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1 Introduction

Let A be the class of functions analytic in the open unit
discE = {z : |z|< 1} and be given by

f (z) = z+
∞

∑
n=2

anzn
. (1)

Let S⊂ A be the class of functions which are univalent
and alsoK,S∗,C be the well known subclasses ofSwhich,
respectively, contain close-to-convex, starlike and convex
functions.

Let Vm(ρ),m≥ 2,0≤ ρ < 1, be the class of functions
f analytic and locally univalent inE and satisfying the
condition
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dθ ≤ mπ. (2)

Whenρ = 0, we obtain the classVm(m≥ 2) of functions
with bounded boundary rotation, see [4]. The classVm(ρ)
was introduced and discussed in some detail in [8]. It can
easily be shown thatf ∈ Vm(ρ) if and only if there exists
f1 ∈Vm such that

f ′(z) = ( f ′1(z))
1−ρ

. (3)
The convolution of two functionsf (z) given by (1) and

g(z) = z+
∞
∑

n=2
bnzn is defined as

( f ∗g)(z) = (g∗ f )(z) = z+
∞

∑
n=2

anbnzn
.

In [5], the domainΩk,k∈ [0,∞) is defined as follows:

Ωk = {u+ iv : u> k
√

(u−1)2+v2}. (4)

For fixed k, Ωk represents the conic region bounded,
successively, by the imaginary axis(k = 0), the right
branch of a hyperbola(0< k < 1) and a parabola(k = 1)
and an ellipse(k> 1). Also, we note that, for no choice of
k(k> 1), Ωk reduces to a disc, see [5,18].

In this paper we will choosek∈ [0,1]. Fork∈ [0,1], the
following functions, denoted bypk(z), are univalent inE,
continuous as regard tok, have real coefficients and map
E ontoΩk such thatpk(0) = 1, p′k(0)> 0:

pk(z) =



































1+z
1−z , (k= 0),

1+ 2
π2

(

log 1+
√

z
1−√

z

)2
, (k= 1),

1+ 2
1−k2 sinh2

[

(

2
π arccosk

)

arctan
√

(z)
]

, (0< k< 1).

see[5] . (5)

Let P denote the class of Caratheodory functions of
positive real part. Then the classP(pk) ⊂ P is defined as
follows

Definition 1. Let p(z) be analytic in E with p(0) = 1. Then
p∈ P(pk), if p(z) is subordinate to pk(z) given by (5). We
write p∈Ppk implies p(z)≺ pk(z) in E, and p(E)∈ pk(E).

We note thatP(p0) = P. It is easy to verify thatP(pk) is a
convex set and

P(pk)⊂ P(ρ), ρ =
k

k+1
,
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whereP(ρ) is the class of functions with real part greater
thanρ , see [6].
Also, for p∈ P(pk), it is known [22] that

|argp(z)|< σπ
2

=















π
2 , (k= 0),
arctan1

k , (k 6= 0),
π
4 , (k= 1).

(6)

We extend the classP(pk) as given below

Definition 2. Let p(z) be analytic in E with p(0) = 1. Then
p∈ Pm(pk), if and only if, for m≥ 2, k∈ [0,1], we have

p(z) =

(

m
4
+

1
2

)

p1(z)−
(

m
4
− 1

2

)

p2(z), (7)

p1, p2 ∈ P(pk).

When k = 0, we obtain the classPm introduced and
studied in [20]. Also P2(pk) = P(pk).

We now define the following

Definition 3. Let f ∈A. Then f∈ k−UVm, k∈ [0,1], m≥ 2
if and only if

[

1+
z( f ′′(z))

f ′(z)

]

∈ Pm(pk), z∈ E.

k−UVm is called the class of functions with k-uniform
boundary rotation.

For k= 0, 0−UVm =Vm, see [4,12,13,14].

The corresponding classk−URm is defined as

k−URm = {F ∈ A : F = z f′, f ∈ k−UVm}.

We note that:

(i) k−UV2 = k−UCV, is the class of uniformly convex
functions.

(ii) k−UR2 = k−ST is the class of uniformly starlike
functions.

For details of these special case, we refer to [22].

Definition 4. Let f ∈ A. Then f∈ k−UTm if there exists
g∈ k−UVm such that

f ′(z)
g′(z)

∈ P(pk),z∈ E.

For k= 0, we have the classTm, introduced and discussed
in [10].

Also, for k = 0,m= 2, k−UTm reduces to well known
classK of close-to-convex functions, see [7].

Let φ ∈ A. Then f ∈ k−UTm(φ) if and only if
( f ∗φ) ∈ k−UTm for z∈ E.

Definition 5. Let f ∈ A. Then, for a≥ 0,0 ≤ γ < 1, f ∈
k−UTm(a,γ ,φ) if and only if there exists g∈ k−UTm(φ)
such that

z f′(z)+a f(z) = (a+1)z(g′(z))γ
. (8)

We note that

k−UTm

(

0,1,
z

1−z

)

= k−UTm,

0−UTm

(

0,1,
z

1−z

)

= Tm.

Also
0−UT2 (0,1,− log(1−z)) =C∗

,

the class of quasi-convex functions, see [17].

Throughout this paper, we assume thatk∈ [0,1], γ ∈ (0,1],
m≥ 2, ℜ(a)>−1, z∈ E, unless otherwise specified.

2 Preliminaries

Lemma 1([19]). Let q(z), be analytic in E with q(0) = 1.
If α ≥ 1,ℜ(c)≥ 0, 0≤ θ1 < θ2 ≤ 2π,z= reiθ , then

θ2
∫

θ1

ℜ
{

q(z)+
αzq′(z)

cα +q(z)

}

dθ >−π

implies
θ2
∫

θ1

ℜq(z)dθ >−π.

Lemma 2([16]). Let f ∈ k−URm. Then there exist
si ∈ k−ST, i = 1,2 such that

f (z) =
(s1(z))

m+2
4

(s2(z))
m−2

4

.

Lemma 3([10]). Let g∈Vm(ρ). Then, for
0≤ ρ < 1,θ1 < θ2,

(i) g′(z) = (g′1(z))
1−ρ , g1 ∈Vm.

(ii)
θ2
∫

θ1

ℜ
{

(zg′(z))′

g′(z) dθ
}

>−
(

m
2 −1

)

(1−ρ)π.

3 Main Results

Theorem 1.Let G∈ k−UTm. Then, forθ1 < θ2, z= reiθ ,

θ2
∫

θ1

ℜ
{

(zG′(z))′

G′(z)
dθ
}

>−
(

m−2
2(k+1)

+σ
)

π.
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Proof. SinceG ∈ k−UTm, there existG1 ∈ k−UVm and
k−UVm ⊂Vm(ρ), ρ = k

k+1, such that

G′(z)
G′

1(z)
= hσ (z), (9)

whereσ is given by (6) andh∈ P.
Also we observe that, forh∈ P,

∂
∂θ

argh(reiθ ) =
∂

∂θ
ℜ
{

−i lnh(reiθ )
}

= ℜ
{

reiθ h′(reiθ )

h(reiθ )

}

,

and so
θ2
∫

θ1

ℜ
{

reiθ h′(reiθ )

h(reiθ )

}

dθ = argh(reiθ2)−argh(reiθ1).

Hence

max
h∈P

∣

∣

∣

∣

∣

∣

θ2
∫

θ1

ℜ
{

r ieθ h′(reiθ )

h(reiθ )

}

dθ

∣

∣

∣

∣

∣

∣

= max
h∈P

∣

∣

∣argh(reiθ2)−argh(reiθ1)
∣

∣

∣

≤ 2sin−1 2r
1− r2

= π −2cos−1 2r
1− r2 . (10)

Now differentiating (9) logarithmically and using
Lemma 3 together with (10), we obtain

θ2
∫

θ1

ℜ
{

(zG′(z))′

G′(z)

}

dθ >−
(

m−2
2(k+1)

+σ
)

π.

This completes the proof.⊓⊔

Theorem 2.Let f ∈ k−UTm(a,γ ,φ), ℜ(a)≥ 0,0< γ ≤ 1,
θ1 < θ2 and z= reiθ . Then

θ2
∫

θ1

ℜ
{

p(z)+
zp′(z)

a+ p(z)

}

dθ >−γ
{

(m−2)
2(k+1)

+σ
}

π,

where

p(z) =
z f′(z)
f (z)

.

Proof.Let G(z) = (g∗φ)(z). Then, by definition,

z f′(z)+a f(z) = (a+1)z(G′(z))γ
, G∈ k−UTm.

Differentiating logarithmically, and with simple
computations, we have

a+ (z f′(z))′

f ′(z)

1+a f (z)
z f′(z)

= γ
(zG′(z))′

G′(z)
+(1− γ).

That is, withp(z) = z f′(z)
f (z) , we have

ℜ{p(z)+
zp′(z)

a+ p(z)
} ≥ γ ℜ

(zG′(z))′

G′(z)
.

Using Theorem 1, we obtain the required result. �

Corollary 1. For m≤
[

2(1−γσ)(k+1)
γ +2

]

, we use

Lemma 1 to have from Theorem 2,

θ2
∫

θ1

ℜ
{

z f′(z)
f (z)

}

dθ >−π, f ∈ k−UTm(a,γ ,φ).

Corollary 2. Let f ∈ k − UTm(0,1,φ). Then, for
m≤ 2{(1−σ)(k+1)+1},

θ2
∫

θ1

ℜ
{

(z f′(z))′

f ′(z)

}

dθ >−π,

and hence f(z) is univalent in E, see [7].

If k= 1, thenσ = 1
2 and in this casef (z) is univalent inE

for 2≤ m≤ 4.

Theorem 3.For 0< γ1 < γ2 ≤ 1, z∈ E,

k−UT2(a,γ1,φ)⊂ k−UT2(a,γ2,φ).

Proof.Let f ∈ k−UT2(a,γ1,φ). Then

z f′(z)+a f(z) = (a+1)z(G′(z))γ1, G(z) = (g∗φ)(z) ∈ k−UT2,

= (a+1)z(H ′(z))γ2,

where

H ′(z) = (G′(z))
γ1
γ2 , H = h∗φ .

We now show thatH ∈ k−UT2 and this will prove that
f ∈ k−UT2(a,γ2,φ).
Now

H ′(z) = (G′(z))
γ1
γ2 , G∈ k−UT2,

γ1

γ2
< 1.

SinceG∈ k−UT2, there exists a function
G1 = (g1∗φ) ∈ k−UV2 such thatG

′(z)
G′

1(z)
∈ P(pk) in E.

Let G′
∗(z) = (G′

1(z))
γ1
γ2 ,

γ1
γ2
< 1.

It is easy to verify thatG∗ ∈ k−UV2 in E. Thus

H ′(z)
G′∗(z)

=

(

G′(z)
G′

1(z)

)

γ1
γ2 ∈ P(pk),

sinceγ1
γ2
< 1. This completes the proof. �
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Remark. From definition 5, the following integral
representation for the classk−UTm(a,γ ,φ) can easily be
obtained.

A function f ∈ k−UTm(a,φ ,γ) if and only if there exists
a functionG∈ k−UTm(∞,γ ,φ), such that

f (z) =
a+1

za

a
∫

0

za−1G(t)dt. (11)

Theorem 4.Let f ∈ 0−Tm(a,1,φ)=Tm(a,1,φ). Then f is
a Bazilevic function and hence univalent in|z|< rm, where
rm is given by

rm =
1
2

{

m−
√

m2−4
}

. (12)

Proof.We can write, forf ∈ Tm(a,1,φ),

f (z) =
a+1

za

z
∫

0

ta−1F(t)dt, F ∈ Tm(∞,1,φ).

Let a= c+ id, c> 0. Then we have

f (z) =
(c+1)+ id

zc+id

z
∫

0

tcp(t)g(t)t id−1dt, (13)

wherep∈ P, g∈ 0−URm = Rm.

We define

G(z) = z

(

g(z)
z

) 1
c+1

.

Then

zG′(z)
G(z)

=

(

1− 1
c+1

)

+
1

c+1
zg′(z)
g(z)

.

Now zg′(z)
g(z) ∈ Pm andPm is a convex set, soG∈ Rm and, it

is known [20] thatG∈ Rm is starlike for|z|< rm whererm
is given by (12).
Further we definef1(z) as

f1(z) =



(c+1+ id)

z
∫

0

Gc+1(t)p(t)t id−1dt





1
c+1+id

.

f1(z) is Bazilevic function, see [1], and hence univalent in

|z|< rm. Thereforef1(z)
z 6= 0, |z|< rm.

We note that

f1(z) = z

(

f (z)
z

) 1
a+1

, a= c+ id.

This means thatf (z), given by (13), is analytic and for
(

f (z)
z

) 1
a+1

, it is possible to select uniform branch which

takes the value one forz= 0 and which is analytic for|z|<
rm and also allows us to compute the derivative in|z|< rm.
Thus we conclude thatf (z) is univalent in|z|< rm, where
rm is given by (12). This completes the proof.⊓⊔

Theorem 5.Let f ∈ 0−UTm(∞,γ ,φ) = Tm(∞,γ ,φ). Then
the radius rm1 of the disc which f maps onto a starlike
domain is given by

rm1 =















1
2γ1

{

m1−
√

m2
1−4γ1

}

, γ 6= 1
2,

1
m1

, γ = 1
2.

, (14)

where m1 = (m+2)γ andγ1 = (2γ −1).

Proof. f ∈ Tm(∞,γ ,φ) implies that

f (z) = z(G′(z))γ
, G= (g∗φ) ∈ Tm. (15)

Logarithmic differentiation of (15) gives us

z f′(z)
f (z)

=
γ(zG′(z))′

G′(z)
+(1− γ).

Therefore, using a result [11] for G∈ Tm, we obtain

ℜ
{

z f′(z)
f (z)

}

≥ (2γ −1)r2− γ(m+2)r +1
1− r2 ,

and right hand side is positive for|z| < rm1. This proves
the result. ⊓⊔

We now investigate the rate of growth of coefficients off ∈
k−UTm(a,γ ,φ). Let f (z) be given by (1) and letg(z) =

z+
∞
∑

n=2
bnzn, φ(z) = z+

∞
∑

n=2
cnzn.

We have:

Theorem 6. Let f ∈ k − UT(a,γ ,φ). Then, for

m>

{

(2−σγ)(k+1)
σ −2

}

,

|an| ≤C(m,γ ,k)
∣

∣

∣

∣

a+1
n+a

∣

∣

∣

∣

n{
γ

k+1(
m
2 +1)+γσ−1}

,n→ ∞,

where C(m,γ ,k) is constant depending only on m,γ and k.

Proof.We can write

z f′(z)+a f(z) = (a+1)z(G′(z))γ
, (16)

where
G(z) = (g∗φ)(z) ∈ k−UTm.

This implies there existsG1 ∈ k−UVm such that

G′(z) = (G′
1(z))(h(z))

σ
. (17)

Then, withz= reiθ , we have

(n+a)|an|

=
1

2πrn

∣

∣

∣

∣

∣

∣

2π
∫

0

{

z f′(z)+a f(z)
}

e−inθ dθ

∣

∣

∣

∣

∣

∣

=
1

2πrn−1

∣

∣

∣

∣

∣

∣

2π
∫

0

(a+1)(G′(t))γdθ

∣

∣

∣

∣

∣

∣

, G∈ k−UTm. (18)
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Now, sinceG∈ k−UTm, there existsG1 ∈ k−UVm, such
that

G′(z) = G′
1(z)h

σ (z), h∈ P,

andσ is given by (6).
Using Lemma 2 together with the known result [22] that
k−ST⊂ S∗(ρ), ρ = k

k+1, we have

G′
1(z) =

(

t1(z)
z

)(1−ρ)(m
4 +

1
2)

(t2(z)z)
(1−ρ)(m

4 − 1
2)
, t1, t2 ∈ S∗. (19)

Define, form>

{

2−σγ
σ(1−ρ) −2

}

, z= reiθ .

Iγ(r) =

2π
∫

0

|G′(z)|γdθ , G∈ k−UTm.

Then, from (19)

Iγ(r) =
1

rγ(1−ρ)

2π
∫

0

|t1(z)|γ(1−ρ)(m
4 +

1
2)

|t2(z)|γ(1−ρ)(m
4 − 1

2)
|h(z)|γσ dθ

≤ 1

rγ(1−ρ)

(

4
r

)γ(1−ρ)(m
4 − 1

2)

×
2π
∫

0

|t1(z)|γ(1−ρ)(m
4 +

1
2)|h(z)|γσ dθ ,

where we have used well-known distortion result for the
starlike functiont2(z). We now apply Holder’s inequality,
use subordination for starlike functions and a result due to
Pommerenke [21] for h∈ P to have, for
σ(1−ρ)(m+2)> 2−σγ ,

Iγ(r) ≤ 1

rγ(1−ρ)

(

4
r

)γ(1−ρ)(m
4 − 1

2)

×





2π
∫

0

|t1(z)|γ(1−ρ)(m
4 +

1
2)





2−σγ
2




2π
∫

0

|h(z)|2dθ





γσ
2

≤C(m,γ ,k)
(

1
1− r

)
γσ
2
(

1
1− r

)γ(1−ρ)(m
2 +1)+ γσ

2 −1

,

whereC(m,γ ,k) is a constant depending only onm,γ ,k.
That is

Iγ(r) = O(1)

(

1
1− r

)γ(1−ρ)(m
2 +1)+ γσ

2 −1

,

Now, with r = 1− 1
n, we have from (18),

|an| ≤C(m,γ ,k)
∣

∣

∣

∣

a+1
n+a

∣

∣

∣

∣

n
γ(m+2)
2(k+1) +γσ−1

, (n→ ∞).

This completes the proof.⊓⊔

We note the following special cases.

(i) Let f ∈ 1−UTm
(

∞,1, z
1−z

)

=UTm(∞,1).
Thenρ = 1

2, γ = 1
2 and

an = O(1)n
m
4 f or m> 4,

and, for f ∈ 1−UTm
(

∞,1, z
1−z

)

= UTm(∞,1), we get

an = O(1).n
m
4 −1

,m> 4.

(ii) Let k= 0 and f ∈ Tm
(

∞,γ , z
1−z

)

. Then, form≥ 2

an = O(1)nγ(m
2 +1)+γ−1 = O(1)n

γm
2 +2γ−1

,(n→ ∞).

When we takeγ = 1, then

an = O(1)n
m
2 +1

.

(iii) Let f ∈ Tm
(

0,γ , z
1−z

)

. Then, form≥ 2

an = O(1)n
γm
2 +2γ−2

,

and withγ = 1, we obtain, form≥ 2

an = O(1)n
m
2 , (n→ ∞).

This result is proved in [11]. See also [15].

(iv) Let f ∈ k − UTm(∞,γ , log(1 − z)). Then, for

m> 2
{

2−γσ
γ(1−ρ) −1

}

,

an = O(1)n
γ(m+2)
2(k+1) +γσ−2

.

With k= 1, γ = 1, we haveσ = 1
2 and so, form> 4

an = O(1)n
m
4 −1

, (n→ ∞).

Also, if we takek= 0,γ = 1. Thenσ = 1 and so

an = O(1)n
m
2 , (n→ ∞).

Theorem 7. Let f ∈ k−UTm(0,1,φ). Denote by L(r, f ),
the length of the image of the circle|z| = r under f , by
A(r, f ), the area of f(|z|< r) and M(r, f ) = max

θ
| f (reiθ )|.

Then

L(r, f ) = O(1)M(r, f ) log
1

1− r
,

where O(1) is a constant.

Proof.Since f ∈ k−UTm(0,1,φ), we have

z f′(z) = zG′(z), G(z) = (g∗φ)(z) ∈ k−UTm.

This implies thatf ∈ k−UTm. So there existsG1 ∈ k−
UVm ⊂Vm(ρ) such that

G′

G′
1
= p∈ P(pk)⊂ P(ρ).
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Now, with z= reiθ ,

L(r, f ) =

2π
∫

0

|z f′(z)|dθ

=

2π
∫

0

|zG′(z)|dθ

=

2π
∫

0

|zG′
1(z)p(z)|dθ , G1Vm(ρ), p∈ P(ρ)

≤
2π
∫

0

r
∫

0

|G′
1(z)p(z)|H(z)+G′

1(z)(zp′(z))dξdθ ,

(

H(z) =
(zG′

1(z))
′

G′
1(z)

)

≤
r
∫

0

2π
∫

0

| f ′(z)H(z)|dθdξ +

r
∫

0

2π
∫

0

|zp′(z)G′
1(z)|dθdξ

= I1(r)+ I2(r). (20)

Now

I1(r) =

r
∫

0

2π
∫

0

| f ′(z)H(z)|dθdξ ,

where

H(z) =
(zG′

1(z))
′

G′
1(z)

= 1+
∞

∑
n=1

dnzn
,

f (z) given by (1),|dn| ≤m
(

1− k
k+1

)

= m
k+1, and forn≥ 1,

we have

I1(r)

≤
r
∫

0











2π
∫

0

| f ′(z)|2dθ





1
2




2π
∫

0

|H(z)|2dθ





1
2





dξ

= 2π
r
∫

0

(

∞

∑
n=1

n2|an|2ξ 2n−2

) 1
2
(

∞

∑
n=0

|αn|2ξ 2n

) 1
2

dξ

≤
√

2

(

m
k+1

)

π

(

∞

∑
n=1

n2

2n−1
|an|2r2n−1

) 1
2 (

log
1+ r
1− r

) 1
2

≤
√

2

(

m
k+1

)

π

(

∞

∑
n=1

n|an|2r2n−1

) 1
2 (

log
1+ r
1− r

) 1
2

.

But A(r, f ) = π
∞
∑

n=1
n|an|2r2n is the area of the image of

|z|< r by w= f (z). Therefore

I1(r)≤
√

2

(

m
k+1

)

π
(

A(r, f )
πr

) 1
2
(

log
1+ r
1− r

) 1
2

.

Also, sinceA(r, f )≤ πM2(r, f ), we have

I1(r)≤
√

2

(

m
k+1

)

M(r, f )

(

1
r

log
1+ r
1− r

) 1
2

. (21)

We now estimateI2(r).

p∈ P(ρ),ρ = k
k+1, implies that we can write

p(z) =
1−ρ
2π

2π
∫

0

1+zeit

1−zeit dµ(t),
2π
∫

0

dµ(t) = 2π.

So

p′(z) =
1−ρ

π

2π
∫

0

eit

(1−zeit )2 dµ(t).

Therefore

I2(r)≤
1−ρ

π

r
∫

0

2π
∫

0

2π
∫

0

|zG′
1(z)|

|1−zeit |2 dµ(t)dθdξ .

Also

ℜp(z) =
1−ρ

π

2π
∫

0

1−ξ 2

|1−zeit |2 dµ(t),

and hence

I2(r) ≤ 2(1−ρ)
r
∫

0

2π
∫

0

|zG′(z)|ℜH(z)dθ
dξ

1−ξ 2

= 2(1−ρ)
2π
∫

0

ℜ{zG′(z)e−i argzG′
1}dθ

dξ
1−ξ 2 .

Integrating by parts gives us

I2(r) ≤ [2m(1−ρ)+2ρ ]π
r
∫

0

M(r, f )
1−ξ 2 dξ . (22)

From (20), (21) and (22), we obtain the desired result.⊓⊔

We study arc-length problem with a different technique as
follows.

Theorem 8. Let f ∈ k − UTm(0,γ ,φ). Then, for

m>

{

(2−σγ)(k+1)
γ −2

}

,

L(r, f ) = O(1)

(

1
1− r

)
γ

k+1(
m
2 +1)+σγ−1

,(r → 1),

whereσ is given by (6) and O(1) is a constant.
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Proof.We can write

z f′(z) = z(G′(z))γ
, G= (g∗φ) ∈ k−UTm

= z(G′(z)hσ (z))γ
, G= (g∗φ) ∈ k−UTm,h∈ P

=
z
(

s1(z)
z

)γ(m
4 +

1
2)

(

s2(z)
z

)γ(m
4 − 1

2)
hσγ(z), s1,s2 ∈ k−ST, (23)

by using Lemma 2.
Also si ∈ k−ST implies thatsi ∈ S∗(ρ),ρ = k

k+1, i = 1,2.
Therefore, forz= reiθ

L(r, f ) =

2π
∫

0

|z f′(z)|dθ =

2π
∫

0

|s1(z)|
γ

k+1(
m
4 +

1
2)

|s2(z)|
γ

k+1(
m
4 − 1

2)
|h(z)|σγdθ .

Sinces2(z) is starlike and hence univalent, so we have

L(r, f )≤
(

4
r

)
γ

k+1(
m
4 − 1

2)




2π
∫

0

|s1(z)|
γ

k+1(
m
4 +

1
2)|h(z)|σγdθ



 .

Holder’s inequality together with subordination for
starlike functions, we have

L(r, f )

≤
(

4
r

)
γ

k+1(
m
4 − 1

2)




2π
∫

0

|h(z)|2dθ





σγ
2





2π
∫

0

(

r
|1− reiθ |

)
2γ

k+1(
m
4 +

1
2)

2
2−σγ

dθ





2−σγ
2

≤ O(1)

(

1
1− r

)
γ

k+1(
m
2 +1)+σγ−1

,

for γ(m+2)
k+1 > (2−σγ). This completes the proof.⊓⊔

As special cases, we note the following

(i) For γ = 1,m= 2 andk = 1, which gives usσ = 1
2.

This gives us

L(r, f ) = O(1)

(

1
1− r

) 1
2

.

(ii) We takek = 0 andγ = 1. Thenσ = 1 and f ∈ Tm.
This gives us

L(r, f ) = O(1)

(

1
1− γ

)m
2 +1

, (r → 1).

We shall estimate the growth rate ofHq(n) for the
functions in the classUTm(0,γ ,φ). This is the main
motivation of next result.

Let f ∈ A and be given by (1). Suppose that theqth
Hankel determinant off is defined forq≥ 1,n≥ 1 by

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 . . . an+q−1

an+1 an+2 . . .
...

...
...

...
an+q−1 . . . . . . an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(24)

Theorem 9. Let f ∈ UTm(0,γ ,φ) and let the qth Hankel
determinant of f(z) for q ≥ 1,n ≥ 1, be defined by (24).

The, for m≥
{

8q
γ −2

}

,

Hq(n) = O(1)n(
mγ
4 +γ−1)q−q2

,(n→ ∞),

where O(1) is a constant depending uponγ ,m and q only.

To prove Theorem 9, we need the following results and for
these we refer to [9].

Lemma 4. Let f ∈ A and be given by (1) and let the qth
Hankel determinant of f be defined by (24). Then, writing
∆ j(n) = ∆ j(n,z1, f ). We have

Hq(n)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∆2q−1(n) ∆2q−3(n+1) . . . ∆q−1(n+q−1)
∆2q−3(n+1) ∆2q−4(n+2) . . . ∆q−2(n+q)

...
...

...
∆q−1(n+q−1) . . . . . . ∆q(n+2q−2)

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (25)

where, with∆0(n,z1, f ) = an, we define for j≥ 1,

∆ j(n,z, f ) = ∆ j−1(n,z1, f )−z1∆ j−1(n+1,z1, f ). (26)

Lemma 5.With x=
(

n
n+1y

)

,v≥ 0 and integer

∆ j(n+v,v,x,z f′(z))

=
j

∑
l=0

(

j
l

)

yl (v− (l −1)n)
(n+1)l ∆ j−l (n+v,v+ l ,y, f ).

Proof(Theorem 9).Since f ∈UTm(0,γ ,φ), we can write

z f′(z) = z(G′(z))γ
, g∈UTm,G= (g∗φ). (27)

Now, for G∈ UTm, there existsG1 ∈ UVm ⊂ Vm
(

1
2

)

such

that G′
G′

1
∈ P(p1). Also, for p∈ P(p1), we have|argp(z)|<

π
4 which gives usσ = 1

2.

Thus we can write (27) as

f ′(z) = [(G′
2(z))

1
2 p

1
2 (z)]γ

= (G′
1(z)p(z))

γ
2 ,G2 ∈Vm, p∈ P

=









(

s1(z)
2

)
γ
2(

m
4 +

1
2)

(

s2(z)
2

)
γ
2(

m
4 − 1

2)









(p(z))
γ
2 ,
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where s1,s2 ∈ S∗, where we have used a result due to
Brannan [2]. Also we can choose az1 with |z1| = r such
that for any univalent functionss(z)

max
|z|=r

|(z−z1)s(z)| ≤
2r2

1− r2 , (28)

see [3].
Now, for j ≥ 0,z1 any nonzero complex number, consider

∆ j(n,z1, f ′(z))

=
1

2πrn+ j

∣

∣

∣

∣

∣

∣

∣

∣

(z−z1)
j
(

s1(z)
z

)
γ
2(

m
4 +

1
2)

(

s2(z)
z

)
γ
2(

m
4 − 1

2)
(p(z))

γ
2 dθ

∣

∣

∣

∣

∣

∣

∣

∣

.

Thus, forγ(m+2)≥ 8( j +1),

∆ j(n,z1, f ′)

≤ 1
2πrn+ j−1

2π
∫

0

|z−z1| j |s1(z)|
γ
2(

m
4 +

1
2)

|s2(z)|
γ
2(

m
4 − 1

2)|p(z)| γ
2 dθ

≤ 1
rn+ j−1

(

2r2

1− r2

) j(
4
r

)
γ
2(

m
4 − 1

2)

×





1
2π

2π
∫

0

|s1(z)|
γ
2(

m
4 +

1
2)− j |p(z)|

γ
2 dθ





≤ 1
rn+ j−1

(

2r2

1− r2

) j(
4
r

)
γ
2(

m
4 − 1

2)




1
2π

2π
∫

0

|p(z)|2dθ





γ
4

×





1
2π

2π
∫

0

|s1(z)|
γ
2(

m
4 +

1
2)− j 4

4− γ





4−γ
4

≤ C(m,γ , j)

(

2r2

1− r2

) j (
1+3r2

1− r2

)

γ
4

×
(

1
1− r

)

{

[γ(m
4 +

1
2−2 j)] 4

4−γ −1
}

4−γ
4

= O(1)

(

1
1− r

)
mγ
4 − j+γ−1

,

O(1) is a constant and we have used (28), distortion
results for starlike functions, Holder’s inequality and a
result forh∈ P, see [21].

Choosingr = 1− 1
n, we have, forγ(m+2)≥ 8( j +1),

∆ j(n,z1, f ′) = O(1).n
mγ
4 +γ− j−1

,

and using Lemma 5, we obtain

∆ j(n,e
iθn, f ) = O(1)n

mγ
4 +γ− j−2

, (n→ ∞). (29)

We use Lemma 4 and follow the similar argument given in
[9], to have

Hq(n) = O(1)n(
mγ
4 +γ−1)q−q2

, (n→ ∞)

for γ(m+2)≥ 8q.
This completes the proof.⊓⊔

Special Case.
Whenγ = 1, m≥ 6, we havean = O(1)n

m
4 −1 and

Hq(n) = O(1)n(
m
4 )q−q2

, n→ ∞.

For this case we note that

H2(n) = O(1)n
m
2 −4

, m≥ 14.
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