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Abstract: In this paper, robust nonlinear control design to an ionic polymer metabposite (IPMC) with uncertainties and input
constraints is studied. The IPMC is a novel smart polymer material, angt patential applications for low mass high displacement
actuators in biomedical and robotic systems have been shown. Inagjether IPMC has highly nonlinear property, and the control
input is subject to some constraints to ensure safety and longer sereia# IPMC. Moreover, there exist uncertainties caused by
identifying some physical parameters and approximate calculation imdgmaodel. As a result, considering measurement error of
parameters and model error, a practical nonlinear model is obtaindd nonlinear robust control design with uncertainties and input
constraints using operator-based robust right coprime factorizatwop®sed. The effectiveness of the proposed control method base
on obtained nonlinear model is confirmed by simulation and experimersalts.

Keywords: lonic polymer metal composite, uncertainties, input constraints, rohostinear control, robust right coprime
factorization.

1 Introduction physics system. It can be said that most black-box and

gray-box models were developed to study certain
The ionic polymer metal composite (IPMC) belongs to response characteristics or phenomena in the material,
the category electroactive polymers (EAP), which is onewhich are mainly linear models. The white-box models,
of the most promising EAP actuators for applications,on the other hand, attempt to model physical processes
also called artificial muscle, is being developed to enablgaking place within the actuator, which are usually
effective, miniature, light and low power actuators. nonlinear models. For linear models, linear quadratic
Because IPMCs have the following characteristics: largeregulator (LQR), proportional integral and derivative
strain and stress induced electrically, light in weight, (PID), adaptive fuzzy algorithm and impedance control
small and simple mechanisms, small electric Scheme have been designed in precise position control
consumption, and low drive voltage etc., which have beer{4]. Moreover, the IPMC shows mainly nonlinear
shown to have many potential applications for behaviors in characteristics of large strain and stress, an
developments of miniature robots and biomedical devicest practical mathematical model and an effective control
[1,2]. method are desirable in precise position control.

The IPMC is usually broken up into three categories  Precision position control is critical in ensuring
of different model types: black-box, gray-box, and precise and safe operation of IPMC actuators.
white-box B]. The black-box models have no prior Considering an application as a robotic manipulator,
knowledge of the system at all. The gray-box modelsIPMC has to move arbitrarily from one specified position
have some knowledge of system or structure. Theto another. It needs a skilful operator to control manually
white-box models are obtained by physical systembased on his or her experiences to stop the swing
derivation and have a comprehensive knowledge ofimmediately at the right position. It is well known that
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right coprime factorization has been a promising where,

approach for analysis, design, stabilization and contiol o F(1C V)

nonlinear system4y]. Especially, robust right coprime a=—xr

factorization has attracted much attention due to its o 3)
convenient in researching input-output stability prolsem | b = F<-0_C4Y)

of nonlinear system €,7,8,9]. On the whole, this °

approach has been proved effective in theoretical studiek is Faraday’'s constan€™ is the anion concentrations,
and practical applications on nonlinear systems. HoweverdV is the volumetric changeR is the gas constant, afid
for nonlinear system with uncertainties and input is the absolute temperature.

constraints, how to realize output tracking performance is r (v)
still a challenging issue. As a result, in this paper, robustC; (V) = Ske———— (4)
nonlinear precision position control design to an IPMC 2I (v)

with uncertainties and input constraints is studied. Thati s— w| s the surface area of the IPMT, W and H
first, considering measurement error of parameters angionote the length, the width and the thickness of the
model error of IPMC, an improved practical nonlinear |ppc respectively.

model with uncertainties of IPMC is obtained. Second, an

operator-based robust nonlinear control design to IPMC o1 SF ch'“e*ﬁfr

with uncertainties and input constraints is presented. a(V) = RT (K CH++e*§§)2 )
Finally, some simulation and experimental results are !

shown to confirm the effectiveness of the proposedk; = LSH ki andk_; are the chemical rate constants for

. . k,l’
control method based on obtained nonlinear model. forward and reverse directions of electrochemical surface

The outline of the paper is organized as follows. In processg, is some constant, ar@l** is the concentration
Section2, an nonlinear model with uncertainties of IPMC  of the hydrionH *.

and problem statement are described. Operator theorem

are introduced, and robust stable control design using (V) = Yiv+YaV2 + Yav® (6)
operator based approach is proposed in Secdioihe Y1, Y» andY; are the coefficients of polynomial
simulation and experimental results are shown in Section ™’ '
4, and Sectiorb is the conclusions.

2.2 Problem Satement

2 Nonlinear model and problem statement The above dynamic model has a comprehensive
knowledge of the physics system derivation, and is an
accurate mathematical model. However, it is difficult to
be adopted absolutely in practice because it is still
difficult to identify accurately some physical parameters.
The dynamic models of IPMCs fall into two general Moreover, some physical parameters are small enough for
categories: linear models, and nonlinear models. Lineainfluence of dynamic model. As a result, in this paper, a
models have no prior knowledge or some knowledge ofpractical nonlinear model is obtained. In the following
the system. Nonlinear models have a comprehensivg@art of this subsection, how to obtain the practical
knowledge of the physics system derivation. A nonlinearnonlinear model based above dynamic model will be
dynamic model of IPMC can be modeled by the explained.

2.1 Nonlinear model of IPMC

following equations 3): In general, AV is little enough in (3), andC™ is a
bound constant, thel€~AV| — 0, the parametera and
V= — (C"z’\))(%%;)’?%;;c) bin (3) can be calculated approximately by the following
v (1)  equations,
_ 3agKe(4/2I (V)—V) 2~—
y= YoH? ar ~EC @)

_ b ~
RT’ RT Ke

The IPMC can operate in a humid environment or a dry
environment, in this paper, the IPMC setup is investigated
in a dry environment, theB™"*+ — 0, so

where, v is the state variabley is the control input
voltage, y is the curvature outputR, is the electrodes
resistanceR. is the ion diffusion resistanceyg is the
coupling constantye is the equivalent Young’s modulus
of IPMC, andke is the effective dielectric constant of the C,(v) ~0 (8)
polymer.T” (v), C1(v) andCy(v) are functions of the state

variable and some parameters, In (6), Y1, Y2 andY; are little enough, andY(v)| <

[v|. So, in (1), becausB,; andR; are boundedy (v) can
b ave & ave—&v be ignored and considered as model error. In addition to

r(v)= ?(1_6_5“, —|n(1_e_av) -1 (2)  some physical constants, suchTasL, W, H, R, andR;
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must be measured or identified by experiments, which will  Next, generalized Lipschitz operator is introduced,
also create error. Therefore, in this paper, a now nonlineawhich is defined on extended linear space. Thus, extended
model is obtained, normed linear space, or simply, extended linear space is
V= . vu noted firstly.
C(V)(Ra+Re) Let Z be the family of real-valued measurable
| ook (9 functions defined 010, ), which is a linear space. For
= Vo2 +AP each constart < [0, ), let Pr be the Projection operator

mapping from Z to another linear spaceZr, of

where,AP is uncertainties consisting of identifying error measurable functions such that

of parameters and model error of the IPMC.

Substituting (2), (4) and (7) into (9), the following _ ), t<T
nonlinear dynamic model of IPMC is obtained, fr®):=Pr(H 0, t>T (13)
B (v—u)\/Zb( ave 2 —In(2e S0)-1) where, fr(t) € Zr is called the truncation of (t) with
- _SKeb(Ra FR)(1- e e Ve T ay) respect toT. Then, for any given Banach spaee of
ave (1-e72) (10)  measurable functions, set
B 3C{0Ke\/2b( ave o —In(2e0)—1) Xe={feZ: |fr|x <o foral T <o} (14)

y aYeH? +A4P . . .
. , B Obviously, X® is a linear subspace d. The space so
Defining a new state variable = av, the above (efined is called the extended linear space associated with

nonlinear dynamic model can also be described by thgne Banach spack.

following equations, We note that the extended linear space is not complete
_ (xfau)\/Zb( e X (e X)) in norm in general, and hence not a Banach space
X= - e el—;?l_e—x_x) (complete normed vector space), but it is determined by a

1-eX
Seb(RartRe) (1= S5) (1-e%)? (11) relative Banach space. The reason of using extended

- - linear space is that all the control signals are finite
_ 300Ke\/2b( e IN(FE)-1) +AP time-duration in practice, and many useful techniques and
N aYeH? results can be carried over from the standard Banach
For the IPMC actuators, to ensure safety and longeispaceX to the extended spac€® if the norm is suitably
service life of IPMC, and the process input is subject to adefined.
constraint on its magnitude. Considering uncertaintiesDefinition 2. Let X® and Y® be extended linear spaces
and input constraints, a nonlinear robust control desigrassociating respectively with two given Banach spaces
using operator-based robust right coprime factorizatoon i and Y of measurable functions defined on the time
studied, so that the validity of the obtained nonlineardomain|0,), and letD be a subset oK®. A nonlinear
model and the effectiveness of the proposed controbperatorQ: D — Y€ is called a generalized Lipschitz

method can be confirmed. operator orD if there exists a constahtsuch that

Q)T — Q)] ||y < Lllxr —%rx (15)
3 Robust stable control design using operator for all x,X € D and for allT € [0,%). Note that the least
based approach such constarit is given by the norm of) with

ip= +
3.1 Operator theorem and robust right coprime Qe = Qo) + 1l QeI — Q|
factorization =[Qx0)[ly + sup sup T Tlly

3 (16)
Te(0w) k7D [[xr —%r|x

Let X and Y be linear spaces over the field of real
numbers, and leXs andYs be normed linear subspaces, for any fixedxp € D.
called the stable subspaces Xfand Y, respectively, We remark that the family of standard Lipschitz
defined suitably by two normed linear spaces underoperator and generalized Lipschitz operator are not
certain norm Xs = {x € X : x| < «} and comparable since they have different domains and ranges.
Ys={yeY:|y|| <»}. Generally, an operat@: X —Y  The definition of generalized Lipschitz operator has been
is said to be bounded input bounded output (BIBO) stableproved more useful than standard Lipschitz operator for
or simply stable ifQ(Xs) C Ys. nonlinear system control and engineering in the
Definition 1. Let S(X,Y) be the set of stable operators considerations of stability, robustness, uniqueness of
from X toY. ThenS(X,Y) contains a subset defined by ~ internal control signals. For any operators defined
) throughout the paper, they are always assumed to be
uX,Y) ={M:MeSX,Y)} (12) generalized Lipschitz operators. For simplicity, Lipgzhi
where,M is invertible withM~—* € S(Y,X). Elements of  operator is always mean the one defined in generalized
u(X,Y) are called unimodular operators. case in this paper.
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Based on the concept of Lipschitz operator, an
operator-based nonlinear feedback control system with av
uncertainty shown was considered B €]. The nominal f 1
plant and uncertainty are andAP, respectively, and the uey €U | o o o P v L
real plantP = P+ AP. The right factorization of the bev I

nominal plantP and the real planf are P = ND1,
P-+AP = (N+AN)D™1, whereN, AN, andD are stable
operatorsD is invertible, AN is unknown but the upper ] 4 -
and lower bounds are known. Moreover, the factorization
is said to be coprime, d? is said to have a right coprime
factorization, if there exist two stable operatétsand B
satisfying the Bezout identity,

Fig. 1. A nonlinear system with uncertainties based on robust
right coprime factorization

AN+BD =M (17)
where, B is invertible, M € u(W,U)_ is unimodular DenoteN, D andAN as the following forms,
operator. Under the condition of (17), if
. Sebl(Ra-+Ro)o(t) (1 2-¢-20) ) e~ i1e 00 oty
A(N+AN)+BD =M € u(W,U) (18) D(w)(t) = e w(t)e @0 (1o O0)2 _
H(A(N —|—AN) —AN)M71H <1 a\/zb( w(t)e= @) In( w(t)e*w(t))71>
1-ew(t) 1-e— (1)
the BIBO stability of the nonlinear feedback control
system with uncertainty can be guaranteed, that is, the + @ (21)
system has the robust stability property, where, 3 o @000 | wme @b
M € u(W,U) is unimodular operator, anf || is Lipschitz N(w)(t) = aoKe\/ (e om 2”( L eon )Y
operator norm. — Al —
It's worth to mention that the initial state should also | AN(w) (t):A\/zb( “i(t>§w(f)) _|n(“l’<‘)‘iw(f)> )—1)

be considered, that i8N (wo, to) + BD(Wo, to) = M (Wo, to) -° -
should be satisfied. In this papés,= 0 andwp = 0 are To ensure safety and longer service life of IPMC, and
selected. the process inputug(t) is subject to the following

constraint on its magnitude,

3.2 Operator-based controllers design Ua(t) = o (u(t))

Urmax; V > Umax
Considering the nonlinear system with bounded 0(V) = ¢ V,  Umin <V < Umax (22)
uncertainties, the robust control problem by using robust Umin, V < Umin

right coprime factorization approach has been researched. . . .
A%sume?that the uncertaintigg are given\® whereAP Whereu (1) is the control input before the constraingax

is unknown but bounded. The right factorization of the \ioi\; aendlt’g‘” :r;gﬁ/r:resgfaex”gu?r;ggﬁgeo?n?hrgmmm%
nonlinear system is the following form 9 P ’

respectively. When the input is limited in (22), the limited
P=P+AP= (N +AN)D*1 (19) part can be equivalent to uncertainty of the system. Then,

. . . the entire uncertainty of the system is expressed as the
From [11], we can see that if the following conditions are following form y y P

satisfied, .
ANFEDZL AR:W =Y
A(N+AN)+BD =L (20)  Then, we can design operatofsand B to satisfy the
I(A(N+AN) —AN)L7Y| < 1 following Bezout equations. H-Unax < U1 < Urax,
then the stability of the uncertain systéhis guaranteed, {AlN +BD =1 23)
where L and L are unimodular operators arfp- || is [AL(N+AN) —AIN)[| <1

Lipschitz operator norm, and shown in Fig. 1.

Then, we consider the mentioned nonlinear IPMC
control model by using robust right coprime factorization. {AzN +BD =1 (24)
For the model described by equation (11), there exist| [[(A2(N+AN)—AN)|| <1
somet gr;_certamhesAkP In éhf blng dmIOd?:I: Tlheth Where operato”; and A is stable and is invertible.
uncerates are unkaoun bt bourded. In P, L, e rhereiore, o the s of e IPMC contol ystem it
AN. That is, uncertain operatoAN denotes the onstraintinputs, we suppose that
uncertainties caused by approximate calculation. B(ug)(t)=auq(t) (25)

else
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According to the robust stable conditions;iflmax < u <
urnaX1

2
() ()= 2R R g (26)
else

2
poly) 2 R g o) @

whereg(-) is constraint function related @(uy ).

3.3 Tracking performance

Besides the robust stability of the IPMC system is

guaranteed, the tracking performance of the system needs
also to be considered. Here, the tracking condition is

difficult to obtain for the operatoN is a complex

and is the gain oP in the first norm, where the norm af
restricted to any intervadD, T] will be denoted byj|x, t||.

In this paper, the gain d? is the generalized Lipschitz
operator norm defined iDefinition 2. Since C andP are
stable, the existence bfis ensured. Defining an operator
from r* to y as G, we haveG = PCx (I — G) as the
feedback equation, where the cascBe: (I — G) means
the operatoPC following the operatoil — G. Then, we

summarized the exponential iteration theorem in
Lemma 1.
Lemmal (Exponential Iteration Theorem). The

feedback equationG = PC % (I — G), in which all
operators map the Banach spadg into itself, has a
unigue solution forG, which converges uniformly on
[0, T], provided that conditions 2) and 3) are satisfied.
The plant output is bounded [6].

Lemma 1 means sinc¥s is complete the sequence is
uniformly convergent off0, T]. It may be established that

nonlinear function, such that we design a tracking systenf® —PC+ (I —G) =0 and itis unique. Then the plant output

given in Fig. 2, where the stabilizing system regarded adS bounded. Furthet] +PC)*(r*)(t) exists.

controllerC is shown as the following form.

u(t) = Kpe(t) +K; /e(r)dr (28)
The stabilizing system
* Y u* ~
e fel 0 - P »

Fig. 2: The tracking control system

From Fig. 2, the error signa& ¢an be described in the
following equation:

&= (1 +PC)L(r") (29)

where,| is the identity operator. Because the spaces of the

nonlinear plant outpu¥ and reference input) are the
same, it is obvious that the operatdt + PC)~! is
mapping Y to Y from Fig. 2. Hence, the relationship in
the reference signaf and the error signat is in linear

space. Then, one of conditions of the exponential iteration(r*(t) + Kpﬁ(r*)(t) + K; féf’(r*(r))dr)*l

theorem is also satisfied, namely, the spacesanfdy are
the same. The designed controlérand the stabilizing
systemP satisfy the following conditions.

1) Foralltin [0, T], Cis stable, and(r*) > K; >0 as
T>t>t>0,r">0.

2)PC(0) =0.

3) [IPC(x) — PC(y)|| < h fg [~ y,ta|[dity for all x, y in
the subspac¥ of Y and for allt in [0, T], his any constant

made arbitrarily small. That ig(t) — r*(t) can be made
arbitrarily small byt < T large enough.
Proof. From Figs. 1 and 2, we have

y(t) =r7(t) —&t) (30)
From (29) and (30), we have
y(t) =r*(t) = (1 +PC) 1 (r) (1) (31)

Sincel is the identity operator, namellr*) = r*[1] [6],
then

y(t) = r (1) = (") + PC(r* (1))
=r(t) = () +KpP(r)()
+K /t B(r*(1))dr) (32)
0

Considering Condition 1) of the controller design, namely,
P(r*) > Ky >0asT >t >t; >0, we obtain

KoP(r)(t) + K, /0t B(r*(1))dt > KKy + Ki /0t B(r* (1))d7) 2
> KoKy + K /Otl B(r* (11))d1y + KiKy /t'tdr2 33)

KiKq fttl dr, can be made arbitrarily large by making: T
large enough. Then,
becomes
arbitrarily small. From (32)y(t) — r*(t) can be made
arbitrarily small, andy(t) tracksr*(t). This fact leads to
the desired result, and the proof is completed.

From the analysis we can see that based on the
proposed design scheme, the BIBO stability can be
guaranteed by the designed operator controkeasnd B.
The output tracking performance can be realized by
designed tracking controll €.
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Table 1: Parameters in the IPMC

T F Ke

290K 96487 Qmol I 1.12x 10 Fm1
Ra R Ye

18Q 8.3143 Jrol " IK-T  0.56 GPa

Re Cc™ 0o

60Q 980 mol 012r 1

L W H

50mm 10 mm 20Qum

040,03 .31

4 Simulation and experimental results

4.1 Experimental system Fig. 3: Photograph of experimental setup

Fig. 3 shows photograph of experimental setup. In this
experimental setup, an IPMC sample of dimensions 50 0.0
mm * 10 mm * 0.2 mm is clamped at one end, and is
subject to voltage excitation generated from the computer
and board (PCI-3521). A laser displacement sensor 0.07F
(ZX-LD40: 40+10mm) is used to measure the bending 5 0e
displacement.

Curvature [1/m]

4.2 Smulation Results 0.0

Some identified physical parameters are shown in Table 1. | °
In the simulation, the uncertain factor in (21) is modeled 0. eh uncertainties
asA = 300KV 5op | fact, the uncertainties of model

aYeh?
is smaller tehaMN, so robust stability of the system can

be guaranteed. The curvature control simulation results of
the IPMC based on right coprime factorization with Fig. 4: The curvature control simulation results based on the
uncertainties and without uncertainties are shown in Fig.Proposed method

4, respectively. From Fig. 4, we can see the nonlinear
IPMC with uncertainties system using right coprime
factorization is robust stable. Fig. 5 shows the simulation
result of system with tracking controller, the reference
input of the curvature is; = 1[1/m|, where the tracking
controller is given as follows. oo

35 40 45 50

u(t) = 50e(t) +o.000015/ e(1)dr (34)

From Fig. 5, we can find that the IPMC control output
can track the reference input using the tracking controller

Curvature [1/m]
=3
It}

4.3 Experimental result I

Time [sec]

Fig. 6 shows the displacement response, where the
desired outputs of displacemeahare 4 [mm], 8 [mm], 12
[mm], respectively. The results show that the robust
stability of the IPMC displacement control system is
guaranteed and tracking performance is satisfied by using
the proposed method.

Fig. 5: The simulation result with tracking controller
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