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Abstract: In this paper, we study out a method for computing digital homotopy grauhigher dimensions. We investigate the
relation between a digital image and if§ homotopy group when is greater than 1 and show that a digital covering map which is a
radius 2 local isomorphism induces an isomorphism between digital hpsngtoups in higher dimensions.
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1 Introduction been developed by Boxer and Karacd,7[8,9] by
deriving digital analogs of classical results of algebraic

Digital topology has an important role in computer vision, topology. Boxer 4] has discussed a digital version of the

image processing and computer graphics which are usefulniversal covering space and Boxer and Kara@ehfive

in many other areas. It investigates the properties ofclassified the digital covering space by the conjugacy

digital images onZ" by using methods of algebraic class corresponding a digital covering space.

topology. It was introduced by Rosenfeld int2@entury.

His works on the subject played an important role in

establishing and developing the field. After Rosenfelds K_araca and Vergili.12] have explorgd the digital
Irglatlve homotopy relation between continuous functions

whose domains ane-cubes and which map the boundary
of ann-cube to a fixed point. They have introduced n-th
homotopy groups of pointed digital images via this
relation and obtained some results which are valid for
topological spaces.

(Kong, Kopperman, Kovalevsky, Malgouyres, Ayala,
Boxer, Chen, Han, Karaca and others).

Digital fundamental groups help to classify digital
images as in algebraic topology. This notion was
introduced by Kong I4]. Kong’s construction wasn'’t
parallel to the classical construction of the fundamental In higher dimensions, the digital homotopy groups are
group of a topological space. So, Box@] has given a sometimes very complicated despite their simple
classical construction in calculating the fundamentaldefinitions. However, if the digital image has a digital
groups of digital images by using the notion of digital covering, then in this case there is a certain relation
homotopy introduced in1]. After digital fundamental between their higher homotopy groups. After Hab)][
group was defined, new methods were devised forhas presented radius 2 local isomorphism, BoXéhps
computing it. showed that a digital covering map which is a radius 2

local isomorphism induces a monomorphism between

The digital covering space is one of the tools for digital fundamental groups. The main goal of this paper is
computing the digital fundamental groups. HaB] [ to investigate an analogus result from algebraic topology
introduces the digital covering space and digital lifting and introduce a new method for computation of digital
notions, computes a digital homotopy group of somehomotopy groups by using covering spaces. We show that
digital image. The theory of digital covering space hasthe higher dimensional digital homotopy group of a
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digital image is isomorphic to the higher dimensional If Xo = X, then tkek-path is said to be closed. Two distinct

digital homotopy group of its covering space in each pointsx,y € X arek-connected if there is m-path fromx

dimension. toyin X and if any two points irX arek-connected, then

X is calledk-connected15]. A k-component of a digital

This paper is organised as follows. Some basicimageX is a maximalk-connected subset of. The k-

knowledge is provided in Section 2. In the next section,neighborhood9] of xo € X with radiuse is the set

we recall the homotopy group construction which is given

by Boxer P], Karaca and Vergili 12] and recall some Ni(%0.€) = {x & X | Ik (x0,X) < &},

properties of these groups. In Section 4, we investigatgyherel, (xo,X) is the length of a shortest-path fromxg

the relation between a digital covering space and highefg .

dimensional digital homotopy group of a digital image.

We obtain that a covering map induces isomorphism | et X ¢ Z% andY c Z™. Let k; be an adjacency

between homotopy groups of pointed digital images inrelation defined ofZ", i € {0,1}. We say that a function
higher dimensions when it is a radius 2 local f:xX — VY is (Ko, K1)-continuous 2,4] if the image

isomorphism. In the last section, we get someynder f of every kp-connected subset ofX is

conclusions. K1-connected subset &f.

o ) The following Proposition is a characterization of
2 Preliminaries (Ko, K1)-continuity.

Let Z represent the set of integers. A (binary) digital proposition 2.1.[16,2] Let X c Z"™ andY C Z™ be
image is a pai(X, k), whereX is a subset oZ." for some  (igital images with ko-adjacency andk;-adjacency
positive integern and k indicates some adjacency respectively. Then the functionf : X — Y s
relations onX. There aren adjacency relation faZ" to be (Ko,K1)-continuous if and only if for every pair of
used in the study of digital images. The following gj-adjacent pointgxo,x;} of X, either f(xo) = f(x1) or
terminology is used in14]. Two pointsp andq in Z? are f(x0) and f (x) areks-adjacent irY.

8-adjacent if they are distinct and differ by at most 1 in

each coordinatep andq in Z? are 4-adjacent if they are Composition preserves digital continuitg]] i.e., if
8-adjacent and differ in exactly one coordinate. Twof : X — Y and g :Y — Z are, respectively,
points p andq in Z* are 26-adjacent if they are distinct (ky, k,)-continuous and (k», ks)-continuous  functions,
and differ by at most 1 in each coordinate; they arethen the composite functiongo f) : X — Z is
18-adjacent if they are 26-adjacent and differ in at most(k,, k3)-continuous.

two coordinates; they are 6-adjacent if they are

18-adjacent and differ in exactly one coordinate. The |f (X k) is a digital image and\ c X, then we call
adjacencies are generalized as follov}. [Let I,n be  (x A) a digital image pair withk-adjacency. For digital
positive integers, k| < n and consider two distinct image pairs(X,A) and (Y,B) with ko-adjacency and
points p = (P1, P2,---, Pn).d = (d1,02,-.-,Gn) € Z", P ky-adjacency respectively, a functidn: (X,A) — (Y,B)
and q are kj-adjacent if there are at mostdistinct  js a (ko,«;)-continuous map of digital pairs iff is
coordinatesj for which [p; —q;| = 1, and for all other  (; k;)-continuous andf(A) c B. When A = {a} and
coordinatesj, p; = q;. A kj-adjacency relation orZ" B = {b}, we write (X,A) = (X,a), (Y,B) = (Y,b) and we
may be denoted by the number of points that are adjacenday f is a pointed(o, k1 )-continuous mapd] between
to a pointp € Z". For examplek;-adjacent points o%? pointed digital image$A, a) and (Y, b).

are called 4-adjacenk»-adjacent points o are called

8-adjacent; and iZ®, ki-, k2-, andks-adjacent points are Let (X, ko) and (Y, k1) be digital images. A function
called 6-adjacent, 18-adjacent, and 26-adjacentf - X —» Y is a (Ko, k1)-isomorphism 1] if f is
respectively. (Ko, K1)-continuous and bijective and furthér 1.y 5 X

is (K1, Ko)-continuous.
Fora,b € Z with a < b, the set
Definition 2.2. ([2]; see also 13]) Let X andY be digital
images. Let f,g: X — Y be (ki,Kz)-continuous
functions. Suppose there is a positive integerand a
function

[a,blz ={z€eZ: a<z<b}

is called a digital interval 4] in which 2-adjacency is
d.
assume F X x[0mly —Y
Let (X, k) be a digital image. Ac-path [L5] from x to such
yin X is a sequence = Xg, X1, ..., Xm—1, Xm = Y) In X such

that each poink; is k-adjacent to1 fori € [0,m— 1]z . e forallxe X, F(x,0) = f(x) and F(x,m) = g(x);
The natural numbemis called length of the patt2],[ 15]. e for all x € X, the induced functiorry : [0,m|z — Y
@© 2014 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 5, 2417-2425 (2014)www.naturalspublishing.com/Journals.asp

N 5SS ¥ 2419

defined by FK(t) = F(xt) forall is
(2,Kk2)-continuous; and

e for all t € [0,m]z, the induced functiorr : X — Y
defined by R(X) F(x,t)forall x € X is

(K1, K2)-continuous.

t e [Oa m]Z

ThenF is a digital (k1, k2)-homotopy betweerf and
g, and f andg are digitally (1, k2)-homotopic inY, and
denoted byf ~, «, Y.

Boxer [2] shows that digital(k1, k2)-homotopy is an
equivalence relation among digitally continuous funcsion
fi(X,k1) — (Y,K2).

Let AC X and f,g: X — Y be (Ko, K1)-continuous
functions. A digital homotopy

H:Xx[0,my —Y

betweenf andg is called a digital homotopy relative #®
betweenf andg if for all a € A, and for allt € [0,m]z,
H(at) = f(a) = g(a) (see [L1]). Then we say thaf and
g are (Ko,K1)-homotopic relative to A in Y. If
A = {x} C X, then H is called a pointed digital
homotopy ] betweenf andg.

Let ¢ be the constant function for somge X defined
by c(x) = xg for all x € X. A digital image(X, k) is said
to be k-contractible 2,13 if its identity map is (k,k)-
homotopic to the constant functianfor somexg € X. If
the homotopy holdg, fixed, we say(X,Xo) is pointedk-
contractible.

3 Digital Homotopy Groups

Homotopy groups are important invariants in algebraic

topology. Boxer 8] shows that digital fundamental

Khalimsky [L3] defines an operation betweerloops
with same base points as follows. L&t [0,m]z — X,
g:[0,mp]z — X be twok-loops at basegy. Then the map
fxg:[0,m+mglz — X defined by

(rom= {g(t—mo,

0<t<my
m <t<m+ny

is also ak-loop based atp.

The numbem depends on the loop. Different loops
have digital interval domains with different cardinality.
The notion of trivial extension given in2] allows two
different loops to have same domains. So, they can be
remain in the same digital homotopy class.

The homotopy holding the endpoints fixed, is an
equivalence relation on the set of aifloops with same
base point irX. The loopsf, g belong the same loop class
[f] [3] if they have trivial extensions that can be deformed
to each other by a homotopy that holds the endpoints
fixed. The set of all equivalence classes is denoted by
1 (X, %)

The following proposition shows that the operation
"** is well defined on equivalence classes.

Proposition 3.2. [2,13] Let f1,f2,01,02 be digital
k-loops with base poirntg in a digital imageX. Suppose
fo € [f1] andgy € [g1]. Thenfzx g € [f1*x01).

Theorem 3.3.[2] (X, Xo) is a group under the product
operation .’ defined a§f].[g] = [f xg].

Proposition 3.4.[3] If (X,Xp) is a pointedk-contractible

groups of isomorphic digital images are isomorphic asdigital image, ther (X, xo) is a trivial group.

groups. Karaca and Vergili 1] also prove that

isomorphic digital images have isomorphic homotopy

The n-boundary of[0,m)7, denoted byd[0,mlz, is

groups in each dimension. Therefore they are invariants iffiefined as follows:

digital topology and used in classifying the digital
images.

Let m be a positive integer. For a pointed digital
image(X,Xp), ak-loop based axg is a(2, k)-continuous
function f : [0,m]z — X such thatf (0) = xg = f(m) (see
[13]).

Definition 3.1.[3] Let f,g: [0,m]z; — X be k-loops such
that
g(m) =xg € X.
If

H: [O,m]z X [O,M}Z — X
is a digital homotopy such th&t(0,t) = H(m,t) = xg for
allt € [0,M]z, then we sayH holds the endpoints fixed.

210,m)) = {(t1,...,tn) :

Let (X,X) be a pointed digital image with
k-adjacency relation. Le®;(X,xo) [12] be the set of all
(2n, k)-continuous maps of the form

Jie{l2,. ., miti=0o0rt;=m}.

f:([0,m]},0[0,m)}) — (X,Xo).

Karaca and Vergili 12] show that homotopy relation
relative to 9[0,m]}, is an equivalence relation on
S (X,%o). The set of all equivalence classes denoted by
¥(X,p) and the equivalence class dfe Si(X,p) is
denoted by f].

Definition 3.5.[12] Let (X, xp) be a pointed digital image
with k adjacency and

f([0,m]7,0[0,m]7) — (X, p)

© 2014 NSP
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be (2n,k)-continuous map. If there is a positive integer category of pointed digital images and pointed digitally

integerm; > m, and a map

f:([0,mq]7,0[0,mq]7) — (X, p)

] %o,

for t = (tg,...,tn) € [0,my]} then f" is called the trivial
extension off.

defined as

o<vt<m, i=12..n;

(g, ...t .
(tr, . tn) otherwise

Digital (2n, k)-continuous mapg$ andg in (X, xo)
are in the same equivalence classtf(X, xo) if there are
trivial extensionsf’ andg’ of f andg, respectively, and a
relative digital homotopy betweefi andg'.

Definition 3.6.[12] Let (X, xp) be a pointed digital image
with k-adjacency relation. Let
f: ([07 ml]%vd[ov ml]%) — (X,Xo)

and
9: ([0,mg]7,0[0,mp]7) — (X, X0)

be (2n, k)-continuous maps. The ’product’ df and g,
written f x g, is defined as

(f*g) : ([0,m1+”12]%,0[0,m1+ﬂ}2]%> - (vao)

f(tl,...,tn), 1 € [0, ml]Z
and forj # 1, tj < my;
(fxg)(t) = g(ta—my,....tn), t1 € [my, My +mpjz
and forj # 1, tj <mp;
X0, otherwise

Karaca and Vergili12] show that the operation

[f]x[g] = [fxg]

is well-defined onrf (X, xp) and the sett¥ (X,xg) has a

group structure viax' operation . This group is called a
digital n-th homotopy group of a pointed digital image
(X,%p). Actually this construction coincides with the

fundamental group construction which is given by Boxer

[2], whenn = 1.

Let (X,Xo), (Y,Yo) be two digital images wittk1, K2

continuous functions to the category of groups and
homomorphisms.

Corollary 3.8. [12] Let (X, x0) be pointedk-contractible.
Then¥ (X, xo) is trivial for all positive integen.

4 Computing Higher Digital Homotopy
Groups

In this section, we introduce a method for computing
homotopy groups of digital images via covering spaces.
We prove that a radius 2 local isomorphism induces an
isomorphism between higher dimensional digital
homotopy groups.

Definition 4.1. ([9]) Let (E,ko) and (B,k1) be digital
images ang : E — B be a(ko, k1)-continuous surjection.
Suppose for anp € B there existg € N such that

(DC 1) For somed € N and some index seM,
P~ (Niy (b,€)) = Uiem N (€, 8) with & € p~*(b);

(DC 2)ifi,j € M andi # j, then
Nio (61,0) NNk, (€j,0) = 0;
(DC 3) the restriction map
PIN (@.0) - Nko(€1,8) = Niy (b, €)
is a(Ko, K1)-isomorphism for all € M.

Then the mayp is called a(ko, k1)-covering map and
(E, p,B) is a(ko, K1)-covering.

Boxer (4] shows that the following proposition is
equivalent to the definition of digital covering maps.

Proposition 4.2. ([4]) Let (E, ko) and (B,k1) be digital
images and : E — B be a(kp, k1)-continuous surjection.
Then the map is a (Ko, k1)-covering map if and only if
for eachb € B there exist an index sé such that

(C1) pil(NKl(b7 1)) = U NK0<Q’1)
ieM
with g € p~(b);

adjacency relations respectively and the digital map

¢ : (X,pp — (Y,q) be a (ki,K2)-continuous.
Homomorphism induced by [12] is defined as follows:

¢ (X, %0) = m2(Y.yo),  [f] = ¢u([f]) =[@of].

Theorem 3.7. [12] The digital
construction

homotopy group

induces a covariant functor from the

(C2)ifi,j € M andi # j, then

N, (&,1) NNk, (€j,1) = 0;
(C 3) the restriction map

p‘NKO(ei,l) : NKo(a7l) — NKl(ba l)

© 2014 NSP
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is a(Ko, k1)-isomorphism for all € M.

Definition 4.3. ([10]) For n € N, a (Ko, K1)-covering
(E, p,B) is a radiusn local isomorphism if the restriction
map

p|NKO(a,n) : N, (&,n) — N, (b,n)

is a(Ko, K1)-isomorphism for ali € M.

covering map is a radius 1 local isomorphism. A digital forall i € {2,14,15} H([].

simple closed-curve is a digital imag&= {c; }{"; L such
thats ands;j arek-adjacent if and only if eithef =i +1
modmor j=i—1modm.p:Z—S p(2) =Crmod mIS
a (2,k)-covering map 9]. Hence it is a radius 1 local
isomorphism. However, i = MSC; which is isomorphic
to digital image

{CO = (1,0),C1 = (07 1)7C2 = (_1’0)’03 = (07_1)}7

then p is not radius 2 local isomorphisnd][ That is a

covering map doesn’t need to be a radius 2 localforall i € {0,5} H([c],4) =

Forall i € {0,1,2,3,4,5,6,7,8,9,13 14,15}
H([ci],0) = [a];

forall ie€{0,1,2,3,4,56,7,8} H([c],1)=ci],
H([co], 1) = [cg],
H([c13], 1) = [c3],
H([c14],1) = [c2],
H([c1s], 1) = [ca];

forall i€ {3,13} H([c],2) )[ ]
forall i € {8,9} H([c],2) =cs

forall i€ {1,2,14,15} H([ci],3) = [col,
forall i€ {3,4,13} H([c|]
forall ie {7,8,9} H([ci],
forall i€ {0,5,6} H([ci],

forall i€ {1,2 14,15} H([C|],4)= [Col,
for all |e{34678913}

isomorphism. We give another example in respect to this

as below.

Example 4.4.Boxer [5] defines a digitah-sphere as

S =[-L15" — {Ons1}

whereQ, represents the origin &". We get

S ={co=(-1,-1,-1),c; = (~1,0,-1),c, = (~1,1, 1)
3= (0,1,—1),cq = (0,0,—1),c5 = (0,~1, 1),
6= (1,—1,—1),c; = (1,0,—1),cs = (1,1, 1),
¢ = (1,1,0),c10 = (1,0,0),c11 = (1,~1,0),

c12=(0,-1,0),c13=(0,1,0),c14=(-1,1,0),

(
c15=(—1,0,0),c16 = (—1,—1,0),0177 (—1,—1, 1),
C]_gf( 101) Clgz(—lll) 0202(011)
C21=(0,0,1),c22=(0,—1,1),c3= (1, -1,1),
C24=(1,0,1),co5=(1,1,1)}

Letq: S — S/x-—x be the quotient map wherex
is the antipodal point ok in S. The quotient space is as
follows:

{[COL [Cﬂv [C2]7 [03}7 [04}" [C5]7 [Cﬁ}v [C7]7 [C8]7 [CQL [013}7 [Cl4}7 [C15}}

It is called digital projective plane and denoted BY.
(See Figurd)

Note that (P?,x) is pointed 6-contractible for all
x € P?2. For example, the contracting 6-homotopy
H : P? x [0,5];, — P? of the pointed digital image
(P?,[co]) can be defined as follows:

forall i € {0,1,2,3,4,5,6,7,8,9,13,14,15}
H([ci],5) = [co-

The quotient mam is a (6,6)-continuous surjection
and it can be easily seen thgsatisfies the conditions of
Proposition 42. Henceq is a (6, 6)-covering map. But it
isn't a radius 2 local isomorphism. Ffi] € P2, we obtain

Ne([c1],2) = {[co], [c1], [c3], [ca], [cs], [c7], [C14], [Ca5]}
and
Ne(C1,2) = {Co,C1,C2,C3,Cs,Cs,C7,C14,C15,C16, C18} -

Since Ng(c1,2) and Ng([c1],2) don't have the same
cardinality,

dlng(cy,2) * Ne(€1,2) — Ne([ca], 2)

cannot be &6, 6)-isomorphism.

Fig. 1: Digital Projective Plané®?

Let (E,ko), (B,k1) (X,Kk2) be digital images and
p: E — B be a(ko,K1)-covering map. Letf : X — B be
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(K2,K1)-continuous function. A digital lifting 10] of f
with respect top is _a (kz,kp)-continuous function
f : X — E such thatpo f = f.

is a (Ko, K1)-covering map,

Plne (Fx0).1) * Neo(f(x0), 1) = N, (bo, 1)

A digital continuous function doesn’t need to have is a(Ko, K1)-isomorphism. We get

liftings. But we can determine whether a function has a

lifting or not with the help of the following theorem.

Theorem 4.5.[4] Let (E,Kp), (B,k1) be pointed digital
images withep € E, bp € B and letp: (E,ey) — (B,bo)

be a pointed (ko,k1)-covering map. LetX be a
Kp-connected  digital image, xg € X. Let

¢ (X,X) — (B,bp) be a pointed(kz, k1)-continuous
map. Consider the following statements:

(a) There exists a liftingp : (X,xo) —

respect tq.
(b) @.(m2(X,%0)) € p.(T°(E, €p)).

(E,eg) of @ with

Then (a) implies (b). Further, if p is a radius 2 local
isomorphism, therib) implies(a).

Han [9] shows that for a pointedko, k1)-covering
mapp: (E,ep) — (B,bo), anyks-path f : [0,mz — B
beginning aty has a unique digital lifting to &p-path f
in E beginning atey. We give a generalization of Han's
result.

A pointed digital image(X,Xp) is said to be simply
k-connected9] if 15 (X, Xo) is a trivial group.

Proposition 4.6. Let (E,kp) be a digital image and
e € E. Let (B,k1) be a digital image andby € B. Let
p: (E,en) — (B,bp) be a pointed ko, K1)-covering map

which is a radius 2 local isomorphism. Suppose that

(X,%p) is a simply k-connected digital image anél is
Kp-connected nonempty subset ¥f such thatxg € A.
Then any(k»2,K1)-continuous mapf : (X,A) — (B,bo)

has a liftng to a (k2,Kp)-continuous map
f:(X,A) = (E,e).
Proof. Let xp € A. We can takef : (X,x) — (B,bp) as a

(K2, K1)-continuous map of pointed digital images. There

is an induced homomorphism
f. 1 2(X,%0) — (B, by)

between digital fundamental groups. Sires a simply
Ko-connected digital image, it follows that

f.(m?(X,%0)) € ps(m°(E, ev)).

From the previous theorem, t~here
f:(X,%)— (E,e) of f such thatpo f = f.

is a

Let x; be ko-adjacent togg in A. Singelc~ is a(kz,Ko)-
continuous mapf (x1) must be inN, (f(xg),1). Sincep

lifting

D\NKO(f"(xo),l) o f(x0) = f(x0) =bo = f(x1)
= Pl (Fx0).1) © f(xa).
Hence we havef(x;) = f(x) = e. Since A is a

K>-connected digital image, we can iterate this argument
for any point ofA. This shows thaf (A) = . Hence we

can consider the maﬁas a map of digital pairs
(E.e0).

(XA —

f:(X,A) —

Consequently, we get a Iiftin@ of f
with respect tqp. O

(B, bo)

Lemma4.7.Letp: (E,ep) — (B,bp) be a pointedko, K1)-
covering map which is a radius 2 local isomorphism. Then
any (2n, k1)-continuous map

f: ([Ov m]%aa[oa m]%) - (Bv bo)

has a unique lifting

f: ((o,m]f,910,m]3) — (E,ev)

with respect tp.

Proof. The existence follows from Proposition 4.6, since
[0,m]} is simply Z-connected and its boundary is
2n-connected nonempty subset[0fm]’).

Let fo: ([0,m]3,[0,m]}) — (E,eo) be another lifting
of f with respect tap. It is known thatf (x) = fo(x) for any
xin d[0,m]7. Letxl andx, be any &-adjacent members of
[0,m]} such thatf (x1) = fo(x1) = by. SinceX = {x1,xz}
is a -connected seffy is (2n, ko)-continuous map and
is a (Ko, K1)-covering map, we have

U NKO e(la

aeM

fo(X) C p~*(Niy (b1, 1)

There is a unique inde®g such thatfo( X) C Ny(€ap,1)
because the union is disjoint. Similarly, one can see that
there is a unique indes; such thatf(X) C Ny, (€q;,1).
fo(x1) = f(x1) implies thatap = a3.

p‘NKO(eao,l) : NKo(eCfov 1) — NKl(bla 1)
is an(ko, K1)-isomorphism and
po f(x2) = f(x2) = po fo(xe)

for o € Nyy(€qy,1). This shows thatf(xz) = fo(xz).
Since [0,m|;, is 2n-connected, this shows how we
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propagate our knowledge thaf(x) = fo(x) from
x € 0[0,m];, to all x € [0,m]},. So f = fo, that is, the
lifting is unique.O

The following proposition is a general version of the for all (s;t)

digital homotopy lifting theorem given by Had (.

Proposition 4.8. Let (E,kp) be a digital image and

e € E. Let (B, k1) be a digital image anby € B. Suppose
p:(E,e) —
radius 2 local isomorphism. For the two digitén, o)
continuous maps

fo, f1: ([0,m]5,2[0,m?) — (E, &),

if there is a digital homotopy relative td[0,m]}; from

po fp to po f1, then there is a digital homotopy relative to

210, m]y, from fo to fy.

Proof. LetH : [0,m]7, x
to 2[0,m]}, from po fg to po f1. A homotopy betweerig

and f; can be defined with a similar method in the proof

of Lemma 4.7. Define
H:[0,m% x[0,Kz —E
starting on the set

R=(2(0,mz x [0,K|z) U ([0,m]7 x {O})

as

H(st) = ey, for sc d[0,m]}, t € [0,k|z,

H(s,0) =

Let M = {s1,5} be arbitrary B-adjacent points of

[0,mf andN = [j — 1, ]j]z for any j € [1,k|z. Assume
thatH(sy, j) = bandpoH = H at (s, j). Then

fo(s), for se [0,m]}.

poH=H

holds on RU {(s1,j)}. Since p is a radius 2-local
isomorphism, there exist Ny, (b,2) and

{Nx,(€q,2) : a € M} such that
P H(Ne,(5,2)) = [ J Ney(€a.2
aeM
and
H(M x N) C N, (b,2).
We have
ﬁ(317j) € p NK]_ b 2 U NKO eav

aeM

Thus there is a unique neighborholig (ey,,
H(S]_, J) 6 NKO(egO,Z).

2) such that

p|NK0(ea0,2) : NKo(eaoaz) — le(b, 2)

[0,K]z — B be a homotopy relative

is a (Ko, k1)-isomorphism. We can exter by defining

H(S:t) = (Pl (ea2) Lo H(SD)

€ (M xN)\ {(s1,])}. Since[0,m], x [0,K]z

is 2(n + 1)-connected, we defineH on all

(B,bo) is a (Ko, K1)-covering map whichisa s€ [0,m]3.

(s,t) € [0,m], x [0,K]z.
From the definition oH on R, H(s,0) = fo(s) for all
He: [0,m} —E, s— Hy(s) =H(sk)

is the lifting of Hx = po f1. By Lemma 4.7H¢ = f1, i.e.,
H(s k) = fi(s) for all s [0,m}. ThusH is a digital
homotopy betweerfg and f;. As ﬁ(s,t) = g for any
s e d[0,m, andt € [0,K]|z, H is a digital homotopy
relative tod [0, m]}. [J

The following result gives a method for computing
homotopy groups of digital images in higher dimensions.

Theorem 4.9.Let (E, ko) be a digital image and, € E.
Let (B,k1) be a digital image andyp € B. Suppose
p: (E,en) — (B,bp) is a(ko, K1)-covering map which is a
radius 2 local isomorphism. Then the induced
homomorphism

P ThO(E, &) — 15 (B, bo)
[f]— m([f]) =
is a group isomorphism far > 1.

[po f]

Proof. Karaca and Vergili 12] show thatp, is a group
homomorphism from m°(E,e) to ' (B,bp). By
Proposition 4.6 and Proposition 4.8, the induced
homomorphism is bijective. As a result, it is a group
isomorphism[J

The results of Boxer [6, Theorem 3.1] can be
generalized to the higher dimensional digital homotopy
groups of the unbounded digital images. ¥t k) be a
digital image such thaX = Ui X| and for allj

Xj C Xj41 and
Xj is bounded.

If the induced homomorphism
(i) 2 (X)) — 15 (Xj42)
of the inclusion maps
ij o Xj = Xj1

are isomorphisms for al] and for alln > 1 , then the

inclusion map
ix Xy = X
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induces an isomorphism

(ix)« : T (%1) — 5 (X)

foralln> 1.

This helps us to compute the digital homotopy groups
of (Z,0). To see this if we takeXj = [—],]] for
j=1,2,... SinceX;'s are contractiblesz(X;) is trivial
for all n > 1 and (ij). are isomorphisms for all
j =1,2,.... This leads us that?(Z,0) = {0}.

Example 4.10.Boxer [5] defines the digital 1-sphere as
S = ([-1,1z x [-1,1]z) —{(0,0)}
(See Figure?).
P:(Z,0) = (S1,C0), t+ P(t) =Ct (mod )

is a (2,4)-covering map which is a radius 2 local
isomorphism. So it induces(&, 4)-isomorphism

P« : TR(Z,0) — T}(S1, o)

for n > 1. As we mention beforerZ(Z,0) is trivial.
Therefore we obtaim?(Sy, cp) = {0}.

> ®
;4:(1 0) c=(1,0)
-1:5=('l 0) ;E=(1 0) 700

Fig. 2: Digital 1-Spheres;

Example 4.11.As the quotient map: S, — P? is not a
radius 2 local isomorphism, we cannot use Theorem 4.9
to computerf(P?, [co]). But we still say that®(P?, [co])

is trivial for n > 1 because(P?,[co]) is a pointed
6-contractible digital image.

5 Conclusion

In this paper we explore the relation between a digital

image and its covering space. We obtain an isomorphism
between higher dimensional homotopy groups of them
when the covering map is a radius 2 local isomorphism.
This is an alternative approach to compute digital

homotopy groups in higher dimensions. In the future, we
propose to compute higher dimensional homotopy groups
of some digital surfaces and construct a digital image
which has nontrivial digital homotopy groups.
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