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Abstract: To enhance the reliability of levitation, an especial installation called joint-structure is applied to the maglev vehicle. Due to
the joint-structure, each suspension point of the maglev vehicle is regulated by two independent controllers. When one controller of the
suspension point breaks down, the system can still be stably suspendedby the other controller. However, there is strong force-coupling
between the two controllers for the joint-structure, which makes the controller designed based on totally separated suspension point
unsuccessful in application. To realize stable suspension for joint-structure, diffenrential geometry method is introduced to obtain a
globally decoupling and linearized model for the system. Then the controlparameters are designed by pole assignment. Experimental
and simulation results validate the effectiveness of the proposed controlalgorithm.
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1 INTRODUCTION

Maglev technology has been widely utilized to different
applications[1], among which maglev vehicles rapidly
develops since its presentation. To enhance the reliability
of maglev vehicles, joint-structure is introduced, and each
joint-structure is regulated by two controllers. If one
controller breaks down, the other controller can still
guarantee the stability of the system, and the stability of
the vehicle accordingly. As the two controllers for the
same joint-structure is strongly coupled together,
decoupling control is the key to the stability of the
joint-structure. There are quite a lot of decoupling control
strategies, such as inversion matrix method [2,3], relative
amplification coefficient matching method[4], diagonal
dominance approach[5], state feedback
control[6],adaptive decoupling control[7,8], intelligent
decoupling control[9,10], nonlinear and robust
decoupling control[11,12], and so on. Based on the
characteristics of the maglev system and the experimental
setup, this article uses differential geometry method to
realize the decoupling and the stability of the
joint-structure.

 

Fig. 1: Sketch of joint-structure

2 MODELING

Ignoring the elasticity of the guideway and the effect of
the air-spring on the system performance, the sketch of the
joint-structure can be presented by Fig.1 [13].

The definition of the symbols in Fig.1 and the symbols
which will be used in the following are presented as below.

s01 = s02 = s0 is the expected suspension gap,s1
ands2 is the measured suspension gap,m1 = m2 = m is
mass of the suspension object,g is the Gravity
acceleration,F1 and F2 is the electromagnetic force,u1
andu2is the control voltage,i1 and i2is the current in the
coil, N1 = N2 = Nis the turns of the coil,R1 = R2 = R is
the resistance of the coil,A1 = A2 = A is the pole area of
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a single side of the electromagnet,L1 and L2is the
inductance of the coil,µ0 is the permeability of vacuum,
kr is the rigid coefficient between two sides.

Suppose the magnetomotive force of the magnetic field
concentrates in the air gap, the mathematical model of the
system shown in Fig.1 can be obtained as[13],
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2

(1)

In (1), the first and the second equations are
separately the electricity equation and mechanical
equation for the suspension system on the left, while the
third and the fourth equations are separately the
electricity equation and mechanical equation for the
suspension system on the right.

3 ESSENTIAL THEORY OF
DIFFERENTIAL GEOMETRY

For the convenience of problem analysis, the decoupling
control theory used in this paper is listed as following[14].

Definition 1: Let open sets,U ⊂ Rn, x ⊂ U , and given
a smooth scalar functionλ (x) and an-dimention vector
field f (x) in U . Then a new scalar function notedL f λ (x)
is defined as following.

L f λ (x) =
n

∑
i=1

∂λ
∂xi

fi(x1,x2, ...,xn) (2)

This new functionL f λ (x) is called the lie-algebra of
λ (x) along f (x). And this function can be calculated
iteratively. For example, lie-algebra ofλ (x) sequentially
along f (x) andg(x) is,

LgL f λ (x) =
∂ (L f λ )

∂x
g(x) (3)

Or lie-algebra ofλ (x) along f (x) for k times is,

Lk
f λ (x) = d(Lk−1

f λ ) f (x) (4)

Definition 2: For the following multiple inputs and
multiple outputs system,

ẋ = f (x)+
m

∑
i=1

gi(x)ui

y j = h j(x), j ∈ m

(5)

Its relative orderri(x0) is the lie algebra, which
satisfies,

Lg j L
ri−1
f hi(x0) 6= 0( j = 1, ...,m)

And for k < ri −1, satisfies,

Lg j L
k
f hi(x0) = 0( j = 1, ...,m)

On the basis of the two definitions, two theorems for
decoupling of nonlinear systems are introduced. First,
introduce the decoupling matrix nonsingular theorem.

Theorem 1: If a multiple variables nonlinear system
has a relative orderri for x0 to all i ∈ m, its decoupling
matrix A(x) shown in (6) is nonsingular atx0.













Lg1Lr1−1
f h1(x) · · · LgmLr1−1

f h1(x)

Lg1Lr2−1
f h2(x) · · · LgmLr2−1

f h2(x)
... · · ·

...
Lg1Lrm−1

f hm(x) · · · LgmLrm−1
f hm(x)













(6)

Then introduce theorem 2, which is utilized to explain
the conditions for decoupling of the system, and how to
realize decoupling for nonlinear coupled system.

Theorem 2: If nonlinear system has relative order atx0,
or saying decoupling matrixA(x) is nonsingular atx0, then
the input-output decoupling problem atx0 can be solved
by a static state feedback, and one solution is the feedback
defined by the following matrix,

u(x) = α(x)+β (x)v
α(x) =−A−1(x)b(x)

β (x) = A−1(x)

(7)

where,

b(x) =
[

Lr1
f h1(x) · · · Lrm

f hm(x)
]T

(8)

If the conditions described in theorem 2 are satisfied,
decoupling for nonlinear system can be realized by
equations (7) and (8). The proposed nonlinear decoupling
method for maglev system can be obtained based on the
definitions and theorems introduced in this part.

4 DECOUPLING AND LINEARIZATION
OF THE SYSTEM

For the convenience of description, introduce the
following variables transform,

x1 = s1x2 = y1x3 = i1
x4 = s2x5 = y2x6 = i2

(9)

k = µ0N2A
/

4 (10)
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By the transform in (9), the model (1) can be changed
as following,
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ẋ2 = g−
kx2

3

mx2
1

−
kr(x1− x4)

m
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(11)

Y =

[

1 0 0 0 0 0
0 0 0 1 0 0

]

X (12)

Compared with the standard form in (5), it can be
known:

f (x) =
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mx2
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/

m
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/
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/

2k
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/
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/
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(13)

g1(x) =
[

0 0 x1
/

2k 0 0 0
]T

(14)

g2(x) =
[

0 0 0 0 0x4
/

2k
]T

(15)

y1 = h1(x) = x1 (16)

y2 = h2(x) = x4 (17)

First, the decoupling matrix of the system can be
calculated according to (6) as,

A(x) =

[

−x3
/

mx1 0
0 −x6

/

mx4

]

(18)

And the other expressions to calculated the control
variables can also be obtained as,

b(x) =
[

b1 b2
]T

=
[

Rx2
3

mx1
− kr

m (x2− x5)
Rx2

6
mx4

+ kr
m (x2− x5)

] (19)

α(x) =

[

Rx3− krx1(x2− x5)
/

x3

Rx6+ krx4(x2− x5)
/

x6

]

(20)

β (x) =
[

−mx1
/

x3 0
0 −mx4

/

x6

]

(21)

By equation (7), the decoupling control law can be
calculated as,

[

u1
u2

]

=

[

Rx3− krx1(x2− x5)
/

x3

Rx6+ krx4(x2− x5)
/

x6

]

+

[

−mx1
/

x3 0
0 −mx4

/

x6

][

v1
v2

] (22)

That’s to say,

u1 = Rx3−
krx1

x3
(x2− x5)−

mx1

x3
v1 (23)

u2 = Rx6+
krx4

x6
(x2− x5)−

mx4

x6
v2 (24)

Up to now, the system has been decoupled. To realize
linearization of the decoupled system, the following
variable transform is introduced,

z1 = x1,z2 = x2, (25)

z3 = ż2 = g−
kx2

3

mx2
1

−
kr(x1− x4)

m
(26)

z4 = x4,z5 = x5, (27)

z6 = ż5 = g−
kx2

6

mx2
4

+
kr(x1− x4)

m
(28)

It can be obtained by calculation that,
ż3 = v1, ż6 = v2
Now, the model for joint-structure has been decoupled

and linearized, and the state space model after decoupling
is,

ż = Az+Bv (29)

y =Cz (30)

where,

z =
[

z1 z2 · · · z6
]T

(31)

And the state matrix for the system is,

A =















0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0















(32)

B =

[

0 0 1 0 0 0
0 0 0 0 0 1

]T

(33)

C =

[

1 0 0 0 0 0
0 0 0 1 0 0

]

(34)
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From state space matrix (32)∼(34), the state space
model for two separated subsystems can be obtained, and
the state space for the first subsystem is,

A1 =





0 1 0
0 0 1
0 0 0



 (35)

B1 =
[

0 0 1
]T

(36)

C1 =
[

1 0 0
]

(37)

It can be seen from (32)∼(34) that, the state matrix of
the second subsystem is the same to the first one. Thus
only the controller design for the first subsystem is
conducted.

5 CONTROL ALGORITHM DESIGN

In this section, control algorithm design refers to the
controller design for subsystem (35)∼(37). For the
convenience of implementation, state feedback control is
utilized. Suppose the feedback control law is[15],

v1 = k1(z1− z01)+ k2z2+ k3z3 (38)

And set the control goals of the system after feedback
as, overshoot is less than 5%, settling time is 0.1s. Then
the dominant poles for the system is calculated as,

s1 =−20+42.925j (39)

s2 =−20−42.925j (40)

Suppose the third pole of the system is,

s3 =−200 (41)

Then the characteristic equation for the system is,

s3+280s2+19358s+6715420 (42)

Substitute feedback control law (38) into the first
subsystem after linearization (35)∼(37), and the
characteristic equation for the closed loop system can be
obtained as,

s3− k3s2− k2s− k1 = 0 (43)

Comparing the characteristic equation after feedback
control (43) with the expected characteristic equation (42),
the control parameters can be chosen as,

k1 =−671542 (44)

k2 =−19358 (45)

k3 =−280 (46)

Substitute (25) and (26) into (38), the control variable
for the linear system can be calculated as,

v1 = k1(x1− s0)+ k2x2+

k3

(

g−
kx2

3

x2
1

−
kr(x1− x4)

m

)

(47)

Substitute control law for linear system (47) into the
expression of control variable (23), the control variable of
the first subsystem for the joint-structure can be obtained
as,

u1 = Rx3−
krx1

x3
(x2− x5)

−
mx1

x3







k1(x1− s0)+ k2x2+

k3

(

g−
kx2

3

mx2
1

−
kr(x1− x4)

m

)







(48)

Similarly, the control variable for the second
subsystem can be calculated as,

u2 = Rx6+
krx4

x6
(x2− x5)

−
mx4

x6







k1(x4− s0)+ k2x5+

k3

(

g−
kx2

6

mx2
4

+
kr(x1− x4)

m

)







(49)

Equations (48) and (49) are the control law applied to
the physical controllers.

6 SIMULATION AND EXPERIMENTS

For one application system, the parameters of the two
subsystems described in Fig.1 are totally the same.

k = 0.00545,m = 725kg
s0 = 0.012m, R = 4.44Ω
g = 9.8N/kg, kr=1.236×107N/m
When the power of one controller of the joint-structure

is suddenly shut down, the simulation results of the other
controller are shown in Fig.2.

When the power of one controller of the
joint-structure is suddenly shut down, the experimental
results of the other controller are shown in Fig.3.

From simulation results shown in Fig.2, it can be seen
that when one controller breaks down, the current for the
other controller increase rapidly from 18A to 24A, and the
maximum variety of the suspension gap is 0.5mm.

From experimental results shown in Fig.3, it can be
seen that when one controller breaks down, the current for
the other controller increase rapidly from 17A to 25A,
and the maximum variety of the suspension gap is
1.6mm. And the suspension gap finally reaches the
expected value because of the effect of integrator.
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Fig. 2: Simulation result of air-gap and current

 

Fig. 3: Experiment results of air-gap variety and current

7 CONCLUSIONS

The nonlinear model for joint-structure of maglev
vehicles are built in this paper. And the obtained model is
a multiple-inputs multiple-outputs coupling model.
Nonlinear state feedback technique is introduced to
decouple and linearize this model. Then pole assignment
is utilized to design the controller. The proposed control
algorithm is simple, and convenient to implement.

The control strategy proposed in this paper is
validated by both simulation and experiment. Simulation
and experimental results show that, both the two
controllers for a single joint-structure can realize stable
suspension, which means the proposed method is
effective for decoupling control. And it can be also shown
that, when one controller breaks down, the other
controller can realize the stability of the whole
joint-structure system by itself. Joint-structure function is
effectively realized by the proposed method, which can
improve the safety of maglev vehicles.

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.
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