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Abstract: The first goal of this paper is to show that the relative cohomology groups of digital images are determined algebraically
by the relative homology groups of digital images. Then we state simplicial cup product for digital images and use it to establish ring
structure of digital cohomology. Furthermore we give a method for computing the cohomology ring of digital images and give some
examples concerning cohomology ring.

Keywords: Digital simplicial relative cohomology group, cup product, cohomology ring.

1 Introduction

In general calculating homology is not enought for
determining differences between topological spaces. The
cup product on cohomology is finer invariant. The cup
product makes the cohomology group of a space into a
ring. The ring structure from the cup product is an
important advantage of cohomology theory over
homology. While the homology groups of a space are
equal to the cohomology groups, the ring structure on the
cohomologies of the space is different. Then cup product
can be used to distinguish the spaces.

Cohomology groups are determined algebraically by
the homology groups. We will define the relative
cohomology groups of digital images and show that these
satisfy basic properties very much like those for the
relative homology of digital images.

Althought basic properties of cohomology theory are
similar to homology theory, there are some differences
between them. One of the differences is that cohomology
group is contravariant functor while homology group is
covariant. Contravariance leads to additional structuresin
cohomology. These new structures are finer invariants of
homotopy type and enable us to distinguish between
topological spaces what are called cup products and
cohomology operations.

Many researchers(Rosenfeld [24], Kopperman [20],
Kong [19], Malgouyres [21], Boxer [4,5,6,7,9], Han [11,
12], Karaca [1,10]) have contributed to digital topology
with their studies. They wish to characterize the
properties of digital images with tools from Algebraic
Topology. Their results play an important role in our
study.

Arslan, Karaca and Oztel [1], define simplicial
homology group of a digital image and give examples of
simplicial homology groups of certain digital images.
They also compute simplicial homology groups ofMSS18.

Gonzalez-Diaz and Real [15] have their 14-adjacency
algorithm to compute cup products on the simplicial
complex. The advantage of this method is tried via a
small program visualizing the several steps.
Gonzalez-Diaz, Jimenez and Medrano [16] introduce a
method for computing cup products on cubical
approximations. Their cup products are computed directly
from the cubical complex. Gonzalez-Diaz, Lamar and
Umble [17] present how to simplify the combinatorial
structure of cubical complex and obtain a homeomorphic
cellular complex with fewer cells. They introduce
formulas for a diagonal approximation on a general
polygon and use it to compute cup products on the
cohomology. The algorithm offered their work can be
applied to compute cup products on any polyhedral
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approximation of an object embedded in 3-space.

Kaczynski and Mrozek [18] improve a process to
compute cup product on cubical complexes for generating
a cohomology ring algorithm. This method is useful to
the topological analysis of high-dimensional data. Their
theory is to construct a cohomology ring algorithm
speeding up the algebraic calculations.

Ege and Karaca [10] propose a mathematical
framework that can be used for defining cohomology of
digital images. They state the Eilenberg-Steenrod axioms
and the Universal Coefficient Theorem for this
cohomology theory. They show that the K ¨unneth formula
for cohomology theory doesn’t be hold in digital images.
Moreover they state the cup product for digital images
and prove its basic properties.

In Section 2, we review necessary backgrounds on
digital topology. In next section we give definitions and
theorems that are related to relative cohomology groups
of digital images. In the last section we define the
simplicial cup product and its general properties.
Moreover we give examples about computing the
cohomology ring of minimal simple surfacesMSS′18 and
MSS18.

2 Preliminaries

Let Zn be the set of lattice points in then-dimensional
Euclidean space whereZ is the set of integer. A (binary)
digital image is a pair(X,κ) where X ⊂ Z

n for some
positive integern and κ represents certain adjacency
relation for the members ofX. We use a variety of
adjacency relations in the study of digital images.

Definition 21[5] Let l ,n be positive integers,1≤ l ≤ n and
distinct two points

p= (p1, p2, ..., pn), q= (q1,q2, ...,qn) ∈ Z
n

p and q are kl -adjacent if there are at most l indices i
such that|pi−qi |= 1 and for all other indices j such that
|pi−qi | 6= 1, pj = q j .

From Definition 2.1, we have the following;
• Two pointsp andq in Z are 2-adjacentif |p−q|= 1.
• Two points p and q in Z

2 are 8-adjacent if they are
distinct and differ by at most 1 in each coordinate.
• Two points p and q in Z

2 are 4-adjacent if they are
8-adjacentand differ in exactly one coordinate.
• Two points p and q in Z

3 are 26-adjacentif they are
distinct and differ by at most 1 in each coordinate.
• Two points p and q in Z

3 are 18-adjacentif they are
26-adjacentand differ in at most two coordinate.
• Two points p and q in Z

3 are 6-adjacent if they are

p

Fig. 1: 2-adjacent

p p

Fig. 2: 4-adjacent and 8-adjacent

Fig. 3: 6-adjacent, 18-adjacent and 26-adjacent

18-adjacentand differ in exactly one coordinate.

Let κ ∈ {2,4,8,6,18,26}. A κ-neighborof p∈ Z
n is

a point of Z
n that is κ-adjacent to p [5]. The

κ-neighborhoodof p is defined to be set

Nκ(p) = {q|qisκ−adjacent top}.

Let a,b∈ Z with a< b. A set of the form

[a,b]Z = {z∈ Z|a≤ z≤ b}

is called a digital interval [4].

Definition 22[14] Let κ be an adjacency relation defined
onZ

n. A digital image X⊂ Z
n is κ-connected if and only

if for every pair of different points x,y ∈ X, there is a set
{x0,x1, ...,xr} of points of a digital image X such that
x = x0, y = xr and xi and xi+1 are κ-neighbors where
i = 0,1, ..., r−1. A κ-component of a digital image X is a
maximalκ-connected subset of X.

Definition 23[5] Let X⊂ Z
n0 and Y⊂ Z

n1 be digital
images withκ0-adjacency andκ1-adjacency respectively.
Then the function f : X → Y is said to be
(κ0,κ1)-continuous if for everyκ0-connected subset U of
X, f(U) is a κ1-connected subset of Y . We say that such a
function is digitally continuous.
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Proposition 24[5] Let X⊂ Z
n0 and Y⊂ Z

n1 be digital
images withκ0-adjacency andκ1-adjacency respectively.
Then the function f : X → Y is said to be
(κ0,κ1)-continuous if and only if for every pair of
κ0-adjacent points{x0,x1} of X, either f(x0) = f (x1) or
f (x0) and f(x1) are κ1-adjacent in Y .

A (2,κ)-continuous functionf : [0,m]Z → X such that
f (0) = x and f (m) = y is calleda digital κ-pathfrom x to
y in a digital imageX [5]. A digital image X is digital
κ-path connected if, for everyx,y ∈ X, there exist a
κ-path inX from x to y.

A simple closedκ-curve of m≥ 4 points in a digital
imageX is a sequence

{ f (0), f (1), ..., f (m−1)}

of images of theκ-path f : [0,m−1]Z→ X such thatf (i)
and f ( j) areκ-adjacent if and only ifj = i±1 modm [8].

Let (X,κ0)⊂ Z
n0 and(Y,κ1)⊂ Z

n1 be digital images.
A function f : X → Y is (κ0,κ1)-isomorphismif f is
(κ0,κ1)-continuous and bijective and furtherf−1 : Y→ X
is (κ1,κ0)-continuous, in which case we denote
X ∼=(κ0,κ1) Y [7].

A point x∈ X is called aκ-corner if x is κ-adjacent to
two and only two pointsy,z∈ X such thaty andz areκ-
adjacent to each other [3]. Theκ-cornerx is calledsimple
if y, zare notκ-corners and ifx is the only pointκ-adjacent
to bothy, z[2]. X is called ageneralized simple closedκ-
curveif what is obtained by removing all simpleκ-corners
of X is a simple closedκ-curve [21]. For a κ-connected
digital image(X,κ) in Z

n, we can state following

|X|x = N3n−1(x)∩X.

Definition 25[12] Let (X,κ)⊂ Z
n be a digital image, n≥

3, andX = Z
n−X. Then X is called a closedκ-surface if

it satisfies the following:

1.In that case(κ ,κ) ∈ {(κ ,2n),(2n,3n− 1)} and κ 6=
3n−2n−1, then;

–for each point x∈ X, |X|x has exactly one
κ-componentκ-adjacent to x.

–|X̄|x has exactly twoκ-componentsκ-adjacent to x.
(We denote by Cxx and Dxx these two components)

–for any point y∈ Nκ(x)∩X, Nκ(y)∩Cxx 6= ∅ and
Nκ(y)∩Dxx 6=∅, where Nκ means theκ-neighbors
of x.

Furthermore, if a closedκ-surface X does not have a
simpleκ-point, then X is called simple.

2.In that case(κ ,κ) = (3n−2n−1,2n), then
–X is κ-connected,
–for each point x∈ X, |X|x is a generalized simple
closedκ-curve.

Furthermore, if the image|X|x is a simple closedκ-
curve, then the closedκ-surface X is called simple.

Example 26MSS18 and MSS′18 are minimal simple closed
18-surfaces.

Fig. 4: (2,0), (2,1), (8,2) and (26,3)-simplexes

Definition 27[5] Let (X,κ0)⊂ Z
n0 and (Y,κ1)⊂ Z

n1 be
digital images. Two (κ0,κ1)-continuous functions
f ,g : X→Y are said to be digitally(κ0,κ1)-homotopic in
Y if there is a positive integer m and a function
H : X× [0,m]Z→Y such that for all x∈ X, H(x,0)= f (x)
and H(x,m) = g(x); for all x ∈ X, the induced function
Hx : [0,m]Z→Y defined by

Hx(t) = H(x, t) for all t ∈ [0,m]Z,

is (2,κ1)-continuous; and for all t∈ [0,m]Z, the induced
function Ht : X→Y defined by

Ht(x) = H(x, t) for all x ∈ X,

is (κ0,κ1)-continuous. The function H is called a digital
(κ0,κ1)-homotopy[2] between f and g. A digital image
(X,κ) is said to beκ-contractible if its identity map is
(κ ,κ)-homotopic to a constant function̄c for some c∈ X
where the constant function̄c : X→ X is defined bȳc(x) =
c for all x∈ X.

For a digital image(X,κ) and its subset(A,κ), we call
(X,A) a digital image pair withκ-adjacency. Moreover,
if A is a singleton setx0, then(X,x0) is calleda pointed
digital image.

Definition 28[26] Let S be a set of nonempty subset of a
digital image (X,κ). Then the members of S are called
simplexes of(X,κ) if the following hold:

–If p and q are distinct points of s∈ S, then p and q are
κ-adjacent.

–If s∈ S and∅ 6= t ⊂ s, then t∈ S.

A m-simplex is a simplexSsuch that|S| = m+1. Let
P be a digital m-simplex. If P′ is a nonempty proper
subset ofP, then P′ is called a face of P. We write
Vert(P) to denote the vertex set ofP, namely, the set of
all digital 0-simplexes inP. A digital subcomplexA of a
digital simplicial complexX with κ-adjacency is a digital
simplicial complex contained in X with
Vert(A)⊂Vert(X).

Let (X,κ) be a finite collection of digitalm-simplices,
0 ≤ m ≤ d for some non-negative integerd. (X,κ) is
called a finite digital simplicial complex[1] if the
following statements hold:

–If P belongs toX, then every face ofP also belongs to
X.
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–If P,Q ∈ X, thenP∩Q is either empty or a common
face ofP andQ.

Definition 29[1] Let (X,κ) ⊂ Z
n be a digital simplicial

complex.(X,κ) called digital oriented simplicial complex
if there is an ordering on the vertex set of(X,κ).

Definition 210[1] Let (X,κ) ⊂ Z
n be a digital oriented

simplicial complex with m-dimension. A homomorphism

∂q : Cκ
q (X)→Cκ

q−1(X)

called the boundary operator. Ifσ = [v0, ...,vq] is an
oriented simplex with0< q≤m, we define

∂qσ = ∂q[v0, ...,vq] =
q

∑
i=0

(−1)i [v0, ..., v̂i , ...,vq]

where the symbol̂vi means that the vertex vi is to be deleted
from the array. Since Cκq (X) is the trivial group for q< 0,
m< q the operator∂q is the trivial homomorphism for q≤
0, m< q.

Proposition 211[1] For m≥ q, we have∂q−1◦∂q = 0.

Definition 212[9] Let (X,κ) ⊂ Z
n be a digital oriented

simplicial complex with m-dimension. The kernel of
∂q : Cκ

q (X)→Cκ
q−1(X) is called the group of q-cycles and

denoted Zκq (X). The image of∂q+1 : Cκ
q+1(X)→Cκ

q (X) is
called the group of q-boundaries and is denoted Bκ

q(X).
We define the q th simplicial homology group of X by

Hκ
q (X) = Zκ

q (X)/Bκ
q(X).

Theorem 213[1] If (X,κ) ⊂ Z
n is a digital κ-path

connected space then Hκ
0 (X)∼= Z.

Lemma 214 (The zig-zag lemma) [22] Suppose one is
given simplicial complexesC = {Cp,∂C}, C ′ = {C′p,∂C′}

and C ′′ = {C′′p,∂C′′} and chain mapsφ , ψ such that the
sequence

0 C C ′ C ′′ 0
φ ψ

is exact. Then there is a long exact homology sequence

... Hp(C ) Hp(C
′) Hp(C

′′)

Hp−1(C ) Hp−1(C
′) ...

φ∗ ψ∗

∂∗ φ∗

where∂∗ is induced by the boundary operator inC ′.

Definition 215[22] Let (X,κ)⊂Z
n be a digital simplicial

complex; let G be an abelian group. The digital simplicial
cochain complex(C∗(X),δ ) is defined as follows. For any
q∈ Z, the q-dimensional digital cochain group with
coefficients in G, is the group

Cq,κ(X;G) = Hom(Cκ
q (X),G).

The coboundary operatorδ is defined to be the dual of the
boundary operator∂ : Cκ

q+1(X)→Cκ
q (X). Thus

Cq+1,κ(X;G) Cq,κ(X;G)
δ

so thatδ raises dimension by one. The abelian group G is
omitted from the notation when it equals the group of
integers. Elements ofCq,κ(X) are calleddigital cochains
and denoted either bycq or by c∗, if we don’t need to
specify their dimensionq. The value of a digital cochain
cq on a chaindq is denoted by< cq,dq >. The q-th
coboundary mapδ q : Cq,κ(X) → Cq+1,κ(X) is the dual
homomorphism of∂q+1 defined by

< δ qcq,dq+1 >=< cq,∂q+1dq+1 >.

Definition 216[22] The kernel ofδ is called the group of
cocycles and denoted by Zq,κ(X;G), its image is called
the group of coboundaries and denoted by Bq,κ(X;G).

Example 217Let’s compute the 0-cocycles of MSC′8.

p0

p1

p2

p3

Fig. 5: MSC′8

Let MSC′8 = {p0 = (1,2), p1 = (2,1), p2 = (3,2),
p3 = (2,3)} ⊂ Z

2 and p0 < p1 < p3 < p2.

0-simplexes are〈p0〉,〈p1〉,〈p2〉,〈p3〉 and 1-simplexes are
e0 = 〈p0p3〉,e1 = 〈p3p2〉,e2 = 〈p1p2〉,e3 = 〈p0p1〉.
We first find the 0-cochains. Since

∂1(e0) = p3− p0
∂1(e1) = p2− p3
∂1(e2) = p2− p1
∂1(e3) = p1− p0

we get 0-cochains,

δ 0p∗0 =−e0−e3

δ 0p∗1 =−e2+e3

δ 0p∗2 = e1+e2

δ 0p∗3 = e0−e1

Therefore we have that p∗0+ p∗1+ p∗2+ p∗3 is a 0-cocycle.

c© 2014 NSP
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Definition 218[22] The cohomology group of a digital
image(X,κ) with coefficients in G is the group

Hq,κ(X;G) = Zq,κ(X;G)/Bq,κ(X;G).

Theorem 219[10] If (X,κ) is a single vertex, then

Hq,κ(X) =

{
Z , q= 0
0 , q 6= 0.

Theorem 220If (X,κ)⊂ Z
n is a digitalκ-path connected

space then H0,κ(X)∼= Z.

Proof. Assume that 0-simplexes of X are
〈p0〉,〈p1〉, ...,〈pn〉. We get the following sequence

0 C0,κ(X) C1,κ(X).
δ−1 δ 0

As the image ofδ−1 is zero,B0,κ(X) = {0}. Let us find
Z0,κ(X) =Kerδ 0. Let

A= {
n

∑
i=0

ki pi |ki = k, i = 0,1, ...,n}.

We claim thatZ0,κ(X) = A. If this claim is true, it is
clear thatZ0,κ(X) = Z and we findH0,κ(X) = Z.

Let us prove the claim. Choose two points
pr i , psi ∈ X. SinceX is κ-path connected, there is a path
σi in X from pr i to psi for eachi. σi is the set of digital
1-simplexes thatκ-path inX from pr i to psi .

σi = {〈pr i , pr+1i 〉,〈pr+1i , pr+2i 〉, ...,〈ps−1i , psi 〉}.

Let eki = 〈pki , pk+1i 〉, for k= r, r +1, ...,s. We get

σi = {er i ,er+1i , ...,es−1i}.

It is clear that

∂1(er i ) = pr+1i − pr i ,
∂1(er+1i ) = pr+2i − pr+1i ,
∂1(er+2i ) = pr+3i − pr+2i ,

...
∂1(es−2i ) = ps−1i − ps−2i ,
∂1(es−1i ) = psi − ps−1i .

Hence we have

δ 0(pr+1i ) = er i −er+1i ,
δ 0(pr+2i ) = er+1i −er+2i ,

...
δ 0(ps−1i ) = es−2i −es−1i .

Let γi is the set of digital 0-simplexes on the pathσi . For
ω = ∑kγi ∈ Z, we get

δ 0(ω) = δ 0(∑kγi) = k∑δ 0(γi) = k∑(er i −es−1i )
= k∑er i −k∑es−1i = 0.

So we getω ∈ Z0,κ(X).

Conversely, ifθ ∈Z0,κ(X), thenθ =
n

∑
i=0

ki pi ∈C0,κ(X) and

δ 0(θ) = δ 0(
n

∑
i=0

ki pi) =
n

∑
i=0

kiδ 0(pi) = 0.

We have
n

∑
i=0

kiδ 0(γi) =
n

∑
i=0

ki(er i −es−1i )

=
n

∑
i=0

kier i −
n

∑
i=0

kies−1i = 0.

Since∑kier i = ∑kies−1i , ki = k, for i = 0, ...,n. Therefore
we have thatθ ∈ A. Thus we find thatZ0,κ(X) = A∼= Z

and

H0,κ(X) = Z0,κ(X)/B0,κ(X)∼= Z.

�

Example 221Let’s compute the cohomology of MSS′18.

p1

p5

p3

p4

p2
p0

Fig. 6: MSS′18

Let
MSS′18={p0=(1,1,0), p1=(0,2,0), p2=(−1,1,0),
p3 = (0,0,0), p4 = (0,1,−1), p5 = (0,1,1)} ⊂ Z

3, where
p2 < p3 < p4 < p5 < p1 < p0.

C18
0 (MSS′18), C18

1 (MSS′18) and C18
2 (MSS′18) are free

abelian groups with bases, respectively,

0-simplexes

〈p0〉,〈p1〉,〈p2〉,〈p3〉,〈p4〉,〈p5〉

1-simplexes

e0 = 〈p2p1〉,e1 = 〈p2p3〉,e2 = 〈p2p4〉,e3 = 〈p2p5〉,

e4 = 〈p4p1〉,e5 = 〈p3p4〉,e6 = 〈p4p0〉,e7 = 〈p5p1〉,

e8 = 〈p3p5〉,e9 = 〈p5p0〉,e10 = 〈p1p0〉,e11 = 〈p3p0〉

and

2-simplexes

σ0 = 〈p2p4p1〉,σ1 = 〈p4p1p0〉,σ2 = 〈p3p4p0〉,

σ3 = 〈p2p3p4〉,σ4 = 〈p2p5p1〉,σ5 = 〈p2p3p5〉,

σ6 = 〈p5p1p0〉,σ7 = 〈p3p5p0〉

Since C18
m (MSS′18)

∼= {0} for m≥ 3, we get the following
short sequence:

c© 2014 NSP
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0 C18
2 (MSS′18) C18

1 (MSS′18) C18
0 (MSS′18) 0.

∂3 ∂2 ∂1 ∂0

It is clear that

C0,18(MSS′18)
∼= Hom(C18

0 (MSS′18),Z),
C1,18(MSS′18)

∼= Hom(C18
1 (MSS′18),Z),

C2,18(MSS′18)
∼= Hom(C18

2 (MSS′18),Z).

Hence we get the following sequence:

0 C0,18(MSS′18) C1,18(MSS′18) C2,18(MSS′18) 0.
δ−1 δ 0 δ 1 δ 2

By the definition, we obtain

∂1(e0) = p1− p2, ∂1(e6) = p0− p4,
∂1(e1) = p3− p2, ∂1(e7) = p1− p5,
∂1(e2) = p4− p2, ∂1(e8) = p5− p3,
∂1(e3) = p5− p2, ∂1(e9) = p0− p5,
∂1(e4) = p1− p4, ∂1(e10) = p0− p1,
∂1(e5) = p4− p3, ∂1(e11) = p0− p3.

So we can find 0-cochains,

δ 0p∗0 = e6+e9+e10+e11,
δ 0p∗1 = e0+e4+e7−e10,
δ 0p∗2 =−e0−e1−e2−e3,
δ 0p∗3 = e1−e5−e8−e11,
δ 0p∗4 = e2−e4+e5−e6,
δ 0p∗5 = e3−e7+e8−e9.

From the definition of a homomorphism∂ , it is easy to see
that
∂2 (σ0 ) = ∂2(〈p2p4p1〉) = 〈p4p1〉−〈p2p1〉+ 〈p2p4〉

= e4−e0+e2,
∂2 (σ1 ) = ∂2(〈p4p1p0〉) = 〈p1p0〉−〈p4p0〉+ 〈p4p1〉

= e10−e6+e4,
∂2 (σ2 ) = ∂2(〈p3p4p0〉) = 〈p4p0〉−〈p3p0〉+ 〈p3p4〉

= e6−e11+e5,
∂2 (σ3 ) = ∂2(〈p2p3p4〉) = 〈p3p4〉−〈p2p4〉+ 〈p2p3〉

= e5−e2+e1,
∂2 (σ4 ) = ∂2(〈p2p5p1〉) = 〈p5p1〉−〈p2p1〉+ 〈p2p5〉

= e7−e0+e3,
∂2 (σ5 ) = ∂2(〈p2p3p5〉) = 〈p3p5〉−〈p2p5〉+ 〈p2p3〉

= e8−e3+e1,
∂2 (σ6 ) = ∂2(〈p5p1p0〉) = 〈p1p0〉−〈p5p0〉+ 〈p5p1〉

= e10−e9+e7,
∂2 (σ7 ) = ∂2(〈p3p5p0〉) = 〈p5p0〉−〈p3p0〉+ 〈p3p5〉

= e9−e11+e8.

Thus we can get 1-cochains,

δ 1e∗0 =−σ0−σ4, δ 1e∗6 =−σ1+σ2,
δ 1e∗1 = σ3+σ5, δ 1e∗7 = σ4+σ6,
δ 1e∗2 = σ0−σ3, δ 1e∗8 = σ5+σ7,
δ 1e∗3 = σ4−σ5, δ 1e∗9 =−σ6+σ7,
δ 1e∗4 = σ0+σ1, δ 1e∗10 = σ1+σ6,
δ 1e∗5 = σ2+σ3, δ 1e∗11 =−σ2−σ7.

We first find the kernel ofδ 0. We have

δ 0(
5

∑
i=0

ni p∗i ) = n0(e6+e9+e10+e11)

+n1(e0+e4+e7−e10)
+n2(−e0−e1−e2−e3)
+n3(e1−e5−e8−e11)
+n4(e2−e4+e5−e6)
+n5(e3−e7+e8−e9).

Solving the equation

e0(n1−n2)+e1(−n2+n3)+e2(−n2+n4)
+e3(−n2+n5)+e4(n1−n4)+e5(−n3+n4)
+e6(n0−n4)+e7(n1−n5)+e8(−n3+n5)
+e9(−n5+n0)+e10(n0−n1)+e11(n0−n3) = 0,

we must have

n0 = n1 = n2 = n3 = n4 = n5 = n.

Hence, we get

Z0,18(MSS′18) ={n(p0+p1+p2+p3+p4+p5) |n∈ Z}
∼= Z.

Since B0,18(MSS′18)
∼= 0, the zero dimension cohomology

group of MSS′18 is isomorphic to the abelian group of
integers.
Let

δ 1(
11

∑
i=0

kie∗i )=k0(−σ0−σ4)+k1(σ3+σ5)+k2(σ0−σ3)

+k3(σ4−σ5)+k4(σ0+σ1)+k5(σ2+σ3)
+k6(−σ1+σ2)+k7(σ4+σ6)+k8(σ5+σ7)
+k9(−σ6+σ7)+k10(σ1+σ6)
+k11(−σ2−σ7).

We find the kernel ofδ 1. We have the following equation

σ0(−k0+k2+k4)+σ1(k4−k6+k10)+σ2(k5+k6−k11)
+σ3(k1−k2+k5)+σ4(k3+k7−k0)+σ5(k1+k8−k3)
+σ6(k7−k9+k10)+σ7(k8+k9−k11)=0.

Solving the equation above, we find

k0 = k1+k4+k5,
k2 = k1+k5,
k3 = k1+k5+k4−k7,
k6 = k4+k10,
k8 = k4+k5−k7,
k9 = k7+k10,
k11 = k4+k5+k10.

Hence, we get the group of one dimensional cocycle

Z1,18(MSS′18) = {(k1+k4+k5)e∗0+k1e∗1+(k1+k5)e∗2
+(k1+k4+k5−k7)e∗3+k4e∗4+k5e∗5
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+(k4+k10)e∗6+k7e∗7+(k4+k5−k7)e∗8
+(k7+k10)e∗9+k10e∗10+(k4+k5+k10)e∗11
|ki ∈ Z, i = 1,4,5,7,10} ∼= Z

5.

On the other hand, we obtain the group of one
dimensional coboundary

B1,18(MSS′18) = {t0e0+ t1e1+ t2e2+ t3e3+(t0− t2)e4
+(t2−t1)e5+t4e6+(t0− t3)e7
+(t3− t1)e8+(t2−t3+t4)e9
+(−t0+t2+t4)e10+(−t1+t2+t4)e11
| ti ∈ Z, i = 0,1,2,3,4} ∼= Z

5.

Since B1,18(MSS′18) = Z1,18(MSS′18), we have that,

H1,18(MSS′18)
∼= {0}.

We find that

B2,18(MSS′18) = {h0σ0+h1σ1+h2σ2+h3σ3+h4σ4
+h5σ5+h6σ6
+(h5−h6+h4−h0−h3+h2+h1)σ7
|hi ∈ Z, i = 0,1,2,3,4,5,6} ∼= Z

7.

Since Z2,18(MSS′18)
∼= Z

8, we have that,

H2,18(MSS′18)
∼= Z.

Therefore we conclude that

Hq,18(MSS′18) =

{
Z , q= 0,2
0 , q 6= 0,2.

�

Example 222Let’s compute the cohomology of MSS18.

p3

p8p9

p0

p6 p7

p4p5
p1 p2

Fig. 7: MSS18

Let MSS18 = {p0 = (0,0,1), p1 = (1,1,1),
p2 = (1,2,1), p3 = (0,3,1), p4 = (−1,2,1),
p5 = (−1,1,1), p6 = (0,1,0), p7 = (0,2,0),
p8 = (0,2,2), p9 = (0,1,2)} ⊂ Z

3, where
p5 < p4 < p0 < p6 < p9 < p7 < p8 < p3 < p1 < p2.

C18
0 (MSS18), C18

1 (MSS18) and C18
2 (MSS18) are free

abelian groups with bases, respectively,

0-simplexes

〈p0〉,〈p1〉,〈p2〉,〈p3〉,〈p4〉,〈p5〉,〈p6〉,〈p7〉,〈p8〉,〈p9〉

1-simplexes

e0 = 〈p0p1〉,e1 = 〈p0p9〉,e2 = 〈p5p0〉,e3 = 〈p0p6〉,

e4 = 〈p9p8〉,e5 = 〈p9p1〉,e6 = 〈p5p9〉,e7= 〈p6p1〉,

e8= 〈p1p2〉,e9= 〈p5p6〉,e10= 〈p6p7〉,e11= 〈p5p4〉,

e12= 〈p8p2〉,e13= 〈p4p8〉,e14 = 〈p8p3〉,e15 = 〈p4p3〉,

e16 = 〈p4p7〉,e17 = 〈p3p2〉,e18 = 〈p7p2〉,e19 = 〈p7p3〉

and

2-simplexes

σ0 = 〈p0p9p1〉,σ1 = 〈p0p6p1〉,σ2 = 〈p5p0p6〉,

σ3 = 〈p5p0p9〉,σ4 = 〈p4p8p3〉,σ5 = 〈p4p7p3〉,

σ6 = 〈p8p3p2〉,σ7 = 〈p7p3p2〉

Since C18
m (MSS18) is a trivial group for m≥ 3, we have

0 C18
2 (MSS18) C18

1 (MSS18) C18
0 (MSS18) 0.

∂3 ∂2 ∂1 ∂0

By the definition of cochain, we obtain

C0,18(MSS18)∼= Hom(C18
0 (MSS18),Z),

C1,18(MSS18)∼= Hom(C18
1 (MSS18),Z),

C2,18(MSS18)∼= Hom(C18
2 (MSS18),Z).

Hence we get

0 C0,18(MSS18) C1,18(MSS18) C2,18(MSS18) 0.
δ−1 δ 0 δ 1 δ 2

It is easy to see that

∂1(e0) = p1− p0, ∂1(e10) = p7− p6,
∂1(e1) = p9− p0, ∂1(e11) = p4− p5,
∂1(e2) = p0− p5, ∂1(e12) = p2− p8,
∂1(e3) = p6− p0, ∂1(e13) = p8− p4,
∂1(e4) = p8− p9, ∂1(e14) = p3− p8,
∂1(e5) = p1− p9, ∂1(e15) = p3− p4,
∂1(e6) = p9− p5, ∂1(e16) = p7− p4,
∂1(e7) = p1− p6, ∂1(e17) = p2− p3,
∂1(e8) = p2− p1, ∂1(e18) = p2− p7,
∂1(e9) = p6− p5, ∂1(e19) = p3− p7.

So we find 0-cochains,

δ 0p∗0 =−e0−e1+e2−e3,
δ 0p∗1 = e0+e5+e7−e8,
δ 0p∗2 = e8+e12+e17+e18,
δ 0p∗3 = e14+e15−e17+e19,
δ 0p∗4 = e11−e13−e15−e16,
δ 0p∗5 =−e2−e6−e9−e11,
δ 0p∗6 = e3−e7+e9−e10,
δ 0p∗7 = e10+e16−e18−e19,
δ 0p∗8 = e4−e12+e13−e14,
δ 0p∗9 = e1−e4−e5+e6.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2382 I. Karaca, G. Burak: Simplicial Relative Cohomology Rings of...

From the definition, we can easily obtain

∂2(σ0) = 〈p9p1〉−〈p0p1〉+ 〈p0p9〉= e5−e0+e1,
∂2(σ1) = 〈p6p1〉−〈p0p1〉+ 〈p0p6〉= e7−e0+e3,
∂2(σ2) = 〈p0p6〉−〈p5p6〉+ 〈p5p0〉= e3−e9+e2,
∂2(σ3) = 〈p0p9〉−〈p5p9〉+ 〈p5p0〉= e1−e6+e2,
∂2(σ4) = 〈p8p3〉−〈p4p3〉+ 〈p4p8〉= e14−e15+e13,
∂2(σ5) = 〈p7p3〉−〈p4p3〉+ 〈p4p7〉= e19−e15+e16,
∂2(σ6) = 〈p3p2〉−〈p8p2〉+ 〈p8p3〉= e17−e12+e14,
∂2(σ7) = 〈p3p2〉−〈p7p2〉+ 〈p7p3〉= e17−e18+e19.

Thus, we get 1-cochains,

δ 1e∗0 =−σ0−σ1, δ 1e∗10 = {0},
δ 1e∗1 = σ0+σ3, δ 1e∗11 = {0},
δ 1e∗2 = σ2+σ3, δ 1e∗12 =−σ6,
δ 1e∗3 = σ1+σ2, δ 1e∗13 = σ4,
δ 1e∗4 = {0}, δ 1e∗14 = σ4+σ6,
δ 1e∗5 = σ0, δ 1e∗15 =−σ4−σ5,
δ 1e∗6 =−σ3, δ 1e∗16 = σ5,
δ 1e∗7 = σ1, δ 1e∗17 = σ6+σ7,
δ 1e∗8 = {0}, δ 1e∗18 =−σ7,
δ 1e∗9 =−σ2, δ 1e∗19 = σ5+σ7.

Let’s find the kernel ofδ 0. By the definition ofδ 0, we see
that

δ 0(
9

∑
i=0

ni p∗i ) = n0(−e0−e1+e2−e3)

+n1(e0+e5+e7−e8)
+n2(e8+e12+e17+e18)
+n3(e14+e15−e17+e19)
+n4(e11−e13−e15−e16)
+n5(−e2−e6−e9−e11)
+n6(e3−e7+e9−e10)
+n7(e10+e16−e18−e19)
+n8(e4−e12+e13−e14)
+n9(e1−e4−e5+e6).

Solving the equation

e0(−n0+n1)+e1(−n0+n9)+e2(n0−n5)
+e3(−n0+n6)+e4(n8−n9)+e5(n1−n9)
+e6(−n5+n9)+e7(n1−n6)+e8(n2−n1)
+e9(−n5+n6)+e10(−n6+n7)+e11(n4−n5)
+e12(n2−n8)+e13(−n4+n8)+e14(n3−n8)
+e15(n3−n4)+e16(−n4+n7)+e17(n2−n3)
+e18(n2−n7)+e19(n3−n7) = 0,

we find

n0= n1= n2= n3= n4= n5= n6= n7= n8= n9= n.

Hence, we get the group of zero dimensional cocycles

Z0,18(MSS18) = {n(p0+ p1+ p2+ p3+ p4+ p5
+p6+ p7+ p8+ p9) |n∈ Z} ∼= Z.

Since B0,18(MSS18)∼= 0, we obtain

H0,18(MSS18)∼= Z.

Let

δ 1(
19

∑
i=0

kie∗i ) = k0(−σ0−σ1)+k1(σ0+σ3)+k2(σ2+σ3)

+k3(σ1+σ2)+k4({0})+k5(σ0)
+k6(−σ3)+k7(σ1)+k8({0})
+k9(−σ2)+k10({0})+k11({0})
+k12(−σ6)+k13(σ4)+k14(σ4+σ6)
+k15(−σ4−σ5)+k16(σ5)
+k17(σ6+σ7)+k18(−σ7)+k19(σ5+σ7).

We find the kernel ofδ 1. We have

σ0(−k0+k1+k5)+σ1(−k0+k3+k7)
+σ2(k2+k3−k9)+σ3(k1+k2−k6)
+σ4(k13+k14−k15)+σ5(−k15+k16+k19)
+σ6(−k12+k14+k17)+σ7(k17−k18+k19) = 0.

Solving the equation above, we get

k0 = k1+k5,
k6 = k1+k2,
k7 = k1+k5−k3,
k9 = k2+k3,
k12 = k14+k17,
k15 = k13+k14,
k18 = k13+k14−k16+k17,
k19 = k13+k14−k16.

Hence, we obtain

Z1,18(MSS18)={(k1+k5)e∗0+k1e∗1+k2e∗2+k3e∗3
+k4e∗4+k5e∗5+(k1+k2)e∗6
+(k1+k5−k3)e∗7+k8e∗8
+(k2+k3)e∗9+k10e∗10+k11e∗11
+(k14+k17)e∗12+k13e∗13+k14e∗14
+(k13+k14)e∗15+k16e∗16
+k17e∗17+(k13+k14−k16+k17)e∗18
+(k13+k14−k16)e∗19

|ki ∈ Z, i = 1,4,5,7,10} ∼= Z
12.

On the other hand, we obtain

B1,18(MSS18)={t0e0+ t1e1+ t2e2+ t3e3+ t4e4
+(t0− t1)e5+(t1+ t2)e6+(t0− t3)e7
+t5e8+(t2+ t3)e9+ t6e10+ t7e11
+(t0−t1−t4+t5)e12+(t1+t2+t4−t7)e13

+t8e14+(t1+ t2+ t4− t7+ t8)e15
+(t2+t3+t6−t7)e16+(t0−t1−t4+t5−t8)e17
+(t0−t3+t5−t6)e18+(t1−t3+t4−t6+t8)e19
| ti ∈ Z, i = 0,1,2,3,4,5,6,7,8} ∼= Z

9.

We have that,

H1,18(MSS18)∼= Z
3.
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We find that

B2,18(MSS18) = {h0σ0+h1σ1+h2σ2+h3σ3+h4σ4
+h5σ5+h6σ6+h7σ7
|hi ∈ Z, i = 0,1,2,3,4,5,6,7} ∼= Z

8.

Since Z2,18(MSS18)∼= Z
8, we have that,

H2,18(MSS18)∼= {0}.

We get our result

Hq,18(MSS18) =





Z , q= 0
Z

3 , q= 1
0 , q≥ 2.

�

3 Digital Relative Cohomology Groups

Definition 31[22] Let (K,κ) ⊂ Z
n be a digital simplicial

complex and(K0,κ) be a digital subcomplex of(K,κ). For
any abelian group G and for any p∈Z, the p-dimensional
digital relative cochain group

Cp,κ(K,K0;G) = Hom(Cκ
p(K,K0),G)

The boundary operator

δ p : Cp,κ(K,K0;G)→Cp+1,κ(K,K0;G)

is the dual homomorphism of∂p+1.

Zp,κ(K,K0;G) is kernel of this homomorphism,
Bp+1,κ(K,K0;G) is image of its. These are called the
group of digital relative simlicialp-cocycles and the
group of digital relative simlicial p-coboundaries,
respectively. Then thep th digital relative simlicial
cohomology group of(K,K0) is the quotient group

H p,κ(K,K0;G) = Zp,κ(K,K0;G)/Bp,κ(K,K0;G)

The qutient groupCp,κ(K;G)/Cp,κ(K0;G) is called
the group of relative chains ofK modulo K0 and is
denoted byCp,κ(K,K0;G). Cp,κ(K,K0;G) is subgroup of
Cp,κ(K;G).

A digital relative cochain Cp,κ(K,K0;G) is a
homomorphism fromCκ

p(K,K0) to G. The group of such
homomorphisms corresponds precisely to the group of all
homomorphisms ofCκ

p(K) into G that vanish on the
subgroupCκ

p(K0). This is just a subgroup of the group of
all homomorphisms of Cκ

p(K) into G. Thus
Cp,κ(K,K0;G) can be naturally considered to be the
subgroup ofCp,κ(K;G) consisting of those cochains that
vanish on every simplex ofK0.

For chains, we had an exact sequence

0 Cκ
p(K0) Cκ

p(K) Cκ
p(K,K0) 0

i j

whereCκ
p(K0) is a subgroup ofCκ

p(K), andCκ
p(K,K0) is

their quotient. The sequence splits because the relative
chain group is free. Therefore, the sequence

0 Cp,κ(K0;G) Cp,κ(K;G) Cp,κ(K,K0;G) 0
ĩ j̃

is exact and splits. The dual of the projection mapj is an
inclusion map j̃ and the dual of the inclusion mapi is a
restriction map̃i.

Let us now consider the homomorphism of
cohomology induced by a digital simplicial map. Recall
that if

f : (K,K0)→ (L,L0)

is a simplicial map, then one has a corresponding chain
map

f♯ : Cp,κ(K,K0)→Cp,κ(L,L0)

The dual of f♯ maps cochains to cochains; we usually
denote it byf ♯. Becausef♯ commutes with∂ , the mapf ♯

commutes with δ , since the dual of the equation
f♯ ◦ ∂ = ∂ ◦ f♯ is the equationδ ◦ f ♯ = f ♯ ◦ δ . Hence f ♯

carries cocycles to cocycles and coboundaries to
coboundaries.f ♯ is called a cochain map; it induces a
homomorphism of digital cohomology groups,

H p,κ(K,K0;G) H p,κ(L,L0;G)
f ∗

Functoriality holds, even on the cochain level. For ifi is
the identity, theni♯ is the identity and so isi♯. Similarly,
the equation(g◦ f )♯ = g♯ ◦ f♯ gives, when dualized, the
equation(g◦ f )♯ = f ♯ ◦g♯.

Just as in the case of homology, one has a long exact
sequence in cohomology involving the relative groups. But
again, there are a few differences.

Theorem 32[22] Let K0 be a subcomplex of a digital
complex K. There exists a long exact sequence

...← Hq,κ(K0;G)← Hq,κ(K;G)← Hq,κ(K,K0;G)←
Hq−1,κ(K0;G)← ...

Proof. If we apply the Zig-zag Lemma to the diagram

0 Cq+1,κ(K0;G) Cq+1,κ(K;G) Cq+1,κ(K,K0;G) 0

0 Cq,κ(K0;G) Cq,κ(K;G) Cq,κ(K,K0;G) 0

δ

ĩ

ĩ
δ

j̃

j̃
δ

this theorem follows.

�

Example 33 We consider A= {(0,1,1)} as subspace of
MSS′18 = {p0 = (1,1,0), p1 = (0,2,0), p2 = (−1,1,0),
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p3 = (0,0,0), p4 = (0,1,−1), p5 = (0,1,1)} ⊂ Z
3

Let us compute Hq,18(MSS′18,A) with Theorem 32.
Since A is a single vertex, from Theorem2.19 we conclude
that

Hq,18(A) =

{
Z , q= 0
0 , q 6= 0.

From Example 221, we get

Hq,18(MSS′18) =

{
Z , q= 0,2
0 , q 6= 0,2.

By Theorem 32, we have the exact sequence

...→ Hq,18(MSS′18,A)→ Hq,18(MSS′18)→ Hq,18(A)→
Hq+1,18(MSS′18,A)→ ...

We get H0,18(MSS′18,A)
∼= Z, from Theorem 219.

0 Z Z Z H1,18(MSS′18,A) 0
δ 0 j∗ i∗ δ 1 k∗

Applying to the First Isomorphism Theorem, we have

H1,18(MSS′18,A)/Ker k∗ ∼=Im k∗.

Since the sequence is exact, we haveIm δ 1 =Ker k∗ and
Im i∗ =Ker δ 1. As i∗ is isomorphism, we conclude thatKer
i∗ = 0 and Im i∗ = Z. We findKer δ 1 = Z. Again applying
the First Isomorphism Theorem, since

Z/Ker δ 1∼=Im δ 1

we haveIm δ 1 = 0=Ker k∗ and

H1,18(MSS′18,A) = 0.

Therefore we get

Hq,18(MSS′18,A) =

{
Z , q= 0
0 , q 6= 0.

4 Cup Product For Digital Images

Definition 41[23] Let (X,κ) be a digital simplicial
complex. Suppose that the coefficient group G is the
additive group of a commutative ring with identity. The
digital simplicial cup product

⌣: Cp,κ(X,G)×Cq,κ(X,G)→Cp+q,κ(X,G)

of cochains cp and cq is defined by the formula
< cp ⌣ cq, [v0, ...,vp+q]>=< cp, [v0, ...,vp]>

. < cq, [vp, ...,vp+q]>
where v0 < ... < vp+q in the given ordering and′.′ is the
product in G.

Theorem 42[23] Let α,α1,α2 ∈ H p,κ(X,G1) and
β ,β1,β2 ∈ Hq,κ(X,G2), we get

(α1+α2)⌣ β = α1 ⌣ β +α2 ⌣ β

and

α ⌣ (β1+β2) = α ⌣ β1+α ⌣ β2.

Theorem 43[23]
δ (cp ⌣ cq) = δcp ⌣ cq+(−1)pcp ⌣ δcq.

Theorem 44[23] Let (X,κ) be a digital simplicial
complex. The cup product on digital simplicial cochains
is associative, that is,

(cp ⌣ cq)⌣ cr = cp ⌣ (cq ⌣ cr).

The digital simplicial cochain given by1X is the unit
element, that is,

1X ⌣ cp = cp ⌣ 1X = cp.

Theorem 45[23] If c p ∈ H p,κ(X,G1) and
cq ∈ Hq,κ(X,G2) are digital cocycles, then

cp ⌣ cq = (−1)pqcq ⌣ cp.

Theorem 46[23] Let (X,κ1)⊂Z
n1 and (Y,κ2)⊂Z

n2 be
digital images. If f : (X,κ1) → (Y,κ2) is a digitally
continuous map and cp ∈ H p,κ(X,G1) and
cq ∈ Hq,κ(X,G2) are digital cocycles, then

f ∗(cp ⌣ cq) = f ∗(cp)⌣ f ∗(cq).

Definition 47[22] Let (X,κ) be a digital simplicial
complex. H∗,κ(X;G) = ⊕H i,κ(X;G) is the ring with the
cup product. This is called the digital simplicial
cohomology ring of X.

Example 48Consider MSS′18.

Hq,18(MSS′18) =

{
Z , q= 0,2
0 , q 6= 0,2

From Example 2.21, 1-cocycles of simplicial complex
are

ω = e∗0+e∗1+e∗2+e∗3,
z=−e∗2+e∗4−e∗5+e∗6,
α =−e∗3+e∗7−e∗8+e∗9,
β =−e∗0−e∗4−e∗7+e∗10,
γ =−e∗1+e∗5+e∗8+e∗11,
δ =−e∗6−e∗9−e∗10−e∗11.

Let’s compute the cup product of 1-cocyclesω, z, α,

β , γ andδ :

〈ω ⌣ z,σ0〉= 〈ω ⌣ z, [p2p4p1]〉

= 〈ω, [p2p4]〉.〈z, [p4p1]〉= 1.1= 1,

〈ω ⌣ α,σ4〉= 〈ω ⌣ α, [p2p5p1]〉

= 〈ω, [p2p5]〉.〈α, [p5p1]〉= 1.1= 1,
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Fig. 8: Cocycleω and cocyclez
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Fig. 9: Cocycleα and cocycleβ
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Fig. 10: Cocycleγ and cocycleδ

〈ω ⌣ β ,σ0〉= 〈ω ⌣ β , [p2p4p1]〉

= 〈ω, [p2p5]〉.〈β, [p5p1]〉=1.(−1)=−1,

〈ω ⌣ γ ,σ3〉= 〈ω ⌣ γ , [p2p3p4]〉

= 〈ω, [p2p3]〉.〈γ , [p3p4]〉= 1.1= 1,

〈ω ⌣ δ ,σ0〉= 〈ω ⌣ δ , [p2p4p1]〉

= 〈ω, [p2p4]〉.〈δ , [p4p1]〉= 1.0= 0,

〈ω ⌣ ω,σ0〉= 〈ω ⌣ ω, [p2p4p1]〉

= 〈ω, [p2p4]〉.〈ω, [p4p1]〉= 1.0= 0.

After calculating cup product of other cocycles, we obtain

the follow table.

⌣ ω z α β γ δ
ω 0 1 1 −1 1 0
z 0 −1 0 1 0 −1
α 0 0 −1 1 0 1
β 0 0 0 −1 0 1
γ 0 1 1 0 −1 −1
δ 0 0 0 0 0 0

Example 49Consider MSS18.

Hq,18(MSS18) =





Z , q= 0
Z

3 , q= 1
0 , q≥ 2

By example 222, we obtain 1-cocycles of simplicial
complex:

x= e∗0+e∗1+e∗7+e∗6, a= e∗13+e∗15+e∗18+e∗19,
y= e∗0+e∗5+e∗3+e∗9, b= e∗16+e∗17−e∗19+e∗12,
z= e∗2−e∗3+e∗6−e∗7, c= e∗14+e∗15+e∗16+e∗12,
r = e∗1−e∗2−e∗5+e∗9, d = e∗14−e∗17+e∗19−e∗16,
w= e∗0+e∗1+e∗3−e∗2, e= e∗14+e∗15−e∗17+e∗19,
k= e∗1−e∗5+e∗6, f = e∗14−e∗13+e∗12,
l = e∗3−e∗7+e∗9, g= e∗15+e∗13+e∗16,
u= e∗0+e∗5+e∗7, h= e∗17+e∗12+e∗18,
v= e∗2+e∗6+e∗9, i = e∗19−e∗16+e∗18.
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Fig. 11: Cocyclex, cocycley and cocyclez
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Fig. 12: Cocycler, cocycleω and cocyclek

We are ready to compute the cup product of

1-cocycles x, y, z, r,ω, k, l, u, v, a, b, c, d, e, f , g, h and i

〈x⌣ x,σ3〉= 〈x⌣ x, [p5p0p9]〉

= 〈x, [p5p0]〉.〈x, [p0p9]〉= 0.1= 0,

〈x⌣ y,σ0〉= 〈x⌣ y, [p0p9p1]〉

= 〈x, [p0p9]〉.〈y, [p9p1]〉= 1.1= 1,

〈x⌣ z,σ0〉= 〈x⌣ z, [p0p9p1]〉
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Fig. 13: Cocyclel , cocycleu and cocyclev

= 〈x, [p0p9]〉.〈z, [p9p1]〉= 1.0= 0,

〈x⌣ r,σ0〉= 〈x⌣ r, [p0p9p1]〉

=〈x, [p0p9]〉.〈r, [p9p1]〉=1.(−1)=−1,

〈x⌣ w,σ2〉= 〈x⌣ w, [p5p0p6]〉

= 〈x, [p5p0]〉.〈w, [p0p6]〉= 0.1= 0,

〈x⌣ k,σ0〉= 〈x⌣ k, [p0p9p1]〉

=〈x, [p0p9]〉.〈k, [p9p1]〉=1.(−1)=−1,

〈x⌣ l ,σ2〉= 〈x⌣ l , [p5p0p6]〉

= 〈x, [p5p0]〉.〈l , [p0p6]〉= 0.1= 0,

〈x⌣ u,σ0〉= 〈x⌣ u, [p0p9p1]〉

= 〈x, [p0p9]〉.〈u, [p9p1]〉= 1.1= 1,

〈x⌣ v,σ0〉= 〈x⌣ v, [p0p9p1]〉

= 〈x, [p0p9]〉.〈v, [p9p1]〉= 1.0= 0.

After calculating cup product of other cocycles, we
obtain the following table.

⌣ x y z r w k l u v
x 0 1 0 −1 0 −1 0 1 0
y 1 0 −1 0 0 0 −1 1 0
z 1 1 1 1 1 1 1 −1 0
r −1 1 1 −1 −1 −1 −1 1 0
w 1 1 1 −1 −1 −1 −1 1 0
k 0 1 0 −1 0 −1 0 1 0
l 1 0 −1 0 0 0 −1 1 0
u 0 0 0 0 0 0 0 0 0
v 1 1 −1 1 1 1 1 0 0

5 Conclusion

The aim of this paper is to show that some properties
from algebraic topology are hold in digital topology. At
first relative cohomology groups of digital images are
defined and we show that cohomology groups of a digital
image are determined the simpler way. Secondly we
present that ring structure be existed on the digital

simplicial cohomology groups with the cup product. Also
we give some examples relevant to computing the
cohomology ring of digital images. We expect that these
topics will be useful to research digital cohomology
operations.
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