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Abstract: In this paper, we study out a method for computing digital homotopy groups in higher dimensions. We investigate the
relation between a digital image and itsnth homotopy group whenn is greater than 1 and show that a digital covering map which is a
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1 Introduction

Digital topology has an important role in computer vision,
image processing and computer graphics which are useful
in many other areas. It investigates the properties of
digital images onZn by using methods of algebraic
topology. It was introduced by Rosenfeld in 20th century.
His works on the subject played an important role in
establishing and developing the field. After Rosenfelds
works, this area has been studied by many of researchers
(Kong, Kopperman, Kovalevsky, Malgouyres, Ayala,
Boxer, Chen, Han, Karaca and others).

Digital fundamental groups help to classify digital
images as in algebraic topology. This notion was
introduced by Kong [14]. Kong’s construction wasn’t
parallel to the classical construction of the fundamental
group of a topological space. So, Boxer [2] has given a
classical construction in calculating the fundamental
groups of digital images by using the notion of digital
homotopy introduced in [1]. After digital fundamental
group was defined, new methods were devised for
computing it.

The digital covering space is one of the tools for
computing the digital fundamental groups. Han [9]
introduces the digital covering space and digital lifting
notions, computes a digital homotopy group of some
digital image. The theory of digital covering space has

been developed by Boxer and Karaca [4,7,8,9] by
deriving digital analogs of classical results of algebraic
topology. Boxer [4] has discussed a digital version of the
universal covering space and Boxer and Karaca [7] have
classified the digital covering space by the conjugacy
class corresponding a digital covering space.

Karaca and Vergili [12] have explored the digital
relative homotopy relation between continuous functions
whose domains aren-cubes and which map the boundary
of an n-cube to a fixed point. They have introduced n-th
homotopy groups of pointed digital images via this
relation and obtained some results which are valid for
topological spaces.

In higher dimensions, the digital homotopy groups are
sometimes very complicated despite their simple
definitions. However, if the digital image has a digital
covering, then in this case there is a certain relation
between their higher homotopy groups. After Han [10]
has presented radius 2 local isomorphism, Boxer [4] has
showed that a digital covering map which is a radius 2
local isomorphism induces a monomorphism between
digital fundamental groups. The main goal of this paper is
to investigate an analogus result from algebraic topology
and introduce a new method for computation of digital
homotopy groups by using covering spaces. We show that
the higher dimensional digital homotopy group of a
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digital image is isomorphic to the higher dimensional
digital homotopy group of its covering space in each
dimension.

This paper is organised as follows. Some basic
knowledge is provided in Section 2. In the next section,
we recall the homotopy group construction which is given
by Boxer [2], Karaca and Vergili [12] and recall some
properties of these groups. In Section 4, we investigate
the relation between a digital covering space and higher
dimensional digital homotopy group of a digital image.
We obtain that a covering map induces isomorphism
between homotopy groups of pointed digital images in
higher dimensions when it is a radius 2 local
isomorphism. In the last section, we get some
conclusions.

2 Preliminaries

Let Z represent the set of integers. A (binary) digital
image is a pair(X ,κ), whereX is a subset ofZn for some
positive integer n and κ indicates some adjacency
relations onX . There aren adjacency relation forZn to be
used in the study of digital images. The following
terminology is used in [14]. Two pointsp andq in Z

2 are
8-adjacent if they are distinct and differ by at most 1 in
each coordinate;p andq in Z

2 are 4-adjacent if they are
8-adjacent and differ in exactly one coordinate. Two
points p and q in Z

3 are 26-adjacent if they are distinct
and differ by at most 1 in each coordinate; they are
18-adjacent if they are 26-adjacent and differ in at most
two coordinates; they are 6-adjacent if they are
18-adjacent and differ in exactly one coordinate. The
adjacencies are generalized as follows [6]. Let l,n be
positive integers, 1≤ l ≤ n and consider two distinct
points p = (p1, p2, . . . , pn),q = (q1,q2, . . . ,qn) ∈ Z

n, p
and q are κl-adjacent if there are at mostl distinct
coordinatesj for which |p j − q j| = 1, and for all other
coordinatesj, p j = q j. A κl-adjacency relation onZn

may be denoted by the number of points that are adjacent
to a pointp ∈ Z

n. For example,κ1-adjacent points ofZ2

are called 4-adjacent;κ2-adjacent points ofZ2 are called
8-adjacent; and inZ3, κ1-, κ2-, andκ3-adjacent points are
called 6-adjacent, 18-adjacent, and 26-adjacent,
respectively.

For a,b ∈ Z with a ≤ b, the set

[a,b]Z = {z ∈ Z : a ≤ z ≤ b}

is called a digital interval [2] in which 2-adjacency is
assumed.

Let (X ,κ) be a digital image. Aκ-path [15] from x to
y in X is a sequence(x = x0,x1, ...,xm−1,xm = y) in X such
that each pointxi is κ-adjacent toxi+1 for i ∈ [0,m−1]Z .
The natural numberm is called length of the path [2],[15].

If x0 = xm, then tkeκ-path is said to be closed. Two distinct
pointsx,y ∈ X areκ-connected if there is aκ-path fromx
to y in X and if any two points inX areκ-connected, then
X is calledκ-connected [15]. A κ-component of a digital
imageX is a maximalκ-connected subset ofX . The κ-
neighborhood [9] of x0 ∈ X with radiusε is the set

Nκ(x0,ε) = {x ∈ X | lκ(x0,x)≤ ε},

wherelκ(x0,x) is the length of a shortestκ-path fromx0
to x.

Let X ⊂ Z
n0 and Y ⊂ Z

n1. Let κi be an adjacency
relation defined onZni , i ∈ {0,1}. We say that a function
f : X −→ Y is (κ0,κ1)-continuous [2,4] if the image
under f of every κ0-connected subset ofX is
κ1-connected subset ofY .

The following Proposition is a characterization of
(κ0,κ1)-continuity.

Proposition 2.1. [16,2] Let X ⊂ Z
n0 and Y ⊂ Z

n1 be
digital images with κ0-adjacency andκ1-adjacency
respectively. Then the function f : X → Y is
(κ0,κ1)-continuous if and only if for every pair of
κ0-adjacent points{x0,x1} of X , either f (x0) = f (x1) or
f (x0) and f (x1) areκ1-adjacent inY .

Composition preserves digital continuity [2], i.e., if
f : X −→ Y and g : Y −→ Z are, respectively,
(κ1,κ2)-continuous and(κ2,κ3)-continuous functions,
then the composite function(g ◦ f ) : X −→ Z is
(κ1,κ3)-continuous.

If (X ,κ) is a digital image andA ⊂ X , then we call
(X,A) a digital image pair withκ-adjacency. For digital
image pairs(X ,A) and (Y,B) with κ0-adjacency and
κ1-adjacency respectively, a functionf : (X ,A) → (Y,B)
is a (κ0,κ1)-continuous map of digital pairs iff is
(κ0,κ1)-continuous andf (A) ⊂ B. When A = {a} and
B = {b}, we write(X ,A) = (X ,a), (Y,B) = (Y,b) and we
say f is a pointed(κ0,κ1)-continuous map [2] between
pointed digital images(A,a) and(Y,b).

Let (X ,κ0) and (Y,κ1) be digital images. A function
f : X → Y is a (κ0,κ1)-isomorphism [1] if f is
(κ0,κ1)-continuous and bijective and furtherf−1 : Y → X
is (κ1,κ0)-continuous.

Definition 2.2. ([2]; see also [13]) Let X andY be digital
images. Let f ,g : X −→ Y be (κ1,κ2)-continuous
functions. Suppose there is a positive integerm and a
function

F : X × [0,m]Z → Y

such

• for all x ∈ X , F(x,0) = f (x) and F(x,m) = g(x);
• for all x ∈ X , the induced functionFx : [0,m]Z → Y
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defined by Fx(t) = F(x, t) for all t ∈ [0,m]Z is
(2,κ2)-continuous; and
• for all t ∈ [0,m]Z, the induced functionFt : X → Y

defined by Ft(x) = F(x, t) for all x ∈ X is
(κ1,κ2)-continuous.

ThenF is a digital(κ1,κ2)-homotopy betweenf and
g, and f andg are digitally(κ1,κ2)-homotopic inY , and
denoted byf ≃κ1,κ2 Y .

Boxer [2] shows that digital(κ1,κ2)-homotopy is an
equivalence relation among digitally continuous functions
f : (X ,κ1)−→ (Y,κ2).

Let A ⊂ X and f ,g : X → Y be (κ0,κ1)-continuous
functions. A digital homotopy

H : X × [0,m]Z −→ Y

betweenf andg is called a digital homotopy relative toA
betweenf andg if for all a ∈ A, and for allt ∈ [0,m]Z,
H(a, t) = f (a) = g(a) (see [11]). Then we say thatf and
g are (κ0,κ1)-homotopic relative to A in Y . If
A = {x0} ⊂ X , then H is called a pointed digital
homotopy [2] betweenf andg.

Let c be the constant function for somex0 ∈ X defined
by c(x) = x0 for all x ∈ X . A digital image(X ,κ) is said
to be κ-contractible [2,13] if its identity map is(κ ,κ)-
homotopic to the constant functionc for somex0 ∈ X . If
the homotopy holdsx0 fixed, we say(X ,x0) is pointedκ-
contractible.

3 Digital Homotopy Groups

Homotopy groups are important invariants in algebraic
topology. Boxer [3] shows that digital fundamental
groups of isomorphic digital images are isomorphic as
groups. Karaca and Vergili [12] also prove that
isomorphic digital images have isomorphic homotopy
groups in each dimension. Therefore they are invariants in
digital topology and used in classifying the digital
images.

Let m be a positive integer. For a pointed digital
image(X ,x0), a κ-loop based atx0 is a (2,κ)-continuous
function f : [0,m]Z → X such thatf (0) = x0 = f (m) (see
[13]).

Definition 3.1. [3] Let f ,g : [0,m]Z → X beκ-loops such
that

f (0) = f (m) = g(0) = g(m) = x0 ∈ X .

If
H : [0,m]Z× [0,M]Z → X

is a digital homotopy such thatH(0, t) = H(m, t) = x0 for
all t ∈ [0,M]Z , then we sayH holds the endpoints fixed.

Khalimsky [13] defines an operation betweenκ-loops
with same base points as follows. Letf : [0,m1]Z → X ,
g : [0,m2]Z → X be twoκ-loops at basedx0. Then the map
f ∗g : [0,m1+m2]Z → X defined by

( f ∗g)(t) =

{
f (t), 0≤ t ≤ m1;
g(t −m1), m1 ≤ t ≤ m1+m2

is also aκ-loop based atx0.

The numberm depends on the loop. Different loops
have digital interval domains with different cardinality.
The notion of trivial extension given in [2] allows two
different loops to have same domains. So, they can be
remain in the same digital homotopy class.

The homotopy holding the endpoints fixed, is an
equivalence relation on the set of allκ-loops with same
base point inX . The loopsf ,g belong the same loop class
[ f ] [3] if they have trivial extensions that can be deformed
to each other by a homotopy that holds the endpoints
fixed. The set of all equivalence classes is denoted by
πκ

1 (X ,x0).

The following proposition shows that the operation
’*’ is well defined on equivalence classes.

Proposition 3.2. [2,13] Let f1, f2,g1,g2 be digital
κ-loops with base pointx0 in a digital imageX . Suppose
f2 ∈ [ f1] andg2 ∈ [g1]. Then f2∗g2 ∈ [ f1∗g1].

Theorem 3.3.[2] πκ
1 (X ,x0) is a group under the product

operation ’.’ defined as[ f ].[g] = [ f ∗g].

Proposition 3.4.[3] If (X ,x0) is a pointedκ-contractible
digital image, thenπκ

1 (X ,x0) is a trivial group.

The n-boundary of [0,m]n
Z
, denoted by∂ [0,m]Z, is

defined as follows:

∂ [0,m]n
Z
= {(t1, ..., tn) : ∃i ∈ {1,2, ..,m} ti = 0 orti = m }.

Let (X ,x0) be a pointed digital image with
κ-adjacency relation. LetSκ

n (X ,x0) [12] be the set of all
(2n,κ)-continuous maps of the form

f : ([0,m]n
Z
,∂ [0,m]n

Z
)−→ (X ,x0).

Karaca and Vergili [12] show that homotopy relation
relative to ∂ [0,m]n

Z
is an equivalence relation on

Sκ
n (X ,x0). The set of all equivalence classes denoted by

πκ
n (X , p) and the equivalence class off ∈ Sκ

n (X , p) is
denoted by[ f ].

Definition 3.5. [12] Let (X ,x0) be a pointed digital image
with κ adjacency and

f : ([0,m]n
Z
,∂ [0,m]n

Z
)−→ (X , p)
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be (2n,κ)-continuous map. If there is a positive integer
integerm1 ≥ m, and a map

f ′ : ([0,m1]
n
Z
,∂ [0,m1]

n
Z
)−→ (X , p)

defined as

f ′(t1, ..., tn) =

{
f (t), 0≤ ∀ ti ≤ m, i = 1,2, ...,n;
x0, otherwise.

for t = (t1, ..., tn) ∈ [0,m1]
n
Z

then f ′ is called the trivial
extension off .

Digital (2n,κ)-continuous mapsf andg in Sκ
n (X ,x0)

are in the same equivalence class inπκ
n (X ,x0) if there are

trivial extensionsf ′ andg′ of f andg, respectively, and a
relative digital homotopy betweenf ′ andg′.

Definition 3.6. [12] Let (X ,x0) be a pointed digital image
with κ-adjacency relation. Let

f : ([0,m1]
n
Z
,∂ [0,m1]

n
Z
)−→ (X ,x0)

and
g : ([0,m2]

n
Z
,∂ [0,m2]

n
Z
)−→ (X ,x0)

be (2n,κ)-continuous maps. The ’product’ off and g,
written f ⋆g, is defined as

( f ⋆g) : ([0,m1+m2]
n
Z
,∂ [0,m1+m2]

n
Z
)−→ (X ,x0)

( f ⋆g)(t) =





f (t1, ..., tn), t1 ∈ [0,m1]Z
and for j 6= 1, t j ≤ m1;

g(t1−m1, ..., tn), t1 ∈ [m1,m1+m2]Z
and for j 6= 1, t j ≤ m2;

x0, otherwise.

Karaca and Vergili [12] show that the operation

[ f ]⋆ [g] = [ f ⋆g]

is well-defined onπκ
n (X ,x0) and the setπκ

n (X ,x0) has a
group structure via ’⋆’ operation . This group is called a
digital n-th homotopy group of a pointed digital image
(X ,x0). Actually this construction coincides with the
fundamental group construction which is given by Boxer
[2], whenn = 1.

Let (X ,x0), (Y,y0) be two digital images withκ1, κ2
adjacency relations respectively and the digital map
ϕ : (X , p) −→ (Y,q) be a (κ1,κ2)-continuous.
Homomorphism induced byϕ [12] is defined as follows:

ϕ∗ : πκ1
n (X ,x0)→ πκ2

n (Y,y0), [ f ] 7→ ϕ∗([ f ]) = [ϕ ◦ f ].

Theorem 3.7. [12] The digital homotopy group
construction induces a covariant functor from the

category of pointed digital images and pointed digitally
continuous functions to the category of groups and
homomorphisms.

Corollary 3.8. [12] Let (X ,x0) be pointedκ-contractible.
Thenπκ

n (X ,x0) is trivial for all positive integern.

4 Computing Higher Digital Homotopy
Groups

In this section, we introduce a method for computing
homotopy groups of digital images via covering spaces.
We prove that a radius 2 local isomorphism induces an
isomorphism between higher dimensional digital
homotopy groups.

Definition 4.1. ([9]) Let (E,κ0) and (B,κ1) be digital
images andp : E → B be a(κ0,κ1)-continuous surjection.
Suppose for anyb ∈ B there existsε ∈ N such that

(DC 1) For someδ ∈ N and some index setM,
p−1(Nκ1(b,ε)) =

⋃
i∈M Nκ0(ei,δ ) with ei ∈ p−1(b);

(DC 2) if i, j ∈ M andi 6= j, then

Nκ0(ei,δ )∩Nκ0(e j,δ ) = /0;

(DC 3) the restriction map

p|Nκ0(ei,δ ) : Nκ0(ei,δ )→ Nκ1(b,ε)

is a(κ0,κ1)-isomorphism for alli ∈ M.

Then the mapp is called a(κ0,κ1)-covering map and
(E, p,B) is a(κ0,κ1)-covering.

Boxer [4] shows that the following proposition is
equivalent to the definition of digital covering maps.

Proposition 4.2. ([4]) Let (E,κ0) and (B,κ1) be digital
images andp : E → B be a(κ0,κ1)-continuous surjection.
Then the mapp is a (κ0,κ1)-covering map if and only if
for eachb ∈ B there exist an index setM such that

(C 1) p−1(Nκ1(b,1)) =
⋃

i∈M

Nκ0(ei,1)

with ei ∈ p−1(b);

(C 2) if i, j ∈ M andi 6= j, then

Nκ0(ei,1)∩Nκ0(e j,1) = /0;

(C 3) the restriction map

p|Nκ0(ei,1) : Nκ0(ei,1)→ Nκ1(b,1)
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is a(κ0,κ1)-isomorphism for alli ∈ M.

Definition 4.3. ([10]) For n ∈ N, a (κ0,κ1)-covering
(E, p,B) is a radiusn local isomorphism if the restriction
map

p|Nκ0(ei,n) : Nκ0(ei,n)→ Nκn(b,n)

is a(κ0,κ1)-isomorphism for alli ∈ M.

By Proposition 4.2 (C 3), we know that every
covering map is a radius 1 local isomorphism. A digital
simple closedκ-curve is a digital imageS = {ci}

m−1
i=0 such

thatsi ands j areκ-adjacent if and only if eitherj ≡ i+1
modm or j ≡ i−1 modm. p : Z→ S, p(z) = cz mod m is
a (2,κ)-covering map [9]. Hence it is a radius 1 local
isomorphism. However, ifS = MSC′

8 which is isomorphic
to digital image

{c0 = (1,0),c1 = (0,1),c2 = (−1,0),c3 = (0,−1)},

then p is not radius 2 local isomorphism [4]. That is a
covering map doesn’t need to be a radius 2 local
isomorphism. We give another example in respect to this
as below.

Example 4.4.Boxer [5] defines a digitaln-sphere as

Sn = [−1,1]n+1
Z

−{0n+1}

where0n represents the origin ofZn. We get

S2 ={c0 = (−1,−1,−1),c1 = (−1,0,−1),c2 = (−1,1,−1)

c3 = (0,1,−1),c4 = (0,0,−1),c5 = (0,−1,−1),

c6 = (1,−1,−1),c7 = (1,0,−1),c8 = (1,1,−1),

c9 = (1,1,0),c10 = (1,0,0),c11 = (1,−1,0),

c12 = (0,−1,0),c13 = (0,1,0),c14 = (−1,1,0),

c15 = (−1,0,0),c16 = (−1,−1,0),c17 = (−1,−1,1),

c18 = (−1,0,1),c19 = (−1,1,1),c20 = (0,1,1),

c21 = (0,0,1),c22 = (0,−1,1),c23 = (1,−1,1),

c24 = (1,0,1),c25 = (1,1,1)}

Let q : S2 → S2/x∼−x be the quotient map where−x
is the antipodal point ofx in S2. The quotient space is as
follows:

{[c0], [c1], [c2], [c3], [c4], [c5], [c6], [c7], [c8], [c9], [c13], [c14], [c15]}

It is called digital projective plane and denoted byP2.
(See Figure1)

Note that (P2,x) is pointed 6-contractible for all
x ∈ P2. For example, the contracting 6-homotopy
H : P2 × [0,5]Z −→ P2 of the pointed digital image
(P2, [c0]) can be defined as follows:

For all i ∈ {0,1,2,3,4,5,6,7,8,9,13,14,15}
H([ci],0) = [ci];

for all i ∈ {0,1,2,3,4,5,6,7,8} H([ci],1) = [ci],
H([c9],1) = [c8],
H([c13],1) = [c3],
H([c14],1) = [c2],
H([c15],1) = [c1];

for all i ∈ {0,1,4,5,6,7} H([ci],2) = [ci],
for all i ∈ {2,14,15} H([ci],2) = [c1],
for all i ∈ {3,13} H([ci],2) = [c4],
for all i ∈ {8,9} H([ci],2) = [c7];

for all i ∈ {1,2,14,15} H([ci],3) = [c0],
for all i ∈ {3,4,13} H([ci],3) = [c5],
for all i ∈ {7,8,9} H([ci],3) = [c6],
for all i ∈ {0,5,6} H([ci],3) = [ci];

for all i ∈ {1,2,14,15} H([ci],4) = [c0],
for all i ∈ {3,4,6,7,8,9,13} H([ci],4) = [c5]
for all i ∈ {0,5} H([ci],4) = [ci];

for all i ∈ {0,1,2,3,4,5,6,7,8,9,13,14,15}
H([ci],5) = [c0].

The quotient mapq is a (6,6)-continuous surjection
and it can be easily seen thatq satisfies the conditions of
Proposition 4.2. Henceq is a (6,6)-covering map. But it
isn’t a radius 2 local isomorphism. For[c1]∈ P2, we obtain

N6([c1],2) = {[c0], [c1], [c3], [c4], [c5], [c7], [c14], [c15]}

and

N6(c1,2) = {c0,c1,c2,c3,c4,c5,c7,c14,c15,c16,c18}.

Since N6(c1,2) and N6([c1],2) don’t have the same
cardinality,

q|N6(c1,2) : N6(c1,2)→ N6([c1],2)

cannot be a(6,6)-isomorphism.

Fig. 1: Digital Projective PlaneP2

Let (E,κ0), (B,κ1) (X ,κ2) be digital images and
p : E → B be a(κ0,κ1)-covering map. Letf : X → B be
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(κ2,κ1)-continuous function. A digital lifting [10] of f
with respect to p is a (κ2,κ0)-continuous function
f̃ : X → E such thatp◦ f̃ = f .

A digital continuous function doesn’t need to have
liftings. But we can determine whether a function has a
lifting or not with the help of the following theorem.

Theorem 4.5. [4] Let (E,κ0), (B,κ1) be pointed digital
images withe0 ∈ E, b0 ∈ B and let p : (E,e0) → (B,b0)
be a pointed (κ0,κ1)-covering map. Let X be a
κ2-connected digital image, x0 ∈ X . Let
φ : (X ,x0) → (B,b0) be a pointed(κ2,κ1)-continuous
map. Consider the following statements:

(a) There exists a lifting̃φ : (X ,x0) → (E,e0) of φ with
respect top.

(b) φ∗(πκ2
1 (X ,x0))⊆ p∗(πκ0

1 (E,e0)).

Then (a) implies (b). Further, if p is a radius 2 local
isomorphism, then(b) implies(a).

Han [9] shows that for a pointed(κ0,κ1)-covering
map p : (E,e0) −→ (B,b0), anyκ1-path f : [0,m]Z −→ B
beginning atb0 has a unique digital lifting to aκ0-path f̃
in E beginning ate0. We give a generalization of Han’s
result.

A pointed digital image(X ,x0) is said to be simply
κ-connected [9] if πκ

1 (X ,x0) is a trivial group.

Proposition 4.6. Let (E,κ0) be a digital image and
e0 ∈ E. Let (B,κ1) be a digital image andb0 ∈ B. Let
p : (E,e0) → (B,b0) be a pointed(κ0,κ1)-covering map
which is a radius 2 local isomorphism. Suppose that
(X ,x0) is a simplyκ2-connected digital image andA is
κ2-connected nonempty subset ofX such thatx0 ∈ A.
Then any(κ2,κ1)-continuous mapf : (X ,A) → (B,b0)
has a lifting to a (κ2,κ0)-continuous map
f̃ : (X ,A)→ (E,e0).

Proof. Let x0 ∈ A. We can takef : (X ,x0) → (B,b0) as a
(κ2,κ1)-continuous map of pointed digital images. There
is an induced homomorphism

f∗ : πκ2
1 (X ,x0)→ πκ1

1 (B,b0)

between digital fundamental groups. SinceX is a simply
κ2-connected digital image, it follows that

f∗(πκ2
1 (X ,x0))⊂ p∗(πκ0

1 (E,e0)).

From the previous theorem, there is a lifting
f̃ : (X ,x0)→ (E,e0) of f such thatp◦ f̃ = f .

Let x1 beκ2-adjacent tox0 in A. Since f̃ is a(κ2,κ0)-
continuous map,̃f (x1) must be inNκ0( f̃ (x0),1). Sincep

is a(κ0,κ1)-covering map,

p|Nκ0( f̃ (x0),1)
: Nκ0( f̃ (x0),1)→ Nκ1(b0,1)

is a(κ0,κ1)-isomorphism. We get

p|Nκ0( f̃ (x0),1)
◦ f̃ (x0) = f (x0) = b0 = f (x1)

= p|Nκ0( f̃ (x0),1)
◦ f̃ (x1).

Hence we have f̃ (x1) = f̃ (x0) = e0. Since A is a
κ2-connected digital image, we can iterate this argument
for any point ofA. This shows that̃f (A) = e0. Hence we
can consider the map̃f as a map of digital pairs

f̃ : (X ,A)−→ (E,e0).

Consequently, we get a lifting̃f of f : (X ,A) −→ (B,b0)
with respect top. �

Lemma 4.7.Let p : (E,e0)→ (B,b0) be a pointed(κ0,κ1)-
covering map which is a radius 2 local isomorphism. Then
any(2n,κ1)-continuous map

f : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (B,b0)

has a unique lifting

f̃ : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (E,e0)

with respect top.

Proof. The existence follows from Proposition 4.6, since
[0,m]n

Z
is simply 2n-connected and its boundary is

2n-connected nonempty subset of[0,m]n
Z
.

Let f̃0 : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (E,e0) be another lifting

of f with respect top. It is known thatf̃ (x) = f̃0(x) for any
x in ∂ [0,m]n

Z
. Let x1 andx2 be any 2n-adjacent members of

[0,m]n
Z

such thatf̃ (x1) = f̃0(x1) = b1. SinceX = {x1,x2}

is a 2n-connected set,̃f0 is (2n,κ0)-continuous map andp
is a(κ0,κ1)-covering map, we have

f̃0(X)⊂ p−1(Nκ1(b1,1)) =
⋃

α∈M

Nκ0(eα ,1).

There is a unique indexα0 such thatf̃0(X) ⊂ Nκ0(eα0,1)
because the union is disjoint. Similarly, one can see that
there is a unique indexα1 such that f̃ (X) ⊂ Nκ0(eα1,1).
f̃0(x1) = f̃ (x1) implies thatα0 = α1.

p|Nκ0(eα0 ,1)
: Nκ0(eα0,1)→ Nκ1(b1,1)

is an(κ0,κ1)-isomorphism and

p◦ f̃ (x2) = f (x2) = p◦ f̃0(x2)

for x2 ∈ Nκ0(eα0,1). This shows that f̃ (x2) = f̃0(x2).
Since [0,m]n

Z
is 2n-connected, this shows how we
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propagate our knowledge that̃f (x) = f̃0(x) from
x ∈ ∂ [0,m]n

Z
to all x ∈ [0,m]n

Z
. So f̃ = f̃0, that is, the

lifting is unique.�

The following proposition is a general version of the
digital homotopy lifting theorem given by Han [10].

Proposition 4.8. Let (E,κ0) be a digital image and
e0 ∈ E. Let (B,κ1) be a digital image andb0 ∈ B. Suppose
p : (E,e0)→ (B,b0) is a(κ0,κ1)-covering map which is a
radius 2 local isomorphism. For the two digital(2n,κ0)
continuous maps

f0, f1 : ([0,m]n
Z
,∂ [0,m]n

Z
)→ (E,e0),

if there is a digital homotopy relative to∂ [0,m]n
Z

from
p◦ f0 to p◦ f1, then there is a digital homotopy relative to
∂ [0,m]n

Z
from f0 to f1.

Proof. Let H : [0,m]n
Z
× [0,k]Z → B be a homotopy relative

to ∂ [0,m]n
Z

from p ◦ f0 to p ◦ f1. A homotopy betweenf0
and f1 can be defined with a similar method in the proof
of Lemma 4.7. Define

H̃ : [0,m]n
Z
× [0,k]Z → E

starting on the set

R = (∂ [0,m]n
Z
× [0,k]Z)∪ ([0,m]n

Z
×{0})

as
H̃(s, t) = e0, f or s ∈ ∂ [0,m]n

Z
, t ∈ [0,k]Z

H̃(s,0) = f0(s), f or s ∈ [0,m]n
Z
.

Let M = {s1,s2} be arbitrary 2n-adjacent points of
[0,m]n

Z
and N = [ j − 1, j]Z for any j ∈ [1,k]Z. Assume

thatH̃(s1, j) = b andp◦ H̃ = H at (s1, j). Then

p◦ H̃ = H

holds on R ∪ {(s1, j)}. Since p is a radius 2-local
isomorphism, there exist Nκ1(b,2) and
{Nκ0(eα ,2) : α ∈ M} such that

p−1(Nκ1(b,2)) =
⋃

α∈M

Nκ0(eα ,2)

and
H(M×N)⊂ Nκ1(b,2).

We have

H̃(s1, j) ∈ p−1(Nκ1(b,2)) =
⋃

α∈M

Nκ0(eα ,2).

Thus there is a unique neighborhoodNκ0(eα0,2) such that
H̃(s1, j) ∈ Nκ0(eα0,2).

p|Nκ0(eα0 ,2)
: Nκ0(eα0,2)→ Nκ1(b,2)

is a(κ0,κ1)-isomorphism. We can extend̃H by defining

H̃(s, t) = (p|Nκ0(eα0 ,2)
)−1◦H(s, t)

for all (s, t) ∈ (M ×N) \ {(s1, j)}. Since[0,m]n
Z
× [0,k]Z

is 2(n + 1)-connected, we define H̃ on all
(s, t) ∈ [0,m]n

Z
× [0,k]Z.

From the definition ofH̃ on R, H̃(s,0) = f0(s) for all
s ∈ [0,m]n

Z
.

H̃k : [0,m]n
Z
→ E, s 7→ H̃k(s) = H̃(s,k)

is the lifting of Hk = p ◦ f1. By Lemma 4.7,H̃k = f1, i.e.,
H̃(s,k) = f1(s) for all s ∈ [0,m]n

Z
. Thus H̃ is a digital

homotopy betweenf0 and f1. As H̃(s, t) = e0 for any
s ∈ ∂ [0,m]n

Z
and t ∈ [0,k]Z, H̃ is a digital homotopy

relative to∂ [0,m]n
Z
. �

The following result gives a method for computing
homotopy groups of digital images in higher dimensions.

Theorem 4.9.Let (E,κ0) be a digital image andeo ∈ E.
Let (B,κ1) be a digital image andb0 ∈ B. Suppose
p : (E,e0)→ (B,b0) is a(κ0,κ1)-covering map which is a
radius 2 local isomorphism. Then the induced
homomorphism

p∗ : πκ0
n (E,e0)−→ πκ1

n (B,b0)

[ f ] 7−→ π∗([ f ]) = [p◦ f ]

is a group isomorphism forn > 1.

Proof. Karaca and Vergili [12] show that p∗ is a group
homomorphism from πκ0

n (E,e0) to πκ1
n (B,b0). By

Proposition 4.6 and Proposition 4.8, the induced
homomorphism is bijective. As a result, it is a group
isomorphism.�

The results of Boxer [6, Theorem 3.1] can be
generalized to the higher dimensional digital homotopy
groups of the unbounded digital images. Let(X ,κ) be a
digital image such thatX = ∪∞

j=1X j and for all j

X j ⊂ X j+1 and
X j is bounded.

If the induced homomorphism

(i j)∗ : πκ
n (X j)−→ πκ

n (X j+1)

of the inclusion maps

i j : X j →֒ X j+1

are isomorphisms for allj and for all n ≥ 1 , then the
inclusion map

iX : X1 →֒ X

c© 2014 NSP
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induces an isomorphism

(iX )∗ : πκ
n (X1)−→ πκ

n (X)

for all n ≥ 1.

This helps us to compute the digital homotopy groups
of (Z,0). To see this if we takeX j = [− j, j] for
j = 1,2, .... SinceX j ’s are contractible,π2

n (X j) is trivial
for all n ≥ 1 and (i j)∗ are isomorphisms for all
j = 1,2, .... This leads us thatπ2

n (Z,0) = {0}.

Example 4.10.Boxer [5] defines the digital 1-sphere as

S1 = ([−1,1]Z× [−1,1]Z)−{(0,0)}

(See Figure2).

p : (Z,0)→ (S1,c0), t 7→ p(t) = ct (mod 8)

is a (2,4)-covering map which is a radius 2 local
isomorphism. So it induces a(2,4)-isomorphism

p∗ : π2
n (Z,0)−→ π4

n (S1,c0)

for n > 1. As we mention before,π2
n (Z,0) is trivial.

Therefore we obtainπ4
n (S1,c0)∼= {0}.

Fig. 2: Digital 1-SphereS1

Example 4.11.As the quotient mapq : S2 → P2 is not a
radius 2 local isomorphism, we cannot use Theorem 4.9
to computeπ6

n (P
2, [c0]). But we still say thatπ6

n (P
2, [c0])

is trivial for n > 1 because(P2, [c0]) is a pointed
6-contractible digital image.

5 Conclusion

In this paper we explore the relation between a digital
image and its covering space. We obtain an isomorphism
between higher dimensional homotopy groups of them
when the covering map is a radius 2 local isomorphism.
This is an alternative approach to compute digital
homotopy groups in higher dimensions. In the future, we
propose to compute higher dimensional homotopy groups
of some digital surfaces and construct a digital image
which has nontrivial digital homotopy groups.

References

[1] L. Boxer, Digitally continuous functions, Pattern
Recognition Letters,15, 833-839 (1994).

[2] L. Boxer, A classical construction for the digital
fundamental group, Journal of Mathematical Imaging and
Vision, 10, 51-62 (1999).

[3] L. Boxer, Properties of digital homotopy, Journal of
Mathematical Imaging and Vision,22, 19-26 (2005).

[4] L. Boxer, Digital products, wedges, and covering spaces,
Journal of Mathematical Imaging and Vision,25, 159-171
(2006).

[5] L. Boxer, Homotopy properties of sphere-like digital
images, Journal of Mathematical Imaging and Vision,24,
167-175 (2006).

[6] L. Boxer, Fundamental groups of unbounded digital
images, Journal of Mathematical Imaging and Vision,27,
121-127 (2007).

[7] L. Boxer, I. Karaca, The classification of digital covering
spaces, Journal of Mathematical Imaging and Vision,32,
2329 (2008).

[8] L. Boxer, I. Karaca, Some Properties of Digital Covering
Spaces, Journal of Mathematical Imaging and Vision,37,
17-26 (2010).

[9] BOXER, L. and KARACA, I., Actions of automorphism
groups in a digital covering space, Journal of Pure and
Applied Mathematics: Advances and Applications,8, 41-
59 (2012).

[10] S.-E. Han, Digital Coverings and Their Applications,
Journal of Applied Mathematics and Computing,18, 487-
495 (2005).

[11] S.-E. Han, Connected sum of a digital closed surfaces,
Information Sciences,176, 332-348 (2006).

[12] I. Karaca, and T. Vergili, Some properties of higher
dimensional homotopy groups for digital images, (preprint,
2012).

[13] E.Khalimsky, Motion, deformation, and homotopy in finite
spaces, Proceedings IEEE International Conference on
Systems, Man, and Cybernetics, 227-234 (1987).

[14] T.Y. Kong, A Digital Fundamental Group, Computers and
Graphics,13, 159-166 (1989).

[15] T.Y. Kong and A. Rosenfeld, Digital Topology- A Brief
Introduction and Bibliograraphy, Topological Algarithms
for the Digital Image Processing, Elsevier Science,
Amsterdam, (1996).

[16] A. Rosenfeld, Continuous functions on digital pictures,
Pattern Recognition Letters,4, 177-184 (1986).

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 5, 2417-2425 (2014) /www.naturalspublishing.com/Journals.asp 2425

Elif Tugce Meric
was born in Izmir, Turkey
on December 1st, 1987.
She received Bachelor’s
and Master’s degrees
in Mathematics from
Ege University and started
a PhD programme in the field
of Algebra at Celal Bayar
University. She is interested

in Module Theory, Algebraic Topology and Digital
Topology.

Tane Vergili was
born in Izmir, Turkey
on March 22nd, 1986.
She received a Bachelor’s
degree in Mathematics from
Ege University and started
an integrated PhD programme
in the field of Algebraic
Topology at the same
university. She is interested in

Algebraic Topology and Digital Topology.

Ismet Karaca was
born in Afyon, Turkey
on January 5th, 1969. He
received a Bachelor’s degree
in Mathematics from Anadolu
University in Turkey, a
Master’s in Mathematics from
the university of Miami, and
a PhD in Mathematics from
Lehigh University. He is a

Professor of Mathematics at Ege University in Izmir,
TURKEY. Dr. Karaca’s research interests include
Homotopy Theory, Steenrod Algebra, and Digital
Topology.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Preliminaries
	Digital Homotopy Groups
	Computing Higher Digital Homotopy Groups
	Conclusion

