic
reproduction numberR0 of the model is computed and it is shown that the disease-free equilibrium isstable only whenR0 < 1. When
the associated reproduction numberR0 > 1, the endemic equilibrium is globally stable. Finally, the numerical simulations are reported
to support the presented analytical results.

Keywords: HIV, Sex-workers, Equilibrium, Stability, Numerical simulation.

1 Introduction

The ‘Human Immunodeficiency Virus (HIV)’ is a
lenti-virus (i.e. a slowly replicating retrovirus) that causes
‘Acquired Immunodeficiency Syndrome (AIDS)’ - a
condition in humans in which progressive failure of the
immune system allows life-threatening opportunistic
infections and cancers to infest and thrive. HIV is one of
the most prevalent life threatening viruses active across
the globe and more so in the developing and low income
countries. Based upon documentary evidence, it was first
reported in the year 1981 in an issue of the Morbidity and
Morality Weekly Report (MMWR), published by the
Centers for Disease Control and Prevention (CDC), USA.
As per the estimates of WHO and UNAIDS [1,2] there
were around 34 million people living with HIV at the end
of 2011 among which 30.7 million [28.2-32.3 million]
were adults and 16.7 million [15.7 - 17.6 million] were
women. In the same year, around 2.5 million [2.2-2.8
million] people became newly infected, and 1.7 million
died of AIDS.

As per the current scientific understanding, the
infection with HIV can occur by the transfer of blood,

semen, vaginal fluid, pre-ejaculate, or breast milk and
within these bodily fluids HIV is present as both free
virus particles and virus within infected immune cells [3].
Within the scope of this paper, we note that in the context
of prostitution in developing and low income countries,
the risk of female-to-male HIV transmission has been
estimated as 2.4% per act and male-to-female
transmission as 0.05% per act [4].

The HIV infects critically important cells (i.e. helper
T cells - specifically cluster of differentiation (CD4+) T
cells, macrophages, and dendritic cells) in the human
immune system and it leads to decaying levels of the
CD4+ T cells through a number of mechanisms
including: apoptosis of uninfected bystander cells, direct
viral killing of infected cells, and killing of infected
CD4+ T cells by CD8 cytotoxic lymphocytes that
recognize infected cells. And, when the CD4+ T cell
numbers decline below a critical level, the cell-mediated
immunity which protects against infections, is lost. The
body becomes progressively more susceptible to
opportunistic infections with loss of the cell-mediated
immunity, e.g. illness, cancers, or neurological problems.
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Among these infections, the ‘Tubercle Bacillus (TB)’
remains one of the most common life-threatening
opportunistic infections which kills nearly a quarter of a
million people living with HIV each year [2]. The
estimates of [5] consider that there are about 2 million
(range 1.0-16.2 million) female sex workers in India. In
India, about 85% of new infections are associated with
heterosexual transmission, especially sex workers (SWs),
their clients and the sexual contacts of their clients [6,7,
8]. Furthermore, since most of the male clients of female
SWs are married, the onward transmission of HIV is
certain, specifically from HIV-positive men to their wives
[6,9]. The overall lifetime possibility of a sex worker
getting HIV infected is higher as compared to the general
population which incorporates multiple risk factors,
including multiple sexual partners, unprotected work
conditions, barriers to negotiating the regular condom
use, lack of access to appropriate health services, high
prevalence of sexually transmitted infections (STIs) and
sharing of injecting equipment, etc. [10]. In some of the
recent studies, it has been noted that the female SWs are
13.5 times more likely to acquire HIV than all other
women aged between 15-49 years, including in high
HIV-prevalence countries [11,12]. The environment and
context in which sex workers live and work do not
support them to control the risk factors [13,14]. Because
of these reasons, sex workers have been considered a key
population and in our opinion the interventions need to be
designed and implemented to guide and empower this
specific population if the epidemic is to be controlled [15,
16]. The present work is motivated by this idea.

The epidemiological modelling allows us to
understand the dynamics of an epidemic and to develop
various control and prevention policies. It helps
researchers to investigate how the system components are
connected and how this connection may contribute to the
growth or prevention of a specific disease. Furthermore,
coupling of two or more infectious diseases can be
studied via epidemiological modeling. A simple
‘Susceptible-Infected-Recovered (SIR)’ model of
infectious diseases was developed and studied by
Kermack & McKendrick in year 1927, and that forms the
foundation of almost all the epidemic models studied
thereafter.

The mathematical modelling of diseases aims to
improve scientific support for decision making by
incorporating and analyzing the major factors responsible
for the transmission of the epidemic. In the present time,
mathematical models are extensively used to study
epidemics to figure out the analytical conclusions based
upon the epidemiological assumptions [17,18,19,20,21,
22,23,24,25]. Several modelling studies have been
published recently that are intended to provide
information to policy makers to support the development
of policies and strategies for reducing the overall
transmission rate of HIV infection. Numerous
mathematical models have been developed to examine the
role of various modes of transmission, sexual

transmission of HIV incorporating effect of awareness
and treatment, effect of screening of HIV infectives [17,
20,26,27,28,29].

In our opinion, the sex workers, their clients and
regular partners are core population group which is at risk
for being infected with HIV. From the available data, it
has been estimated that the group sex events (GSEs) are
common in developing and low income countries, e.g.
Kenya, Bangladesh, India, and Argentina [30,31,32,33,
34]. The increasing testaments do suggest that the
higher-risk behavior is substantially underreported in
most of the HIV control and prevention surveys [35].
Therefore, in the present analysis, the attempts are made
to explore the role of female sex-workers and their clients
in the transmission of HIV infection.

The paper is organized: Section 2 presents the
formulation of nonlinear ODE model, Section 3 describes
the basic properties of the model the computation of basic
reproduction number, Section 4 presents the stability
analysis of the model. Section 5 reports the numerical
simulations to verify our theoretical, and finally Section 6
summarizes some of the key findings of our research.

2 Description of the model

The total sexually active population at time t denoted by
N(t) or N, is subdivide into mutually-exclusive
compartments, namely HIV-susceptible male(Sm),
HIV-susceptible female(Sf ), HIV-susceptible female
sex-workers(Sf s), HIV-infected male(Im), HIV-infected
female (I f ), HIV-infected female sex-workers(I f s),
AIDS-infected male(Am), AIDS-infected female(Af )
and AIDS-infected female sex-workers(Af s). We have
assumed that the AIDS patients are not participating in
the transmission of viruses.Λ1,Λ2,Λ3 denotes the
recruitment rate of the population in male, female and
female sex-worker classes, respectively.βi(i = 1;2;3;4)
are the rates of transmission of infection from infectives
to susceptibles;µ is the natural death rate constant;d is
the disease induced mortality rate in AIDS classes
(Am;Af ;Af s); b1,b2,b3 are the progression rates from
HIV infective male, female and female sex-workers to
respective AIDS class. Above mentioned variables,
parameters and assumptions result in the following
deterministic system of non-linear differential equations
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that describe the model:
Ṡm = Λ1−β1SmI f −β2SmI f s−µSm

˙Im = β1SmI f +β2SmI f s− (b1+µ)Im
Ȧm = b1Im− (µ +d)Am

Ṡf = Λ2−β3Sf Im−µSf

İ f = β3Sf Im− (b2+µ)I f (1.1)

Ȧf = b2I f − (µ +d)Af

Ṡf s = Λ3−β4Sf sIm−µSf s

˙I f s = β4Sf sIm− (b3+µ)I f s

Ȧf s = b3I f s− (µ +d)Af s

N(t) = Sm+Sf +Sf s+ Im+ I f + I f s+Am+Af +Af s.
HereSm > 0, Sf > 0, Sf s > 0, Im ≥ 0, I f ≥ 0, I f s ≥
0,Am ≥ 0, Af ≥ 0 andAf s ≥ 0.
The flow diagram of the disease dynamics is shown in
Figure 1.

3 Analysis of the model

3.1 Positivity and Boundedness of the Solutions

Theorem 3.1. For all time t ≥ 0, all the solutions of the
system (1.1) are eventually confined in the compact
subset
Ω = {(Sm,Sf ,Sf s, Im, I f , I f s,Am,Af ,Af s) ∈ R

9
+ : N =

(Sm(t) +Sf (t) +Sf s(t) + Im(t) + I f (t) + I f s(t) +Am(t) +

Af (t)+Af s(t))≤
Λ
µ
}

Proof. Let
(Sm(t),Sf (t),Sf s(t), Im(t), I f (t), I f s(t),Am(t),Af (t),Af s(t))
be any solution with positive initial conditions.
We have,
N(t) = Sm(t) + Sf (t) + Sf s(t) + Im(t) + I f (t) + I f s(t) +
Am(t)+Af (t)+Af s(t).
The time derivative ofN(t) along the solution of (1.1) is
dN
dt

= Λ1+Λ2+Λ3−µN−d(Am+Af +Af s)

≤ (Λ1+Λ2+Λ3)−µN, i.e.
dN
dt

+µN ≤ Λ ,

whereΛ = Λ1+Λ2+Λ3, the total recruitment rate in the
population under consideration. Using theory of

differential equations, we getN ≤
Λ
µ
(1−e−µt)+N0e−µt ,

and fort → ∞, we have

lim
t→∞

supN ≤
Λ
µ

Clearly, it has been proved that all the solutions of (1.1)
which initiate in R

9
+ confined in the regionΩ i.e.

solutions are bounded in the interval[0,∞).
Now we will discuss the existence of all possible
equilibria of the model system (1.1). We found that the
system (1.1) has two possible non-negative equilibria
namely the disease-free equilibriumE0 and the endemic
equilibriumE1.

3.2 Disease-free equilibrium E0 and the basic
reproduction number R0

The disease-free equilibrium (DFE) is always feasible, as
at this equilibrium the infection eradicates from the
population. The DFE for the model system (1.1), is given
by
E0 = (S0

m,S
0
f ,S

0
f s, I

0
m, I

0
f , I

0
f s,A

0
m,A

0
f ,A

0
f s)

= (Λ1
µ , Λ2

µ , Λ3
µ ,0,0,0,0,0,0).

The threshold quantity the basic reproduction number
(R0) measures the average number of new HIV infections
generated by a single infectious in a completely
susceptible population in his/her whole infectious period.
Using the standard notation in Ref. [36,37], the matrices
F and V, for the new infection terms and the remaining
transfer terms respectively, corresponding to the system
(1.1) are computed as follows:

F =




β1SmI f +β2SmI f s
β3Sf Im
β4Sf sIm

0
0
0




andV =




(b1+µ)Im
(b2+µ)I f
(b3+µ)I f s

−b1Im+(µ +d)Am
−b2I f +(µ +d)Af
−b3I f s+(µ +d)Af s



.

F =Jacobian ofF at DFE=




0 β1S0
m β2S0

m 0 0 0
β3S0

f 0 0 0 0 0
β4S0

f s 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




and
V=Jacobian of V at DFE =


(b1+µ) 0 0 0 0 0
0 (b2+µ) 0 0 0 0
0 0 (b3+µ) 0 0 0

−b1 0 0 (µ +d) 0 0
0 −b2 0 0 (µ +d) 0
0 0 −b3 0 0 (µ +d)




The basic reproduction numberR0 of the model system
(1.1) is given by the spectral radius or the largest
eigenvalue of the next generation matrix

FV−1 =




0
β1Λ1

µ(b2+µ)
β2Λ1

µ(b3+µ)
0 0 0

β3Λ2

µ(b1+µ)
0 0 0 0 0

β4Λ3

µ(b1+µ)
0 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




HenceR0 =

√
Λ1{Λ2β1β3(b3+µ)+Λ3β2β4(b2+µ)}

µ2(b1+µ)(b2+µ)(b3+µ)
.
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Fig. 1: Transfer Diagram of the Model (1.1)

3.3 Existence of endemic equilibrium

The endemic equilibrium point
E1 = (S∗m,S

∗
f ,S

∗
f s, I

∗
m, I

∗
f , I

∗
f s,A

∗
m,A

∗
f ,A

∗
f s) is given as

S∗m=
Λ1− (b1+µ)I∗m

µ
, S∗f =

Λ2

β I∗m+µ
, S∗f s=

Λ3

β4I∗m+µ
,

I∗f =
Λ2β3I∗m

(β3I∗m+µ)(b2+µ)
, I∗f s =

Λ3β4I∗m
(β4I∗m+µ)(b3+µ)

,

A∗
m =

b1I∗m
µ +d

,A∗
f =

b2Λ2β3I∗m
(µ +d)(β3I∗m+µ)(b2+µ)

,

A∗
f s =

b2Λ3β4I∗m
(µ +d)(β4I∗m+µ)(b3+µ)

.

It is easy to note that each of the variables is positive if
I∗m > 0. Here I∗m is given by the roots of the following
quadratic equation,
D1I∗m

2+D2I∗m+D3 = 0,
where
D1 = [Λ2β1(b3+µ)+Λ3β2(b2+µ)
+µ(b2+µ)(b3+µ)]β3β4(b1+µ)> 0,

D2 =−Λ1Λ3β2β3β4(b2+µ)−Λ1Λ2β1β3β4(b3+µ)
+Λ2β1β3µ(b1+µ)(b3+µ)+Λ3β2β4µ(b1+µ)(b2+µ)
+µ2(β3+β4)(b1+µ)(b2+µ)(b3+µ)
= µ2β4(b1+µ)(b2+µ)(b3+µ)

×

[
1−

Λ1{Λ2β1β3(b3+µ)+Λ3β2β3(b2+µ)}
µ2(b1+µ)(b2+µ)(b3+µ)

]

+µβ3(b1+µ) [µ(b2+µ)(b3+µ)+Λ2β1(b3+µ)]
+Λ3µβ2β4(b1+µ)(b2+µ)

D3 = µ3(b1+µ)(b2+µ)(b3+µ)(1−R2
0)< 0

Now whenR0 < 1 we haveD1 > 0, andD3 > 0. Further,
as the rate of transmission in female sex workerβ4 is
always greater than or equal to the rate of transmission in
susceptible femaleβ3. Hence R0 < 1 implies the first
bracketed term in the expression ofD2 is positive. So in
this case there is no change in signs ofD1, D2 and D3.
Hence Descartes’s Rule of Signs ensures that there is no
positive root of the above quadratic equation forR0 < 1.
When R0 > 1, we haveD1 > 0, D3 < 0 andD2 can be
positive or negative. And in this case above quadratic
equation gives unique positive root irrespective of the
sign of D2. This positive root we term asI∗m. Hence,
existence of one positive real root (I∗m) assures the
positivity of endemic equilibrium point forR0 > 1.

4 Stability Analysis

Theorem 4.1 The disease-free equilibrium E0, is locally
asymptotically stable when R0 < 1 and unstable
otherwise.
Proof. To study the stability of DFEE0 the Jacobian
matrix M1 of the system (1.1) has been calculated and it
has been seen that six eigenvalues of the matrix are
−µ ,−µ ,−µ ,−(µ + d),−(µ + d),−(µ + d) and rest of
the three eigenvalues are the roots of the following cubic
equation,

a0λ 3+a1λ 2+a2λ +a3 = 0,
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where

a0 = 1,

a1 = x+y+z,

a2 = xy+yz+zx−
β1β3Λ1Λ2

µ2 −
β2β4Λ1Λ3

µ2 ,

a3 = xyz−
β1β3Λ1Λ2z

µ2 −
β2β4Λ1Λ3y

µ2 = xyz(1−R2
0),

andx= b1+µ ,y= b2+µ ,z= b3+µ . Clearlya1 > 0,a3 >
0 for R0 < 1 anda1a2−a3 is given as follows:

a1a2−a3

= (x+y+z)

[
xy+yz+zx−

β1β3Λ1Λ2

µ2 −
β2β4Λ1Λ3

µ2

]

−xyz+
β1β3Λ1Λ2z

µ2 +
β2β4Λ1Λ3y

µ2 ,

= (x+y)

[
x(y+z)−

β1β3Λ1Λ2

µ2 −
β2β4Λ1Λ3

µ2

]

+
yΛ1Λ3β2β4

µ2 +yz(y+z)+z

[
x(y+z)−

β2β4Λ1Λ3

µ2

]
.

It is easy to visualize thata1a2−a3 is positive forR0 < 1
asR0 < 1 corresponds tox(y+ z) > β1β3Λ1Λ2

µ2 + β2β4Λ1Λ3
µ2 .

Hence using Routh-Hurwitz criteria, the roots of the
above cubic have negative real parts. Thus DEFE0 is
locally asymptotically stable forR0 < 1.

Global stability of disease-free equilibrium.

We will use the theorem by Castillo-Chavez et al. [38], to
prove the global stability result.
Theorem 4.2 If the model system (1.1) can be written in
the form :
{

X′(t) = F(X,Y),
Y′(t) = G(X,Y), G(X,0) = 0. (4.1)

where X = S and S = (Sm,Sf ,Sf s)
T and

Y = (Im, I f , I f s,Am,Af ,Af s)
T with X ∈ R

3
+ denoting the

number of uninfected individuals andY ∈ R
6
+ denoting

number of HIV infectives and AIDS patients.
The disease-free equilibrium is denoted here byE0 =
(X0,0)= (Λ1

µ , Λ2
µ , Λ3

µ ,0)
The conditions(H1) and (H2) below must be met to
guarantee global asymptotic stability.
H1: For X′(t) = F(X0,0), X0 is globally asymptotically
stable (g.a.s.),
H2: G(X,Y) = AY− Ĝ(X,Y),Ĝ(X,Y)≥ 0 for (X,Y) ∈ Ω
here A = DYG(X0,0) is an M-matrix (the off diagonal
elements of A are nonnegative) andΩ is the region where
the model forms biological sense. If system (1.1) satisfies
the conditions mentioned in Eq. (4.1), then the fixed point
E0 = (X0,0) is a globally asymptotic stable equilibrium of
model system (1.1) providedR0 < 1. For system (1.1) the
result is stated and proved in Theorem 4.3. given below:

Theorem 4.3 The fixed point E0 = (X0,0) is a globally
asymptotically stable equilibrium of system (1.1) provided
that R0 < 1 and the assumptions in Eq.(4.1) are satisfied.
Proof. In Theorem 4.1 we have proved that forR0 < 1, E0
is locally asymptotically stable. Applying Theorem 4.2 to
model system (1.1), consider
F(X0,0) = Γ − µS,whereΓ = (Λ1,Λ2,Λ3)

T , G(X,Y) =
AY− Ĝ(X,Y) ,
where,

A=




−(b1+µ) β1S0
m β2S0

m 0 0 0
β3S0

f −(b2+µ) 0 0 0 0
β4S0

f s 0 −(b3+µ) 0 0 0
b1 0 0 −(µ +d) 0 0
0 b2 0 0 −(µ +d) 0
0 0 b3 0 0 −(µ +d)




Then Ĝ(X,Y) =




Ĝ1(X,Y)
Ĝ2(X,Y)
Ĝ3(X,Y)
Ĝ4(X,Y)
Ĝ5(X,Y)
Ĝ6(X,Y)




=




β1(S0
m−Sm)I f +β2(S0

m−Sm)I f s

β3(S0
f −Sf )Im

β4(S0
f s−Sf s)Im

0
0
0




Here,S0
m ≥ Sm;S0

f ≥ Sf ;S0
f s ≥ Sf s, hence it is clear that

Ĝ(X,Y) ≥ 0 for all (X,Y) ∈ R
6
+. We also notice that the

matrix A is an M-Matrix since all its off-diagonal
elements are non-negative. Hence, this proves the global
stability of the DFE(E0).

Theorem 4.4 The endemic equilibrium,
E1 = (S∗m,S

∗
f ,S

∗
f s, I

∗
m, I

∗
f , I

∗
f s,A

∗
m,A

∗
f ,A

∗
f s), of model (1.1) is

globally asymptotically stable.
Proof. To prove global stability result we propose the
following Lyapunov function

V1 = c1(Sm−S∗m−S∗m ln Sm
S∗m
)+c2(Sf −S∗f −S∗f ln

Sf
S∗f
)

+c3(Sf s−S∗f s−S∗f s ln
Sf s
S∗f s

)+c4(Im− I∗m− I∗m ln Im
I∗m
)

+c5(I f − I∗f − I∗f ln
I f
I∗f
)+c6(I f s− I∗f s− I∗f s ln

I f s
I∗f s
).

The time derivative ofV1 is given by

V̇1 = c1

(
1− S∗m

Sm

)
Ṡm+c2

(
1−

S∗f
Sf

)
Ṡf +c3

(
1−

S∗f s
Sf s

)
Ṡf s

+c4

(
1− I∗m

Im

)
˙Im+c5

(
1−

I∗f
I f

)
İ f +c6

(
1− I∗m

I f s

)
˙I f s

= c1

(
1− S∗m

Sm

)
[Λ1−β1SmI f −β2SmI f s−µSm]

+c2

(
1−

S∗f
Sf

)
[Λ2−β3Sf Im−µSf ]

+c3

(
1−

S∗f s
Sf s

)
[Λ3−β4Sf sIm−µSf s]

+c4

(
1− I∗m

Im

)
[β1SmI f +β2SmI f s− (b1+µ)Im]

+c5

(
1−

I∗f
I f

)
[β3Sf Im− (b2+µ)I f ]
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+c6

(
1− I∗m

I f s

)
[β4Sf sIm− (b3+µ)I f s]. (4.2)

The model system (1.1) satisfy the following relations on
the equilibrium point:
Λ1 = β1S∗mI∗f +β2S∗mI∗f s+µS∗m,

(b1+µ) = β1S∗m
I∗f
I∗m
+β2S∗m

I∗f s
I∗m
,

Λ2 = β3S∗f I
∗
m+µS∗f ,

(b2+µ) = β3S∗f
I∗m
I∗f
,

Λ3 = β4S∗f sI
∗
m+µS∗f s,

(b3+µ) = β4S∗f s
I∗m
I∗f s
,

Substitute the parameter values fromΛ1 to (b3 + µ) in
(4.2), we obtain

V̇1 = c1

(
1−

S∗m
Sm

)

×[β1S∗mI∗f +β2S∗mI∗f s+µS∗m−β1SmI f −β2SmI f s−µSm]

+c2

(
1−

S∗f
Sf

)
[β3S∗f I

∗
m+µS∗f −β3Sf Im−µSf ]

+c3

(
1−

S∗f s

Sf s

)
[β4S∗f sI

∗
m+µS∗f s−β4Sf sIm−µSf s]

+c4

(
1−

I∗m
Im

)

×

[
β1SmI f +β2SmI f s− (β1S∗m

I∗f
I∗m

+β2S∗m
I∗f s

I∗m
)Im

]

+c5

(
1−

I∗f
I f

)[
β3Sf Im− (β3S∗f

I∗m
I∗f

)I f

]

+c6

(
1−

I∗m
I f s

)[
β4Sf sIm− (β4S∗f s

I∗m
I∗f s

)I f s

]

= −c1µ
(Sm−S∗m)

2

Sm
−c2µ

(Sf −S∗f )
2

Sf
−c3µ

(Sf s−S∗f s)
2

Sf s

+c1

(
1−

S∗m
Sm

)
(β1S∗mI∗f +β2S∗mI∗f s−β1SmI f −β2SmI f s)

+c2

(
1−

S∗f
Sf

)
(β3S∗f I

∗
m−β3Sf Im)

+c3

(
1−

S∗f s

Sf s

)
(β4S∗f sI

∗
m−β4Sf sIm)

+c4

(
1−

I∗m
Im

)

×

[
β1SmI f +β2SmI f s− (β1S∗m

I∗f
I∗m

+β2S∗m
I∗f s

I∗m
)Im

]

+c5

(
1−

I∗f
I f

)
(β3Sf Im− (β3S∗f

I∗m
I∗f

)I f )

+c6

(
1−

I∗m
I f s

)
(β4Sf sIm− (β4S∗f s

I∗m
I∗f s

)I f s)

= −c1µ(Sm−S∗m)
2/Sm−c2µ(Sf −S∗f )

2/Sf −c3µ(Sf s−S∗f s)
2

/Sf s+ f (x1,x2,x3,x4,x5,x6)

where
Sm
S∗m

= x1,
Sf
S∗f

= x2,
Sf s
S∗f s

= x3,
Im
I∗m

= x4,
I f
I∗f
= x5,

I f s
I∗f s

= x6,S∗mI∗f = a,S∗f I
∗
m = b,S∗f sI

∗
m = c,S∗mI∗f s = d.

We get,
f (x1,x2,x3,x4,x5,x6) = (−c1β1a + c4β1a)x1x5 +
(−c5β3b+ c1β1a)x5+(−c1β2d+ c4β2d)x1x6+(c1β2d−
c6β4c)x6 + (−c2β3b + c5β3b)x2x4 + (c2β3b + c3β4c −
c4β1a − c4β2d)x4 + (−c3β4c + c6β4c)x3x4 + c1β1a −
c1β1a 1

x1
+ c1β2d− c1β2d 1

x1
+ c2β3b− c2β3b 1

x2
+ c3β4c−

c3β4c 1
x3

− c4β1ax1x5
x4

− c4β2d x1x6
x4

+ c4β1a + c4β2d −

c5β3bx2x4
x5

+c5β3b−c6β4cx3x4
x6

+c6β4c.
In order to determinec1,c2,c3,c4,c5 and c6, we set the
coefficients ofx1x5,x5,x1x6,x6,x2x4,x4 andx3x4 equal to
zero and solving the resulting equations, we obtain

c1 = c4;c2 =
c4β1a
β3b

= c5;c3 =
c4β2d
β4c

= c6.

Further by choosingc1 = c4 = 1, we get

f (x1,x2,x3,x4,x5,x6) = β1a

[
4−

1
x1

−
x1x5

x4
−

x2x4

x5
−

1
x2

]

+β2d

[
4−

1
x1

−
x1x6

x4
−

x3x4

x6
−

1
x3

]
.

Since, the arithmetic mean is greater than or equal to the
geometric mean, we have
1
x1
+ x1x5

x4
+ x2x4

x5
+ 1

x2
≥ 4 and 1

x1
+ x1x6

x4
+ x3x4

x6
+ 1

x3
≥ 4.

Finally we obtained,

V̇1 = −µ
(Sm−S∗m)

2

Sm
− µ

β1a
β3b

(Sf −S∗f )
2

Sf
−

µ
β2d
β4c

(Sf s−S∗f s)
2

Sf s
+ β1a

[
4−

1
x1

−
x1x5

x4
−

x2x4

x5
−

1
x2

]
+

β2d

[
4−

1
x1

−
x1x6

x4
−

x3x4

x6
−

1
x3

]
.

Thus, it impliesV̇1 ≤ 0 in Ω . The equalityV̇1 = 0 holds
only for x1 = x2 = x3 = x4 = x5 = x6 = 1 for which
Sm = S∗m,Sf = S∗f ,Sf s = S∗f s, Im = I∗m, I f = I∗f , I f s = I∗f s.
From the LaSalles invariance principle [39], the unique
endemic equilibriumE1 of system (1.1) is globally
asymptotically stable forR0 > 1.

5 Numerical simulation

The objective of these simulations is to illustrate some of
the theoretical results obtained in this paper. The system
(1.1) is simulated for various set of parameters using
XPPAUT [40]. In Figure 2, the stability of disease-free
equilibrium point E0 is shown for parameters values
Λ1 = 80,Λ2 = 60,Λ3 = 50,β1 = 0.00005,β2 =
0.0002,β3 = 0.0001,β4 = 0.0003,b1 = 0.107261,b2 =
0.0924,b3 = 0.25,µ = 0.0743,d = 0.123. The basic
reproduction number for this set of parameters is
0.939145 and the disease-free equilibrium pointE0 is
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Fig. 2: Stability of the disease-free equilibrium pointE0 for R0= 0.939145.

Fig. 3: Stability of the endemic equilibrium pointE1 for R0=1.460919.

(1076.7, 807.54, 672.95, 0, 0, 0, 0, 0, 0). Here, Figure.3
corresponds to the stability of the endemic equilibrium
point E1 for the parameter values
Λ1 = 200,Λ2 = 150,Λ3 = 100,β1 = 0.0002,β2 =
0.0004,β3 = 0.0002,β4 = 0.0004,b1 = 0.4,b2 =
0.3,b3 = 0.5,µ = 0.0463,d = 0.123
For this set of parameter values the basic reproduction
numberR0 is evaluated asR0 = 1.460919 and endemic
equilibrium point is (1341.5, 1387.7, 588.64, 308.96,
247.62, 133.16, 729.97, 438.77, 393.27). The phase
portrait of this equilibrium point inSm− Im; Sf − I f and
Sf s− I f s planes are shown in Figures. 4−6. In Figure 7,
the sensitivity of different population groups (i.e.
susceptible males, HIV infective males, AIDS infected

males, AIDS infected female, AIDS infected female sex
workers) is shown for different values ofβ2. It is
observed that the number of HIV infectives increases with
the increase in this parameterβ2, which corresponds to
the rate of transmission due to female sex-workers.

6 Discussion

In developing and low income countries, it has been
widely reported that the female sex workers are one of the
most vulnerable groups in transmission of the HIV. As the
HIV transmission is strongly associated with un-protected
sex, the WHO has framed guidelines [10] for prevention
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Fig. 4: The phase portrait of endemic equilibrium pointE1 in Sm− Im plane.

Fig. 5: The phase portrait of endemic equilibrium pointE1 in Sf − I f plane.

and treatment of HIV and other sexually transmitted
infections for sex workers in developing and low income
countries. As per these guidelines, the focus and emphasis
is to be on working towards the decriminalization of sex
workers. Furthermore, these guidelines have outlined a
set of interventions that includes: 1) health services
should be made available, accessible and acceptable to
sex workers grounded on the principles of avoidance of
stigma, non-discrimination; 2) to empower and make
aware the sex workers and emphasize that correct and
consistent use of condoms; 3) offering periodic screening

for asymptomatic STIs to female sex workers; 4)
voluntary HIV testing and counseling for couples and
female sex workers. Certainly, all these can be helpful to
reduce HIV transmission.

This paper has been motivated by the importance in
understanding the role of female sex workers in
transmission of the HIV an observation widely accepted
in all the major reports of the WHO. In this paper, the
disease-free equilibrium is globally stable forR0 < 1
whereas the endemic equilibrium is globally stable for
R0 > 1. Our numerical simulations demonstrate that with
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Fig. 6: The phase portrait of endemic equilibrium pointE1 in Sf s− I f s plane.

the increase in the rate of transmission due to female
sex-workers, the total HIV infective population increases.
Based upon the presented results, we conclude that to
control the spread of HIV/AIDS epidemic, awareness
among sex workers and their clients will play a very
effective role. Hence, the need is to make preventive and
informed services for the sex workers. More widespread
prevention efforts at a larger level with proper coverage
are required that include changing the social and legal
context of the sex workers.

Additionally, from the available research reports we
can observe that the stigma and discrimination attached to
sex workers are barriers in effective and equitable health
care and treatment. Furthermore, the criminalization of
the sex workers restricts individuals from availing the
health services which can improve their health and can
increase their life span. In this regard, the available
evidences suggest that the stigma reduction is critically
important in efficient implementation of HIV prevention,
care, and treatment policies [34].

We believe that the analysis reported in this paper can
be strengthened by better understanding of limitations of
the model and with appropriate real world data. The
interventions program and policies need to be designed to
guide and empower female sex workers to adopt healthier
sex behavior and to reduce their risk of HIV infection.
Our future work will go in this direction and currently,
this is under investigation.
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