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Abstract: The first goal of this paper is to show that the relative cohomology grofigligital images are determined algebraically
by the relative homology groups of digital images. Then we state simplig@apcoduct for digital images and use it to establish ring
structure of digital cohomology. Furthermore we give a method forpeding the cohomology ring of digital images and give some
examples concerning cohomology ring.
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1 Introduction Many researchers(Rosenfel@4], Kopperman 20,
Kong [19], Malgouyres R1], Boxer [4,5,6,7,9], Han [11,
. ) 12], Karaca [L,10)) have contributed to digital topology
In general calculating homology is not enought for yith their studies. They wish to characterize the
determining differences between topological spaces. Th‘foroperties of digital images with tools from Algebraic

cup product on cohomology is finer invariant. The cup Topology. Their results play an important role in our
product makes the cohomology group of a space into &y,qy.

ring. The ring structure from the cup product is an

important advantage of cohomology theory over

homology. While the homology groups of a space are  arglan, Karaca and Oztell], define simplicial
equal to the cohomology groups, the ring structure on théyomology group of a digital image and give examples of
cohomologies of the space is different. Then cup produckimpiicial homology groups of certain digital images.
can be used to distinguish the spaces. They also compute simplicial homology groups\8Ss.

Cohomology groups are determined algebraically by
the homology groups. We will define the relative  Gonzalez-Diaz and Real$] have their 14-adjacency
cohomology groups of digital images and show that thesealgorithm to compute cup products on the simplicial
satisfy basic properties very much like those for thecomplex. The advantage of this method is tried via a
relative homology of digital images. small program visualizing the several steps.
Gonzalez-Diaz, Jimenez and Medrarf][ introduce a
Althought basic properties of cohnomology theory are method for computing cup products on cubical
similar to homology theory, there are some differencesapproximations. Their cup products are computed directly
between them. One of the differences is that cohomologyfrom the cubical complex. Gonzalez-Diaz, Lamar and
group is contravariant functor while homology group is Umble [17] present how to simplify the combinatorial
covariant. Contravariance leads to additional structires structure of cubical complex and obtain a homeomorphic
cohomology. These new structures are finer invariants otellular complex with fewer cells. They introduce
homotopy type and enable us to distinguish betweerformulas for a diagonal approximation on a general
topological spaces what are called cup products angolygon and use it to compute cup products on the
cohomology operations. cohomology. The algorithm offered their work can be
applied to compute cup products on any polyhedral
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approximation of an object embedded in 3-space.

Kaczynski and Mrozek 18] improve a process to

compute cup product on cubical complexes for generating

a cohomology ring algorithm. This method is useful to

the topological analysis of high-dimensional data. Their

theory is to construct a cohomology ring algorithm
speeding up the algebraic calculations.

Ege and Karaca 10] propose a mathematical

framework that can be used for defining cohomology of
digital images. They state the Eilenberg-Steenrod axioms

and the Universal Coefficient Theorem for this
cohomology theory. They show that theiktieth formula
for cohomology theory doesn’t be hold in digital images.

Moreover they state the cup product for digital images

and prove its basic properties.

In Section 2, we review necessary backgrounds on

digital topology. In next section we give definitions and
theorems that are related to relative cohomology group
of digital images. In the last section we define the
simplicial cup product and its general properties.
Moreover we give examples about computing the
cohomology ring of minimal simple surfacé4Sgg and
MSSs.

2 Preliminaries

Let Z" be the set of lattice points in thedimensional
Euclidean space whet is the set of integer. A (binary)
digital image is a painfX,k) where X C Z" for some
positive integern and K represents certain adjacency
relation for the members oK. We use a variety of
adjacency relations in the study of digital images.

Definition 21[5] Let |, n be positive integerd,<| <nand
distinct two points

p=(P1,P2,---, Pn), A= (01,02, --.,0n) € Z"

p and g are kadjacent if there are at most | indices i
such that p; — ;| = 1 and for all other indices j such that

Ipi —ail #1, pj = ;.

From Definition 2.1, we have the following;

e Two pointsp andq in Z are 2adjacentif |p—q| = 1.

e Two points p andq in Z? are 8adjacentif they are
distinct and differ by at most 1 in each coordinate.

e Two points p and q in Z? are 4adjacentif they are
8-adjacentand differ in exactly one coordinate.

e Two pointsp andq in Z2 are 26adjacentif they are
distinct and differ by at most 1 in each coordinate.

e Two pointsp andq in Z2 are 18adjacentif they are
26-adjacentand differ in at most two coordinate.

e Two points p andq in Z® are 6adjacentif they are

[ ] o------0
| | | |
| | | |
p\ | p\ |
*---O---e ¢---0---e
1 1 1 1
| | | |
[ ] o---0---0
Fig. 2: 4-adjacent and 8-adjacent
RIS Tl h ,'..'-.-.;1-
L A " | 1 P B |
—k-r el 1 =)
2Ll L g 2L g oL

Fig. 3: 6-adjacent, 18-adjacent and 26-adjacent

18-adjacentand differ in exactly one coordinate.

Letk € {2,4,8,6,18 26}. A k-neighborof p € Z" is
a point of Z" that is k-adjacent top [5]. The
k-neighborhoodf pis defined to be set

N« (p) = {q]|qisk —adjacent tqo}.
Leta,b € Z with a < b. A set of the form
[a,blz ={zeZ|a<z<b}
is called a digital interval4].

Definition 22[14] Let k be an adjacency relation defined
onZ". A digital image XC Z" is k-connected if and only

if for every pair of different points,y € X, there is a set

{Xo0,X1,...,X } Of points of a digital image X such that
X=Xg, Y= X% and % and »%.; are kK-neighbors where

i=0,1,....r —1. Ak-component of a digital image X is a
maximalk-connected subset of X.

Definition 23[5] Let X C Z™ and YC Z™ be digital
images withkgadjacency andk;-adjacency respectively.
Then the function f: X — Y is said to be
(Ko, K1)-continuous if for everykop-connected subset U of
X, f(U) is akj-connected subset of Y. We say that such a
function is digitally continuous.
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Proposition 245] Let XC Z™ and YC Z™ be digital
images withkgadjacency andzradjacency respectively.
Then the function f: X — Y is said to be
(Ko, K1)-continuous if and only if for every pair of
Ko-adjacent points{Xo, x1} of X, either f{xg) = f(x1) or
f(Xo) and f(x;) are k;-adjacentinY .

A (2,k)-continuous functionf : [0,m]z — X such that
f(0) = xandf(m) =yis calleda digital k-pathfrom x to

y in a digital imageX [5]. A digital image X is digital

K-path connected if, for everx,y € X, there exist a
K-path inX fromxtoy.

A simple closed<-curve of m> 4 points in a digital
imageX is a sequence

of images of thec-path f : [0,m— 1]z — X such thatf (i)
andf(j) arek-adjacent if and only if =i+1 modm[8].

Let (X,ko) C Z™ and(Y, k1) C Z™ be digital images.
A function f : X = Y is (Ko, k1)-isomorphismif f is
(Ko, K1)-continuous and bijective and furthérl:vy — X
is (k1,Ko)-continuous, in which case we denote
X 2y Y [7]

A pointx € X is called ak-cornerif x is k-adjacent to
two and only two pointy,z € X such thaty andz are k-
adjacent to each otheB][ The k-cornerx is calledsimple
if y, zare notk-corners and ik is the only poink-adjacent
to bothy, Z[2]. X is called ageneralized simple closed
curveif what is obtained by removing all simple-corners
of X is a simple closed-curve R1]. For ak-connected
digital image(X, k) in Z", we can state following

|X|>< = Ngn,l(X) NnX.

Definition 25[12] Let (X, k) C Z" be a digital image, >
3, andX = Z" — X. Then X is called a closed-surface if
it satisfies the following:

1.In that casek,K) € {(k,2n),(2n,3"— 1)} and K #
3"—-2"—1, then;
—for each point xe X, |X|* has exactly one
K-componenk-adjacent to Xx.
—|X[* has exactly twa-componentg-adjacent to x.
(We denote by ¥ and D™ these two components)
—for any point ye N¢ (x) N X, Ng(y) NC* # & and
Nx(y) ND** £ &, where Nt means th&-neighbors
of x.
Furthermore, if a closed-surface X does not have a
simplek-point, then X is called simple.
2.In that casék, k) = (3"—2"—1,2n), then
—X isk-connected,
—for each point x¢ X, |X|* is a generalized simple
closedk-curve.
Furthermore, if the imagéX|* is a simple closed-
curve, then the closex-surface X is called simple.

Example 26MSSg and MS$; are minimal simple closed
18-surfaces.

SER

Fig. 4: (2,0), (2,1), (8,2) and (26,3)-simplexes

Definition 27[5] Let (X,kp) C Z™ and (Y,k1) C Z™ be

digital images. Two (Ko,k1)-continuous functions

f,g:X =Y are said to be digitallyko, K1)-homotopic in

Y if there is a positive integer m and a function

H : X% [0,m]z — Y such that for all x¢ X, H(x,0) = f(x)

and H(x,m) =g(x); for all x € X, the induced function
x: [0,mz — Y defined by

Hx(t) = H(x,t) forall t € [0,m]z,

is (2,k1)-continuous; and for all & [0,m]z, the induced
function H : X — Y defined by

Hi(x) = H(xt) forall x € X,

is (Ko, K1)-continuous. The function H is called a digital
(Ko, K1)-homotopy[2] between f and g. A digital image
(X,K) is said to bek-contractible if its identity map is
(K, K)-homotopic to a constant functianfor some = X
where the constant functian X — X is defined bg(x) =
cforallx e X.

For a digital image(X, k) and its subsetA k), we call
(X,A) a digital image pair withk-adjacency Moreover,
if Ais a singleton sexop, then(X,Xo) is calleda pointed
digital image.

Definition 28[26] Let S be a set of nonempty subset of a
digital image (X, k). Then the members of S are called
simplexes ofX, k) if the following hold:

—If p and g are distinct points of s S, then p and q are
k-adjacent.
-Iffse Sande #t C s, thente S.

A msimplex is a simplexS such thafS = m+1. Let
P be a digitalmsimplex. If P is a nonempty proper
subset ofP, then P’ is called a face of P. We write
Vert(P) to denote the vertex set &, namely, the set of
all digital O-simplexes irP. A digital subcomplexA of a
digital simplicial complexX with k-adjacency is a digital
simplicial complex  contained in X with
Vert(A) C Vert(X).

Let (X, k) be a finite collection of digitain-simplices,
0 < m< d for some non-negative integet. (X,K) is
called a finite digital simplicial complex[1] if the
following statements hold:

—If P belongs taX, then every face dP also belongs to
X.

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2378

I. Karaca, G. Burak: Simplicial Relative Cohomology Rings of...

—If P,Q € X, thenPNQ is either empty or a common
face ofP andQ.

Definition 29[1] Let (X,k) C Z" be a digital simplicial
complex.(X, k) called digital oriented simplicial complex
if there is an ordering on the vertex set(®f, k).

Definition 210[1] Let (X,k) C Z" be a digital oriented
simplicial complex with m-dimension. A homomorphism

Jq 1 CE(X) — CK_4(X)

called the boundary operator. [& = [vg,...,Vq] is an
oriented simplex witl® < g < m, we define

9 .
0q0 = 0g|Vo, ..., Vg) = Z)(—l)'[vo,...,w...,vq]
i=

where the symb@ means that the vertexis to be deleted
from the array. Since §XX) is the trivial group for g< 0,
m < g the operatowy is the trivial homomorphism for &
0, m<q.

Proposition 211 1] For m > g, we havedy_10dq = 0.

Definition 212[9] Let (X,k) C Z" be a digital oriented
simplicial complex with m-dimension. The kernel of
dq 1 Cq (X) — C{_1(X) is called the group of g-cycles and
denoted % (X). The image 08q.1 : Cf, 1 (X) — C§(X) is
called the group of g-boundaries and is denotef{’B).
We define the q th simplicial homology group of X by

Hg (X) = Zq(X)/Bg(X)
Theorem 2131] If (X,k) C Z" is a digital k-path
connected space therfX) = Z.

Lemma 214 (The zig-zag lemma)2p] Suppose one is
given simplicial complexe® = {Cp,dc}, ¢’ = {C}, 0}
and ¢ = {C},dc»} and chain mapsp, ¢ such that the
sequence

S R TP
is exact. Then there is a long exact homology sequence

@. Y.
I Hp(%) I Hp(%/)*’ Hp(%//)

0. @
= Hp-1(%) — Hp-1(¢") — -

whered, is induced by the boundary operator .

Definition 21522] Let (X,k)C Z" be a digital simplicial
complex; let G be an abelian group. The digital simplicial
cochain complexs*(X),0) is defined as follows. For any
g€ 7, the g-dimensional digital cochain group with
coefficients in G, is the group

CH(X;G) = Hom(CK (X), G).

The coboundary operatdris defined to be the dual of the
boundary operatad : Cy, ,(X) — Cg(X). Thus

Cq+LK(x;G)<fz—cqK(x;G)

so thatd raises dimension by one. The abelian group G is
omitted from the notation when it equals the group of
integers. Elements %% (X) are calleddigital cochains
and denoted either bg? or by c*, if we don't need to
specify their dimensiom. The value of a digital cochain
cd on a chaindg is denoted by< c.dy >. The g-th
coboundary mapd9 : C%*(X) — CH*1K(X) is the dual
homomorphism o8y 1 defined by

< 099, dgy1 >=< %, dq41dg+1 >

Definition 216[22] The kernel ofd is called the group of
cocycles and denoted by*?(X;G), its image is called
the group of coboundaries and denoted By BX; G).

Example 217Let’s compute the 0-cocycles of MSC

Fig. 5: MSG,

Let MS% = {po = (1’2)5 pl = (25 1)) p2 = (372)7
p3=(2,3)} CZ?and p < p1 < P3 < P2

0-simplexes arépo), (p1), (P2), (p3) and 1-simplexes are

€ = (PoP3), €1 = (P3pP2),€2 = (P1P2),€3 = (PoPy1).
We first find the 0-cochains. Since

d1(e0) = P3— Po
oi(e1) = p2—ps3
di(e2) = p2—p1
01(e3) = p1— Po
we get 0-cochains,
5%p5 = —eo —e3
8%p; = —e2+e3
¥py=e+e
ps=e—e

Therefore we have thafip- p; + p5 + p3 is a 0-cocycle.
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Definition 21822] The cohomology group of a digital
image(X, k) with coefficients in G is the group

HA% (X; G) = Z%(X; G) /B (X; G).

Theorem 21910 If (X, k) is a single vertex, then

w00 ={5.4%0

Theorem 220If (X, k) C Z" is a digital k-path connected
space then 3% (X) = Z.

Proof. Assume that O-simplexes of X are
(Po), {P1),---, {Pn)- We get the following sequence
1 0
OL COK( ) 6 Cl,K(X)_
As the image 0~ is zero,B%¥(X) = {0}. Let us find
Z0K(X) =Kerd°. Let

A:{Z)klpl |k| = kal :0,1,,n}

We claim thatz®¥(X) = A. If this claim is true, it is
clear thaz®* (X) = Z and we findH%¥ (X) = Z.
Let us prove the claim. Choose two points

pri, Ps € X. SinceX is k-path connected, there is a path

gi in X from py, to ps for eachi. g; is the set of digital
1-simplexes thak-path inX from py, to ps.

O-I = {<pl‘i ) pf+li >7 <pr+1i ) pf+2i >7 eeey <p$—1i ) pS >}

Lete, = (Pk, Pxr1), fork=rr+1,... s We get
Gi = {efiaa“kliv"'aesfli}-

Itis clear that
dl(eri) = pH—li - pri,
O1(€41;) = Pr+2 — Pre1;s
O1(er42,) = Pr43 — Pr2;s
(91(65,2) = p p572|l
O1(6s-1;) = Ps ps—l.

Hence we have
60( pl’+li) = eri - Q’+li )
3%(Priz) =611 — 642,
60(ps—1i) = eS—Zi - eS—li .

Let y is the set of digital 0-simplexes on the path For
w= gky € Z, we get
= 8%z ky) = k3 8%(y) =
=kye, —kyes g =0.
So we getw € ZOK(X).

n
Conversely, ifd € Z0¥(X), thenf = Z)ki pi € CO¥(X) and
i=

kY (e —es-1)

- 50(_in pi) = _imdo(pi) =0.
We P?]ave N
V)= %ki(efi —6&- 1)

2o
= EOKQ' ij.es 1 =0.

Sincey kie;, = Y kies—1,, ki =Kk, fori =0,...,n. Therefore
we have tha € A. Thus we find thatZOvK(X) =A=7Z
and
HOK(X) = ZOK(X) /B%K (X) > Z.
O

Example 221Let’'s compute the cohomology of M§S

Let
MS%_SZ{DOZ(].,.’L,O),pl:(0,270)7pzz(—17170),
p3 = (0,0,0), ps = (0,1, —1), ps = (0,1,1)} C Z3, where
P2 <P3 < Psa < Ps < P1<Po.

CiB8(MSYy), CH¥(MSY,) and G8(MSY,) are free
abelian groups with bases, respectively,

0-simplexes
(Po) (P1), (P2), (P3), (Pa), (Ps)
1-simplexes
€0 = (P2pP1),€1 = (P2P3), €2 = (P2P4), €3 = (P2Ps),
= (Pap1),€5 = (P3P4), € = (P4Po), €7 = (PsP1),
= (P3Ps), & = (PsPo), €10 = (P1Po), €11 = (P3Po)
and
2-simplexes
0o = (P2P4P1), 01 = (P4P1Po), 02 = (P3P4Po),
03 = (P2P3Pa), 04 = (P2PsP1), T5 = (P2P3Ps),

06 = (PsP1Po), 07 = (P3PsPo)

Since G&MSYg) = {0} for m> 3, we get the following
short sequence:
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p) 2 p) a
0= CI8(MSSy — CIBMSg,) — ClEMSYy) —0.

Itis clear that

C%18(MSY,) =~ Hom(CE¥(MSYy), Z),
CH18(MSY,) = Hom(C¥(MSYy), Z),
C218(MSYg) = Hom(CI3(MSSy), Z).

Hence we get the following sequence:

51 3° 5t 52
0— CO8(MSgy — CHBMSGy — C2BMSGy —0.

By the definition, we obtain

01(e0) = p1— P2, d1(€s) = Po— Pa,
oi(er) =ps—p2 oi(e7) =p1—Ps

01(€2) = pa— P2, 01(€s) = ps — Ps,
01(e3) = ps— p2, d1(€9) = po — Ps,
01(es) = p1— Pa, 01(€10) = Po— P1,
01(€s) = pa— P3, O1(e11) = Po— P3

So we can find 0-cochains,

5%py=es+eg+ep+en,

3%p; =ey+es+e7 ey,

3%p; = —ey—e1— e — 63,

3%py=e —es—eg—e1y,

5%p; = e — ey + &5 — 65,

3%p; = e3— €7+ €5 — e
From the definition of a homomorphisiit is easy to see
that
92(00) = 92((P2pap1)) = (Pap1) — (P2pP1) + (P2pPa)

=e— €yt ey,

02(01) = 02({PapP1Po)) = (P1Po) — (P4Po) + (PapP1)
=€10— 6+ €4,

02(02) = 02({P3PaPo)) = (PaPo) — (P3Po) + (P3pa)
=€ — €11+ 65,

02(03) = 92((P2P3Pa)) = (P3Pa) — (P2pPa) + (P2pPs)
=6 —e+e,

02(04) = 02({P2PspP1)) = (PsP1) — (P2P1) + (P2Ps)
=€7—€p+e3

02(05) = 02((P2P3Ps)) = (P3Ps) — (P2Ps) + (P2P3)
=eg—€e3+86,

02(06) = 02({PspP1Po)) = (P1Po) — (PsPo) + (PsP1)
=e€10— e+ €y,

d2(07) = 02((P3PsPo)) = (PsPo) — (P3Po) + (P3Ps)
= €y — €11+ €eg.

Thus we can get 1-cochains,

5186 = —0p — Oy,
d'e; = 03+ 05,
5163 = 0p — O3,
61%* = 04 — Os,
dle; = 0o+ 01,
dlet = 0o+ 03,

dlef = —01+ 0y,
518; = 04 + Og,
dlef =05+ 07,
5183 = —0p+ 07,
dte;y= 01+ Ts,
ole;, = —0,—07.

We first find the kernel a¥°. We have

5
5O(Z>ni p*) = no(€s + €9+ €10+ €11)

+n1(ep+es+e7—exo)
+m(—ep—e1— e —€3)
+n3(e; —e5 —eg—e11)
+Nn4(€ — €4+ €5 — &)
+Ns(€3 — €7+ €3 — ).

Solving the equation

€o(Ny — M) +e1(—N2+n3) +€x(—n2 +ny)
+€3(—Nz +Ns) + €4(MN — Ng) + €5(—N3 + Ny)
+€5(No — Na) +€7(N1. — Ns) + €g(—Nz + Ns)
+€9(—Ns +No) + €10(No — 1) +€11(No — Ng) =0,

we must have
No=N1=N2=N3=Ng=nNg=N.
Hence, we get

Z018(MSSg) = {Nn(po+p1-+P2-+Ps+patps) |n€ Z}
~7.

Since B-1(MSg,) = 0, the zero dimension cohomology
group of MS$; is isomorphic to the abelian group of
integers.

Let

11
51(.21(5 q*) = ko(fO'of U4)+ k1(03+ 0'5)+ kz(O'of 03)
B ++ka( 04— 05) +ka(0Oo+01) +ks(02+03)
+k65*01+02)+k7(04+ 0O6)+kg(05+ 07)

+kg(—06+07) +kio( 01+ 06)
+Hi1(—02—07).

We find the kernel a¥'. We have the following equation

0o(—Ko+ ko+Ka)+ 01 (ka— ks + k10) + 02(Ks+ ke — Kk11)
+03(k1 —ko+ks)+04(ks+k7—Kko) + 05 (k1 +kg—k3)
+O'5(|(7— kg+ klo)—l— U7(k8+ kg— kll) =0.

Solving the equation above, we find

ko = k1 + ks + ks,

ko = ki + ks,

ks = kg + ks + kg4 — k7,
ks = ka + k1o,

ks = ka + ks — k7,

ko = k7 + kio,

ki1 = kg + ks + kio.
Hence, we get the group of one dimensional cocycle

Z118(MSYg) = { (K1 +Ka + ks )€y + k& + (K1 + ks )&
+ (ke + kg 4 ks — k7)€ + ke -+ kse
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+H(Ka+Kio)€5+k7€7+(Ka+ks—k7)€5
+H(k7+4-k10)€5+K10€] g+ (Ka+ks+Kkio)€] 4
|ki € Z,i =1,4,5,7,10} = 75,

On the other hand, we obtain the group of one

dimensional coboundary

BL18(MSYg) = {toeo +tier + o +taes + (to —t2)es
+H(ta—t1)es+taes+(to — ta)€7
+(t3 — tl)eg + (tg—t3+t4)eg
+(—to+t2+ta)ero+ (—t1+ta+ta)err
Iti € Z,i =0,1,2,3,4} = 7°.

Since B18(MSY,) = Z118(MSY,), we have that,

HY1B(MSgg) = {0},

We find that

Bz’ls(MSSB) = {hogo+h101+ h202 + h303 + hs04
+hs0og + hgog
+(hs—hg+hs—hg—hz+ho+hy) o7
|h€7Z,i=0,1,234506} =7

Since 218(MSY,) = 78, we have that,

H218(MSYg) = 7Z.
Therefore we conclude that

q,18 _ Za q:032
DRUCURS Ny

O
Example 222Let's compute the cohomology of MgS

<p0>? <pl>7 <p2>7 <p3>a <p4>7 <p5>a <p6>7 <p7>7 <p8>a <p9>
1-simplexes

€ = (Pop1),€1 = (PoPe),€2 = (PsPo), €3 = (PoPs),

€4 = (PoPs),€5 = (PopP1), = (PsPo),€7= (PeP1),

€= (P1P2), €= (PsPs),€10= (PsP7),€11= (P5P4),
e12= (PsPz2),€13= (P4Ps), €14 = (PsP3), €15 = (PaPs),

€16 = (PaP7),€17 = (P3P2),€18 = (P7P2), €19 = (P7P3)
and

2-simplexes
00 = (PoP9P1), 01 = (PoPsP1), 02 = (PsPoPs),
03 = (PsPoPo), T4 = (PaPsPa), 05 = (PaP7P3),
06 = (PsP3p2), 07 = (P7P3pz)
Since G¥(MSSg) is a trivial group for m> 3, we have

0. 17, 0. a
02> CI8(MSSs) —> CI8(MSSs) —>Ci8(MSSs) —0.

By the definition of cochain, we obtain

CO18(MSSg) = Hom(CE¥(MSSs), Z),
CL18(MSSsg) = Hom(Cl8(MSSs), Z),
C2’18(MS€18) o Hon(C%g(MSSg),Z).

Hence we get

571 50 61 52
0— CO8MSSg — CH8MSSg — C?1§MSSg —0.

Itis easy to see that

d1(€0) = P1— Po, d1(€10) = p7 — Pe,
NI d1(€1) = po — Po, d1(€11) = pa— P,
; ; ) d1(€2) = Po— Ps, d1(€12) = P2 — Ps,
7”?71”?717‘4 | d1(es) = ps — Po, d1(ew3) = ps— Pa,
boe. | Fo . | Ha | gp d1(e4) = pg — Po, d1(€14) = P3 — s,
L gt rgh2 01(€5) = P1— Po, 01(€15) = P3— Pa,
RS At d1(€s) = Po — Ps, d1(e16) = P7 — P4,
O NS d1(€7) = p1— Pe, oi(er7) = p2— Ps,
d1(e8) = P2 — P, d1(e1s) = P2 — pr,
Fig. 7: MSSg d1(&9) = Ps — Ps, d1(€19) = p3— pr.
So we find 0-cochains,
O+
Let MSSs = {po = (0,0,1), p1 = (1,1,1), SR @ ate &
P2=(1,21),p3=(0,3,1),pa= (-1,2,1), 1= QST Er—Es,
Ps = (717 17 1)7 Pe = (07 1>0)> p7 = (0>2»0)7 60p§ =& T e2tertes,
Ps = (07 27 2)7 Po = (07 11 2)} - Z3’ where 60p§ = S14+ €15~ €17 + o,
Ps < P4 <Po<Pe<Po<Pr<Pg<pP3<pr<pe. 50p42611—913—915—916.
Opg = —€e2—€es— e —er,
Ci8(MSSs), CI¥(MSSs) and G8(MSSsg) are free 3%p; = 63— €7+ €9 — ey,
abelian groups with bases, respectively, 50 p; = €10+ €16 — €18 — €19,
. 3%p; = e — €12+ e13— ey,
O-simplexes py=e1—es—es5+6s.
@© 2014 NSP
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From the definition, we can easily obtain

92(0d0) = (Pap1) — (PoP1) + (PoPe) = es €+ e,
62(01) {PsP1) — (Pop1) + (PoPe) = €7 — €0 + €3,
02(02) = (Pops) — (PsPe) + (PsPo) = es & +e,
92(03) = (PoPe) — (PsPe) + (PsPo) = €1— €5+ €2,
02(04) = (PsP3) — (PaPs) + (PaPg) = €14 — €15+ €13,
02(05) = (p7P3) — (P4aP3) + (PapP7) = €10 — €15+ €16,
02(06) = (P3p2) — (PsP2) + (PsP3) = €17 — €12+ €14,
02(07) = (p3pP2) — (P7P2) + (P7P3) = €17 — €18+ €10
Thus, we get 1-cochains,
dtey = —0p— o1, dte;,={0},
ole; = oo+ 03, o'el; = {0},
d'es = 0y + 03, 61e§2 = —0g,
dley =01+ 0y, Slel; = oy,
6182 = {0}' 61314 04 + Og,
'e; = o, dlei = —04— 05,
oles = —03, dleig = 05,
61e§ = 01, 51917 = Og + Oy,
= {0}, dlejg=—07,
oley = —0oy, dlejy = 05+ 0.

Let’s find the kernel o8°. By the definition 08°, we see
that

9
50(_20ni p7) = No(—eo— €1+ —€3)

+m(ep+es+e7—eg)
+ny(eg+e12+e17+€ig)
+ng(€14+ 15— €17+ €19)
+n4(€11— €13— €15— €45)
+ns5(—exy— e5— ey —e11)
+ng(€3 — €7+ € — €10)
+n7(€10+ €16 — €18 — €19)
+ng(es —ejp+e13—e4)
+ng(e1 — e — 5+ €).

Solving the equation

€(—No+Ny) +e1(—ng+ng) + € (Np — Ns)
+€3(—no+ Ne) + €4(Ng — Ng) + €5(N1 — Ng)
+€6(—Ns5 +Ng) +€7(Ny — N ) + €g(N2 — M)
+€9(—Ns5 + Ng) + €10(—Ng +N7) +€11(Ng — Ns)
+€12(N2 — Ng) + €13(—N4 + Ng) + €14(N3 — Ng)
+e15(N3 — Ng) + e16(—Ng + N7) + 617(n2 —n3)
+eg(n2 —N7) +eg(N3 —7) =

we find
Np=N1=MN2=N3=MNg=Ns=Ng=N7=Ng=Ng=N.
Hence, we get the group of zero dimensional cocycles

Z018(MSSg) = {N(Po+ P1+ P2+ Pa+ Pa+ Ps
+ps+pPr+pPs+po)|nEZ}=Z.

Since B18(MSSg) = 0, we obtain

HO8(MSSg) =~ 7
Let

Z}k'q — 01)+ki(0o+ 03) + ka(02+ 03)
+k3(01 + 02) +ka({0}) +ks(00)

( 03 + k7 0'1) + ks({O})
+|<9( 02) + kio({0}) + ki1({0})
+k12(—06) + k13(04) + k14(0a+ 0p)
+ki5(—04 — 05) + Ki6(05)
+ki7( 0+ 07)+kis(—07) +kig( 05+ 7).

We find the kernel a¥!. We have

Oo(—Ko+Kki+Ks)+ 01(—ko+ ks+k7)

+02(ko+ ks — kg) + 03(K1+ ko— Ke)

+04(K13+ k14— Ki5)+ 05(—Kis5+ kig+ Ki9)
+06(—ki2+ kia+k17) + 07(ki7 — kig+ kig) =0

Solving the equation above, we get

ko = k1 +ks,
ks = ki + ko,
k7 = ki +ks — ks,
ko = ko + ks,

k12 = k14 + K17,

kis = K13+ Kis,

kig = kiz+ kia — ki + ka7,
k1o = kiz+ kia — kie.

Hence, we obtain
ZH18(MSSg) = { (K + ks )€ + k1€ + ko€ + k€
+ka€) + ks€g + (ky + ko) €5
+ (k1 + ks — k3)€5 + kgeg
+ (ko + k3) €} + kio€ o+ k11€; 1
+(k1a+Kk17)€5 5 + Ki13€] 5+ Ku4€} 4
+(k13+ k14)e*1‘5+ leeie
+k17€77 + (K13+ kia— kig+ Ki17)€lg
+(k1z+ k14 —ki6)€qg
|k € Z,i =1,4,5,7,10} = 712,

On the other hand, we obtain

BL18MSSg) = {toeo +t1€1 + o€ + taes + taes
+(to—t1)es + (1 +t2)es + (to —tz)er
+tseg + (t2 4 t3)€9 +te€10 +t7€11
+(to—t1—tg+ts)ero+ (t1+t2+ta—t7)ens
+tgera+ (1 +t2 +ta —t7+tg)ers
+(t2+t3+te—t7) €16+ (to—t1 —t4+ts—tg) €17
+(to—tz+ts—tg)e18+ (11 —ta+ta—ts+tg)erg
It € Z,i=0,1,234,56,7,8} = 7°.

We have that,
H118(MSSg) =~ 73
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We find that

B>18(MSSs) = {ho0o+ h101 +ho02 + 303+ haos
+hs0s + hgog + hy o7

|hi €7Z,i=0,1,23456,7} =78

78, we have that,

{0}

Since 218(MSSs) =
H218(MSSg) =
We get our result

N, o

Z,q
HH8(MSSe) = ¢ 72, g
0.9

IV

3 Digital Relative Cohomology Groups

Definition 31[22] Let (K, k) C Z" be a digital simplicial
complex andKo, k) be a digital subcomplex ¢K, k). For
any abelian group G and for any$¢Z, the p-dimensional
digital relative cochain group

CPK(K,Kg; G) = Hom(C (K, Ko), G)
The boundary operator

&P : CPK(K,Kp; G) — CPHLK (K, Ko; G)
is the dual homomorphism ;.

ZPK(K,Ko;G) is kernel of

group of digital relative simlicialp-cocycles and the
group of digital relative simlicial p-coboundaries,

respectively. Then thep th digital relative simlicial
cohomology group ofK, Kp) is the quotient group

HPK (K, Ko; G) = ZPK (K, Ko; G) /BPX (K, Ko; G)

The qutient groupCPX(K;G)/CP¥(Kp;G) is called
the group of relative chains ok modulo Ko and is
denoted byCP¥(K,Kg; G). CP¥(K,Ko; G) is subgroup of
CPK(K;G).

A digital relative cochain CP¥(K,Ky;G) is a
homomorphism fron€g (K,Ko) to G. The group of such

this  homomorphism,
BP+LK(K,Kp;G) is image of its. These are called the

whereCp (Ko) is a subgroup o€ (K), andCg (K, Ko) is
their quotient. The sequence sphts because the relative
chain group is free. Therefore, the sequence

0 CPA(Kg G) - CPK(K:G)- CPX(K,K5G) — 0

is exact and splits. The dual of the projection njap an
inclusion mapj and the dual of the inclusion mags a
restriction map.

Let us now consider the homomorphism of
cohomology induced by a digital simplicial map. Recall
that if

f: (K,Ko) — (L,Lo)

is a simplicial map, then one has a corresponding chain
map

f; 1 Cpx (K, Ko) = Cpk(L,Lo)

The dual of f; maps cochains to cochains; we usually
denote it byff. Becausef; commutes withd, the mapf*
commutes with 8, since the dual of the equation
f,00 = do f; is the equatio® o f¥ = %0 8. Hencef*
carries cocycles to cocycles and coboundaries to
coboundariesf? is called a cochain map; it induces a
homomorphism of digital cohnomology groups,

*

HPX(K,Kp;G) «—— HPX(L, Lo; G)

Functoriality holds, even on the cochain level. For i§
the identity, theri is the identity and so i&. Similarly,
the equationgo f); = g; o f; gives, when dualized, the
equation(go f)f = ffogf.

Just as in the case of homology, one has a long exact
sequence in cohomology involving the relative groups. But
again, there are a few differences.

Theorem 3722] Let Ko be a subcomplex of a digital
complex K. There exists a long exact sequence
.. H%(Kg; G) + H¥¥(K;G) + H¥*(K,Kp; G) +
HA1K (Ko; G) «

homomorphisms corresponds precisely to the group of alProof. If we apply the Zig-zag Lemma to the diagram

homomorphisms ofC5(K) into G that vanish on the

subgroupCy (Ko). Th|s is just a subgroup of the group of

all homomorphisms of C5(K) into G. Thus

CPK(K,Kp;G) can be naturally considered to be the
subgroup ofCP¥(K;G) consisting of those cochains that

vanish on every simplex dfo.
For chains, we had an exact sequence

0— Ci(Ko) —- C5(K) s CK(K.Ko) —0

0 « CHIX(KGG) < CMK(K;G) i CH¥(K KgG) < 0

ls . o ; )
0 «— CH(Kg G) < CH(K; G) < CH(K,Kg; G) «— 0

this theorem follows.
O

Example 33 We consider A= {(0 & 1,1)} as subspace of
MS%BZ{DO:(1v17O)7p1:(07 ) 7p ( 110)
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p3 = (Oa 070)7 p4 = (07 1771)? p5 = (Oa 17 1)} - ZS

Let us compute M8(MSYg A) with Theorem 32.

Since A is a single vertex, from Theorem2.19 we conclude

that
Z,q=0

HS(A) = { 0.q#0.

From Example 221, we get

Z,q=0,2

HM%MS$9{07q¢Qz

By Theorem 32, we have the exact sequence

. = HIB(MSYg A) — HIB(MSYg) — HHB(A) —
HITL8(MSYg, A) — ..

We get H18(MSY,,A) = Z, from Theorem 219.

S A . NP k*
0— Z — Z— 7Z — H"5(MSggA) —0

Applying to the First Isomorphism Theorem, we have
HL18(MSYg,A) /Ker k* =Im k*.

Since the sequence is exact, we hawed! =Ker k* and
Imi* =Ker &1. As i* is isomorphism, we conclude thiger
i* =0andImi* = Z. We findKer 8 = Z. Again applying
the First Isomorphism Theorem, since

7./Ker &' =Im &t
we havdm 5! = 0 =Ker k* and
HL18(MSYg A) = 0.
Therefore we get

Z,q=0

HO18(MSGg A) = { 0 q40.

4 Cup Product For Digital Images

Definition 41[23] Let (X,k) be a digital simplicial

complex. Suppose that the coefficient group G is the

additive group of a commutative ring with identity. The
digital simplicial cup product

—:CPK(X,G) x CH¥(X,G) — CPHaX (X, G)

of cochains € and ¢ is defined by the formula
< cP—c9, vy, ...,Vpirg) >=< CP, v, ...,Vp] >

<% [Vp, ..., Vpig) >
where ¢ < ... < Vp,q in the given ordering and’ is the
product in G.

Theorem 4723 Let a,01,a2 € HPX(X,G;1) and

B, B, B2 € H¥(X,G2), we get

(a1+az)—B=a1—B+a— P
and
a— (BtB)=a—p+a— P

Theorem 43 23]
o(cP — %) =9dcP — 9+ (—1)PcP — ocn.

Theorem 4423] Let (X,k) be a digital simplicial
complex. The cup product on digital simplicial cochains
is associative, that is,

(cP—cl) —c=cP—(ch—C").

The digital simplicial cochain given bly is the unit
element, that is,

Ix — cP=cP— 1x =cP.
Theorem 4523 If cP € HPK(X,Gy)
c? € H3¥ (X, G,) are digital cocycles, then

cP_ cld= (71) PAca _ cP.
Theorem 44 23] Let (X,k1) C Z™ and (Y,K2) C Z™ be
digital images. If f: (X,;k1) — (Y,k2) is a digitally

continuous map and Pc € HPK(X,G;) and
¢l e H¥ (X, Gy) are digital cocycles, then

f*(cP — %) = f*(cP) — £*(c9).
Definition 47[22] Let (X,k) be a digital simplicial
complex. H¥(X;G) = @H"*(X;G) is the ring with the
cup product. This is called the digital simplicial
cohomology ring of X.

and

Example 48Consider MS§,.

q,18 _J7Z,q=0,2
H (Msﬁg—{o,q¢az

From Example 2.21, 1-cocycles of simplicial complex
are

w=e+€+6+€,
B=—-€&—€—e+e,
y:—e;;+e§+e§*+ei£,
0=—e;—e5—€jp—€l

Let's compute the cup product of 1-cocyctesz, a,
B, yandd:

(w—2,00) = (W — Z [P2pap1])

= (w,[P2pa]).(z [Papa]) = 1.1
(w— a,0) = (w— a,[p2psp1])

= (w,[pz2ps]).(a, [pspa]) = 1.1=1,

11
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Z ,q=0
B HH8(MSSg) =< 78, q=1
0,9>2
By example 222, we obtain 1-cocycles of simplicial
complex:
X=€y+e+e+6e, a=Ee;+€5+€,+E€,,
r=e—&—e+e, d=e,—€j;+ey—epg

ok " & &
€= €4+ €5— €71 €y,

=
Il
)
No)
_|_
&

|
)

k=e] —e;+e;, f=ej,—€j3+el,
| =e—€;+8, g=€j5+€j3+ €l
u=ej+e;+ej, h=ej;+€,+€lg
V=€ e+ €, i =€jg— €5+ Elg

Po
[ ]2 ?
pSQ***/*/:’*/***Opl po(———li\\ p1
'qu | ’
oPs 5%
Fig. 10: Cocycley and cocycled
Fig. 11: Cocyclex, cocycley and cocycle
(w— B,00) = (w— B, [p2papa])
= (w [p2ps])- (B, [pspa]) =1.(-1)=-1, o
9
<0L)vy70'3> :<wvy>[p2p3p4}> ?
= (@, [P2pa])-(v. [papa]) = 11=1, e
NN P
(@~ 8,00) = (0 &, [P2papi]) e

= (w, [p2pa])-(3, [paps]) = 1.0=0,
(W — w,00) = (W — w,[p2pap1])
= (w, [p2pa])-(w, [psap1]) = 1.0=0. Fig. 12: Cocycler, cocyclew and cocyclek
After calculating cup product of other cocycles, we obtain

the follow table. We are ready to compute the cup product of

o[ z[a[By][d 1-cocycles x,y,z, w, k, I, u,v,a,b,c,d, e, f,g handi

wlo[1[1[-11]0

z[0-1/0[1[0]-1

alof0|-11][0[1 (X —X,03) = (X~ X [PsPoPe])

Bloj0[0[-1[0[1 = (X, [PsPo])- (X, [Pope]) = 0.1 =0,

ylo[1[1[0][-1-1 _ o

5/0[0[0[0[0]0 {x —y,00) = (x— ¥, [Popop1])

= (X, [pope]). (Y. [pep1]) = 1.1=1,

Example 4Consider MS§. (X— 2,00) = (X — Z, [popPopa])
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%9 simplicial cohnomology groups with the cup product. Also

| we give some examples relevant to computing the

Ps&_ | cohomology ring of digital images. We expect that these

Po@™ -4 =\ P topics will be useful to research digital cohomology
'@ operations.
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