
Appl. Math. Inf. Sci.8, No. 5, 2389-2393 (2014) 2389

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080534

Reducing Mutation Testing Endeavor using the Similar
Conditions for the same Mutation Operators Occurs at
Different Locations
Tannu Singla1, Ajay Kumar1,∗ and Sunita Garhwal2

1 Department of Computer Science and Engineering, Thapar University, Patiala, 147004, India
2 School of Mathematics and Computer Applications, Thapar University, Patiala, 147004, India

Received: 6 Sep. 2013, Revised: 4 Dec. 2013, Accepted: 5 Dec. 2013
Published online: 1 Sep. 2014

Abstract: Mutation testing is a software testing technique that ameliorates the quality and reliability of critical software. This paper
presents a mutation testing technique based on the concept of the same mutation operator under similar conditions occuring at different
locations in the program. In the proposed technique, we assemble the tantamount behaviour of mutants under a group and a single
mutant is selected from the group for performing mutation testing. The benefits of the proposed approach are a reduction in time, cost
and effort.

Keywords: Mutation Testing, Mutation Score, Mutation Operators.

1 Introduction

Software testing is an essential activity in the software
development life cycle; it assists in ameliorating the level
of confidence in the correctness and reliability of the
software under testing. Mutation testing is a white box
fault-based testing technique. It works in conjunction
with the traditional testing techniques. The main goals of
mutation testing are to provide a test adequacy criterion
and diagnose faults in the program under testing. It
promises to ameliorate the quality of software. There are
a number of problems associated with mutation testing,
such as the large time consumption, the equivalent mutant
problem and the large effort consumption. A number of
techniques [1,2,3,4,5,6,7,8] have been proposed for
reducing effort and finding equivalent mutants. Offutt and
Lee [1] proposed an approach using the concept of weak
mutation to significantly reduce computations and
increase the effectiveness of mutation testing but it is not
appropriate for programs having large lines of code.
Umar and Harman [9] provided a detailed description of
method and class level mutants, outlining information
related to the chances of detection for every mutant type.

Offutt and Pan [2] solved the feasible path problem
using the mathematical constraint system; the approach
helps in detecting the infeasible constraints and
recapturing them before applying testing. The
mathematical constraints are developed using the method
level mutants [2]. The technique [2] is applicable to a
program having large lines of code as it works on the
mathematical constraints. Offutt and Craft [7] optimize
the code by removing dead code, invariant propagation,
constant propagations, hoisting and sinking, loop
invariant detection and common sub-expressions. Demillo
and Offutt [6] also resolved the feasible path problem by
using the constraint-based testing (CBT) technique and
proposed a CBT algorithm for the detection of equivalent
mutants.

The paper is organized as follows: section 1 contains
the introduction with some preliminary concepts of
mutation testing; section 2 describes the proposed
approach and experimental results; section 3 contains
comparisons between the proposed approach and the
existing approaches, and finally section 4 contain
conclusions and future scope.

∗ Corresponding author e-mail:ajayloura@gmail.com

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080534


2390 T. Singla et. al. : Reducing Mutation Testing Endeavor using...

1.1 Mutation Testing

The speculating faults are introduced in the program
code, causing meager changes in the original program.
These meager changes will lead to a divergence in the
program called mutants. These meager changes are
performed with the help of mutation operators introduced
in the program under testing. The mutated program,
which is obtained by applying only one mutant in the
original program, is called afirst-order mutant. The
mutated program, which is obtained by applying more
than one mutant operator in the original program, is called
a higher-order mutant. Examples of mutation operators
for imperative languages include statement insertion or
deletion and the replacement of each arithmetic operator
with another one, e.g. + with *, - or /. The different
categories of mutation operators are statement mutations,
operator mutations, constant mutation and variable
mutation [10]. Fig.1 illustrates the concept of mutation
testing in which mutated program contains one mutant /
in place of % in the original program.

Original Program Mutated Program 

Public static int gcd( p, q) Public static int gcd( p, q)

{ { 

while(q!=0) while(q!=0)

{ {

int temp; int temp;

temp=q; temp=q; 

q=p%q; * q=p/q;

p=temp; p=temp; 

} }

return p; return p; 

} }

Fig. 1: Function gcd and its Mutated Program

The underlying concept behind mutation testing is to
detect mutants using the available test suite. For this
purpose, the mutants are executed with the available test
suite; On execution, the mutant is required to produce a
different result from the original one for at least one of the
test cases. Such a mutant is called a killed or detected
mutant. If the mutant is not detected, it is called a live or
alive mutant. If the mutant is semantically equivalent to
the original program, the mutant is called an equivalent
mutant. Mutation testing [11] works on the assumptions
of competent programmer and coupling effect hypothesis.
Competent programmer Hypothesis [12] states that the
programmer develops program that is close to the correct
version. Coupling effect [12] states that “Test cases that
distinguishes all programs differing from a correct one by
only simple errors is so sensitive that it also implicitly
distinguishes more complex errors”.

To measure the dexterity of test suites, a mutation
score is calculated. The mutation score is calculated using
the ratio of the number of killed mutants over the number
of non-equivalent mutants. The mutation score lies
between 0 and 1. A mutation score of 1 implies that all
the mutants were successfully detected. The aim of this
paper is to reduce the effort and time consumption
involved in the execution of each and every mutant.

2 Mutation Testing based on Similar
Behavior

In the proposed technique, groups of mutants having
mutation operators at different locations are created under
similar conditions in a program code. Mutants under
similar conditions having same mutant operators are
grouped in one group; for example, a variable in a print
statement and a return statement behaves similarly but
behaves differently in an arithmetic statement and a
conditional statement.

Input: Original Program and Test Suite
Output: Mutation Score
initialization;

1. Remove the infeasible path and dead code from the code
2. Generate a set of mutants using all constraints and

necessary conditions then
. Analyze mutant domain
. CreateGi groups where i=1 to i=n. Each group is

havingNj mutants where j=1 to j=m
. Killed Mutant← Live Mutant← 0, j← 1

3. for (p= 1 to p= n) do
for each test case from test suitedo

Apply current test case on MutantNj of Gp
if (result=killed) then

⊲ Killed Mutant
Killed Mutant← Killed Mutant+Nm

else
⊲ Live Mutant

Live Mutant← Live Mutant+Nm
end

end
end

4. if results are not satisfactorythen
if j < m then

j ← j +1 Go to step 3
end
else
Killed Mutant← Killed mutant/j
Live Mutant← Live Mutant/j
end

5. Mutationscore←Killed Mutant/Live Mutant

Algorithm 1: Similar Behaviour Mutation Testing
(SBMT) Algorithm

One group may contain all the mutants formed using a
mutation operator on the variables which are present in

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 5, 2389-2393 (2014) /www.naturalspublishing.com/Journals.asp 2391

Table 1: Mutation Testing Results using SBMT Algorithm
Program Executed Mutants Killed Mutants Approx. Killed Mutants Total % of executed Total % of Killed

192 152 277 53.185 100
Quad 297 227 275 77.285 99.27

361 277 277 100 100
173 138 277 47.658 98.16

Insert 281 218 271 77.41 99.63
344 262 272 94.76 100
363 272 272 100 100
94 74 252 30.61 93.33

Warshall 152 120 251 49.61 93.64
210 159 234 68.40 99.15
268 205 236 87.29 100
307 236 236 100 100
139 95 217 46.33 96.875

Bsearch 212 151 227 70.66 98.66
262 193 227 86.66 98.66
300 224 224 100 100
151 124 244 51.01 98.75

Bub 219 179 242 73.98 99.58
269 219 242 90.87 99.58
296 243 241 100 100
195 127 241 49.74 98.36

Trishmall 355 231 245 90.56 100
382 245 245 97.44 100
386 245 245 98.46 100
390 245 245 99.48 100
392 245 245 100 100
64 51 140 35.35 98.55

Mid 128 100 138 70.71 100
154 120 138 85.08 100
163 126 138 90.05 100
172 132 138 95.02 100
181 138 138 100 100
99 69 110 62.65 98.214

Euclid 132 92 111 83.54 99.107
158 112 112 100 100
68 54 106 53.125 100

Pat 128 106 106 100 100

print and return statements. Similarly, another group may
contain all the mutants formed using a mutation operator
on the variables which are present in all conditional
statements. We can execute only one mutant from each
group.

The result of single mutant whether killed or live is
assumed to be same for all other mutants in its group.
These results are used to calculate the overall results for
the entire program code. The calculation is done by
multiplying the number of mutants present in the group
and then adding together all group results. Using the
proposed technique, similar results to the existing
approaches are obtained by executing lesser mutants.
Additionally, the proposed approach requires less effort
and time consumption.

Executed on a single mutant from each group, the
SBMT algorithm will produce results similar to the actual

results. This algorithm works in conjunction with the
traditional algorithms and reduces the effort required for
performing mutation testing.

2.1 Experimental Results

The proposed algorithm is applied on nine Java programs
[1] that cover distinct types of applications. The code
length of these Java programs varies from a small number
of statements to a large number of statements. All
possible method level and class level type mutants for
Java are created in these nine programs. Method level
operators are arithmetic operators, conditional operators,
shift operators, logic operators, relational operators and
assignment operators, and class level operators are
applied on object-oriented features such as encapsulation,

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2392 T. Singla et. al. : Reducing Mutation Testing Endeavor using...

polymorphism, access modifiers, inheritance and
Java-specific features [9]. All mutants of the nine
programs are executed manually using the SBMT
algorithm to determine the true results. Thus, the
probability of mistakes is quite rare.

In table 1, details of the experiment results are
reported. The approximate true results of the programs
are calculated for the execution of three mutants from
each group. The number of mutant groups for a program
varies from program to program depending upon many
factors. The large number of mutants in a group has no
adverse effect on the results, rather it helps in reducing
the effort of calculation.

Fig. 2: Execution of number of mutants verses mutant detected
out from the total killed mutants

In fig.2, every program delineates the execution of the
number of mutants from their groups and the
corresponding percentage of detected killed mutants from
total killed mutants for the entire program code. Fig.2
illustrates that the expected results are procured by
considering only four mutants from each group of every
program. Hence, if any group has a mutant count of more
than four, there is no need to execute those excess
mutants. With the execution of a single mutant from every
group, the results are more than 93 percent close to
required results and the process requires less than 60
percent of effort and time.

3 Comparison with Existing Approaches

Table 2, illustrate the comparisons of the existing
techniques [1,2] with the proposed (SBMT) technique.

Table 2: Comparison between SBMT and Existing Techniques
Technique Class Method Applicable

Level Level for lengthy
Mutants Mutants code

Offutt and Pan No Yes Yes
Proposed Technique[2]

Offutt and Lee Yes Yes No
Proposed Technique[1]

SBMT Yes Yes Yes

The proposed approach is applicable to both method
and class level mutants. This approach is also applicable
to programs having large lines of code. The major benefits
of the proposed approach are the reduction in effort, time
and cost consumption.

4 Conclusions and Future Work

The proposed approach is inexpensive for mutation
testing. The SBMT algorithm works for mutants having
the same mutation operator at different locations in a
program under similar conditions, by accumulating them
in a group. The proposed algorithm covers all types of
Java mutants and can be applied to programs of any
length. The SBMT algorithm helps in reducing the time,
effort and cost consumption to 60 percent. This technique
has a limitation in that it is not able to work on the
subgroup of a group. The work can be extended on
subgroups and an automated system for the formation of
groups can be created and integrated with SBMT.

Acknowledgement

The authors are grateful to the anonymous referee for a
careful checking of the details and for helpful comments
that improved this paper.

References

[1] A. J. Offutt and S. D. Lee, An empirical evaluation of weak
Mutation, IEEE Transactions on Software Engineering, 20,
337-344 (1994).

[2] A. J. Offutt and J. Pan, Detecting Equivalent Mutants and the
Feasible Paths,Software Testing, Verification, and Reliability,
7, 165-192 (1997).

[3] B. J. M. Grun, D. Schuler and A. Zeller, The Impact
of Equivalent Mutants,IEEE International Conference on
Software Testing, Verification and Validation Workshops,
192-199 (2009).

[4] Y. Jia and M. Harman, Constructing subtle faults using
higher order mutation testing,IEEE International Working
Conference on Source Code Analysis and Manipulation, 249-
258 (2008).

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 5, 2389-2393 (2014) /www.naturalspublishing.com/Journals.asp 2393

[5] P. G. Frankl, S. N. Weiss and C. Hu, All-Uses vs Mutation
Testing: An experimental comparison of effectiveness,The
Journal of Systems and Software, 38, 235-253 (1997).

[6] R. A. DeMillo and A. J. Offutt, Constraint-based automatic
test data generation,IEEE Transactions on Software
Engineering, 17, 900-910 (1991).

[7] A. J. Offutt and W. M. Craft, Using Compiler Optimization
Techniques to Detect Equivalent Mutants,The Journal of
Software Testing, Verification and Reliability, 4, 131-154
(1996).

[8] T. Singla and A. Kumar, Mutation Operators corresponding
Conditions Contributing in Deporting them Equivalently,
International Journal of Computer Science and Technology,
4, 656-658 (2013).

[9] M. Umar, An Evaluation of Mutation Operators for
Equivalent Mutants,M.S. Thesis, King’s College, London,
(2006).

[10] K. Kapoor and J. P Bowen, Ordering Mutants to Minimise
Test Effort in Mutation Testing,Proceedings of the 4th

International conference on Formal Approaches to Software
Testing (FATES) Lecture Notes in Computer Science, 3395,
195-209 (2005).

[11] Y. Jia and M. Harman, Higher Order Mutation Testing,
Information and Software Technology, 51, 1379-1393 (2009).

[12] R. A. DeMillo, R. J. Lipton and F. G. Sayward, Hints on
Test Data Selection: Help for the Practicing Programmer,
Computer, 11, 34-41 (1978).

Tannu Singla received
her B.Tech. degree in
Computer Science and
Engineering from RIMT-
IET college, PTU University,
Jalandhar, India in 2011.
She is pursuing her M.Tech.
in Software Engineering
from Thapar University,
Patiala, Punjab, India. Her

research interests include Software Testing and Software
Engineering.

Ajay Kumar is an

 

 

Assistant Professor at
Computer Science and
Engineering Department,
Thapar University, Patiala,
Punjab, India. He obtained his
M. Tech. Computer Science
and Engineering from the
Kurukshetra University, India
in 2004. He received his PhD

degree in Theory of Computation from the Computer
Science and Engineering Department, Thapar University
in 2013. He has ten years of teaching experience in the
area of Theory of Computation, Software Testing and
Programming Languages. His research interests are
Theoretical Computer Science and Software Testing.

Sunita Garhwal
is an Assistant Professor
at School of Mathematics
and Computer Applications,
Thapar University, Patiala,
Punjab, India. She obtained
her M. Tech. in Software
Engineering from the
Kurukshetra University, India
in 2007. She has six years of

teaching experience in the area of Automata Theory,
Compiler design and Graph theory. Her research interests
includes Automata Theory and Software Engineering.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Mutation Testing based on Similar Behavior
	Comparison with Existing Approaches
	Conclusions and Future Work

