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Abstract: In this paper, we suggest and analyze a new family of iterative methods for finding zeros of multiplicity of nonlinear
equations by using the variational iteration technique. These new methods include the Halley method and its variants forms as special
cases. We also give several examples to illustrate the efficiency of thesemethods. Comparison with modified Newton method is also
given. These new methods can be considered as an alternative to the modified Newton method. This technique can be used to suggest
a wide class of new iterative methods for solving system of nonlinear equations.
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1 Introduction

One of the most important and challenging problems in
scientific and engineering applications is to find the
solution of the nonlinear equationsf (x) = 0. Various
iterative methods are being developed for finding the
simple roots of the nonlinear equationf (x) = 0, by using
several different techniques such as Taylor series,
quadrature formulas, homotopy and decomposition
methods, see [1,2,3,4,5,6,7,8,9,10,11,13,12,14,15].
Some time we come across the nonlinear equations which
have zeros of multiplicitym≥ 2. The methods derived for
finding simple roots can not be applied for finding zeros
of multiplicity of the nonlinear equations.

The aim of the present paper is to extend the variational
iteration technique for finding zeros of multiplicity of the
nonlinear equations. We can classify the problem of
finding multiple roots into two types. First, multiplicity is
known and secondly, multiplicity is unknown.

If the multiplicity of the root is greater than one, then the
Newton method

xn+1 = xn−
f (xn)

f́ (xn)
, n= 0,1,2, · · · ,

generates the sequence of iterations that converge to the

root linearly and some time it diverges. In order to
overcome this drawback of restricted convergence and to
preserve the order of convergence, the Newton method is
modified by using the knowledge of multiplicitym≥ 2,
for finding multiple roots, see [1,14].

xn+1 = xn−m
f (xn)

f́ (xn)
, n= 0,1,2, · · · .

For finding multiple roots, iterative methods for the first
case are developed [2,5,6,7]. For second case, when
multiplicity is not known, the Newton method is modified
as:

xn+1 = xn−
f (xn) f ′(xn)

f ′(xn)2− f (xn) f ′′(xn)
, n= 0,1,2, · · · ,

which preserves the second order convergence for finding
multiple roots, see [1,14].

Variational iteration technique was effectively used by
Noor [8] and some efficient iterative methods were
suggested which can be considered as good alternate of
the Newton method. Noor and Shah [10,11] also
suggested some higher order iterative methods for solving
nonlinear equations for finding simple roots and for
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finding zeros of multiplicity of the nonlinear equations.
This technique is recently extended for systems of
nonlinear equations [12]. We observe that this technique
not only plays an important role for the solution of
nonlinear equation for simple roots as well as for multiple
roots. In this paper, we use the variational iteration
technique to suggest and analyze some modifications of
Newton method for finding the multiple roots of the
nonlinear equations having unknown multiplicity.

2 Construction of iterative methods

In this section, we describe the variational iteration
technique for obtaining the main recurrence relations.
These relations generate the iterative methods for finding
multiple roots of nonlinear equations. We consider the
nonlinear equation having zeros of multiplicitym≥ 2, as:

f (x) = 0, (1)

which can be written in the following equivalent form as:

x= H(x). (2)

We consider the auxiliary functionH(x) defined by

H(x) = x+λ
[

f (x)
f ′(x)

]

g(x), (3)

where g(x), is the auxiliary function andλ is the
Lagrange multiplier which can be identified by using
optimality criteria.

We have to find the methods for finding multiple roots of
nonlinear equations with unknown multiplicity. The ratio
of f (x) and its derivativef ′(x) which is involved in (3).
This ratio essentially remove the multiplicity of the roots
whatever it has before the implementation of the method.
This invisible elimination of the unknown multiplicity
makes it easy to employ the methods for further process
in finding multiple roots.

Using the optimality criteria, we obtain the value ofλ as:

λ =−
[ f ′(x)]2

([ f ′(x)]2− f (x) f ′′(x))g(x)+ f (x) f ′(x)g′(x)
. (4)

From (3) and (4), we obtain

H(x) = x−
f (x) f ′(x)g(x)

([ f ′(x)]2− f (x) f ′′(x))g(x)+ f (x) f ′(x)g′(x)
.

(5)

Now combining (2) and (5), we obtain

x=H(x)= x−
f (x) f ′(x)g(x)

([ f ′(x)]2− f (x) f ′′(x))g(x)+ f (x) f ′(x)g′(x)
.

(6)

This fixed point formulation enables us to suggest the
following iterative scheme as:

Algorithm 2.1. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1= xn−
f (xn) f ′(xn)g(xn)

([ f ′(xn)]2− f (xn) f ′′(xn))g(xn)+ f (xn) f ′(xn)g′(xn)
,

which is the main iteration scheme for finding multiple
roots of nonlinear equations. We now discuss the
following some special cases.

Case I. Let g(x) = e−αxn. Then from Algorithm 2.1, we
obtain the following iterative method for solving the
nonlinear equations having unknown zeros of multiplicity.

Algorithm 2.2. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = xn−
f (xn) f ′(xn)

([ f ′(xn)]2− f (xn) f ′′(xn))−α f (xn) f ′(xn)
.

If α = 0, then Algorithm 2.2 reduces to the well known
modified Newton method [1,14].

If α = − f ′′(xn)
2 f ′(xn)

, then Algorithm 2.2 reduces to the
following third-order convergent iterative method for
finding simple root of nonlinear equations.

Algorithm 2.3. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = xn−
2 f (xn) f ′(xn)

2[ f ′(xn)]2− f (xn) f ′′(xn)
,

which is well known Halley method [1,8,14] and has
third order convergence.

Case II. Let g(x) = e−α f (xn). Then, from Algorithm 2.1,
we obtain the following iterative method for solving the
nonlinear equations having unknown zeros of multiplicity.

Algorithm 2.4. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = xn−
f (xn) f ′(xn)

([ f ′(xn)]2− f (xn) f ′′(xn))−α f (xn) f ′(xn)2 .

If α = 0, then Algorithm 2.4 reduces to the well known
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modified Newton method [1,14].

If α = − f ′′(xn)
2 f ′(xn)2

, then Algorithm 2.4 reduces to the
Algorithm 2.3.

Case III. Let g(x) = e
α

f ′(xn) . Then, from Algorithm 2.1,
we obtain the following iterative method for solving the
nonlinear equations having unknown zeros of multiplicity.

Algorithm 2.5. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = xn−
f (xn) f ′(xn)

2

([ f ′(xn)]3− f (xn) f ′′(xn) f ′(xn)−α f (xn) f ′′(xn)
.

If α = 0, then Algorithm 2.5 reduces to the well known
modified Newton method[1,14].

If α = − f ′(xn)
2 , then Algorithm 2.5 reduces to the

Algorithm 2.3, the well known Halley method[1,8,14].

Case IV. Let g(x) = e
−α f (xn)

f ′(xn) . Then, from Algorithm
2.1, we obtain the following iterative method for solving
the nonlinear equations having unknown zeros of
multiplicity.

Algorithm 2.6. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = xn−
f (xn) f ′(xn)

2

[( f ′(xn)2− f (xn) f ′′(xn))] f ′(xn)−α f (xn)
.

If α = 0, then Algorithm 2.6 reduces to the well known
modified Newton method [1,14].

If α = f ′′(xn)
2 f ′(xn)

, then Algorithm 2.6 reduces to the
Algorithm 2.3.

Remark 2.1. It should be noted that never decide to
select such a value of the parameterα, which makes the
denominator zero in the derived methods.

Remark 2.2. Sign ofα, should be selected so as to make
the denominator largest in magnitude in above methods to
obtain the good results.

3 Convergence analysis

In this section, we consider the convergence criteria of the
main iterative scheme defined above as Algorithm 2.1
developed in this paper by using the fixed point method.

Theorem 1. Let r be a multiple root of unknown
multiplicity m of a sufficiently differentiable function
f : D ⊂ R→ R for an open interval inD . If x0, is in the

neighborhood of r, then for any auxiliary function g(x)
the main recurrence scheme defined as Algorithm 2.1 and
consequently, all the Algorithms derived from this
relation are at least quadratically convergent.

Proof. Here we study the function (5) associated with
Algorithm 2.1 of the type

H(x) = x−
f (x) f ′(x)g(x)

([ f ′(x)]2− f (x) f ′′(x))g(x)+ f (x) f ′(x)g′(x)
,

where

f (xn) = (x− r)mh(x) (7)

f ′(xn) = m(x− r)m−1h(x)+(x− r)mh′(x) (8)

and

f ′′(xn) = m(m−1)(x− r)m−2h(x)

+2m(x− r)m−1h′(x)+(x− r)mh′′(x) (9)

It is assumed thatr is an m-fold root off (x) andh(r) 6= 0.

Now, replacing (7), (8) and (9) in (5), and after
simplifying, we get

H(r) = r (10)

and also with the help of computer program,
differentiating H(x) with respect to x and simple
manipulations yield that

H ′(r) = 0, (11)

and

H ′′(r) = 2

[

−h′(r)g(r)+mg′(r)h(r)
mh(r)g(r)

]

6= 0. (12)

This shows that the Algorithm 2.1 has at least second
order convergence and consequently, all the Algorithms
derived from this relation are at least quadratically
convergent.

Remark 3.1. In previous section, third order convergent
methods are derived for obtaining the simple roots of
nonlinear equations due to some particular value of
involved in the Algorithms. New proposed methods are
Halley method and its variants which is the novelty of this
technique.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2370 M. A. Noor, F. A. Shah: A Family of Iterative Schemes for Finding Zeros ...

4 Numerical results

We now present some examples to illustrate the efficiency
of the new developed two-step iterative methods (see
Tables 4.1-4.12). We compare the Modified Newton
method (MNM)[1,14], Algorithm 2.2, Algorithm 2.4,
Algorithm 2.5 and Algorithm 2.6, which are introduced
here in this paper. All computations are done using the
MAPLE using 60 digits floating point arithmetics (Digits:
=60). We will useε = 10−32. The following stopping
criteria are used for computer programs.

(i) |xn+1−xn| ≤ ε , (ii) | f (xn)| ≤ ε .

The computational order of convergencep approximated
for all the examples in Tables 4.1-4.12, (see [15]) by
means of

p=
ln(|xn+1−xn|/|xn−xn−1|)

ln(|xn−xn−1|/|xn−1−xn−2|)
.

Example 4.1. We consider the nonlinear equation

f (x) = x4−2x2+1.

We considerα = 1 andα = 0.5 for all the methods to
compare the numerical results in Table 4.1 and Table 4.2
respectively.

Table 4.1
Method IT xn | f (xn)| δ p

MNM 11 1.0000 0.00e-01 2.33e-15 2.398

Alg 2.2 5 1.0000 0.00e-01 3.68e-12 2.953

Alg 2.4 8 1.0000 0.00e-01 1.99e-16 1.999

Alg 2.5 9 1.0000 0.00e-01 3.94e-17 2.035

Alg 2.6 6 1.0000 0.00e-01 2.31e-18 2.390

Table 4.1 depicts the numerical results of example 4.1.
We use the initial guessx0 = 0.5 for the computer
program forα = 1.

Table 4.2
Method IT xn | f (xn)| δ p

MNM 11 1.0000 0.00e-01 2.33e-15 2.398

Alg 2.2 4 1.0000 0.00e-01 1.68e-08 2.699

Alg 2.4 6 1.0000 0.00e-01 2.09e-11 2.1680

Alg 2.5 5 1.0000 0.00e-01 9.51e-12 2.034

Alg 2.6 6 1.0000 0.00e-01 2.40e-19 2.006

Table 4.2 depicts the numerical results of example 4.1.
We use the initial guessx0 = 0.5, for the computer
program forα = 0.5.

Example 4.2. We consider the nonlinear equation

f2(x) = x12−2x6+1.

We considerα = 1 andα = 0.5 for all the methods to
compare the numerical results in Table 4.3 and Table 4.4
respectively.

Table 4.3
Method IT xn | f (xn)| δ p

MNM 14 1.0000 0.00e-01 1.09e-13 2.0135

Alg 2.2 13 1.0000 0.00e-01 4.13e-14 2.2094

Alg 2.4 12 1.0000 0.00e-01 4.17e-10 1.9995

Alg 2.5 12 1.0000 0.00e-01 4.17e-10 2.1995

Alg 2.6 12 1.0000 0.00e-01 4.14e-10 2.0995

Table 4.3 shows the efficiency of the methods for example
4.2. We use the initial guessx0 = 0.2, for the computer
program for α = 1. Number of iterations and
computational order of convergence gives us an idea
about the better performance of the new methods.

Table 4.4
Method IT xn | f (xn)| δ p

MNM 14 1.0000 0.00e-01 1.09e-13 2.0135

Alg 2.2 13 1.0000 0.00e-01 6.09e-10 2.0660

Alg 2.4 13 1.0000 0.00e-01 4.17e-10 2.0995

Alg 2.5 14 1.0000 0.00e-01 4.17e-10 1.9995

Alg 2.6 13 1.0000 0.00e-01 4.17e-10 1.6995

Table 4.4 shows the efficiency of the methods for example
4.2. We use the initial guessx0 = 0.2, for the computer
program for α = 0.5. Number of iterations and
computational order of convergence gives us an idea
about the better performance of the new methods.

Example 4.3. We consider the nonlinear equation

f3(x) =−8+36x−90x2+x9−9x8+36x7

+147x3−87x6+144x5−171x4.

We considerα = 1 andα = 0.5 for all the methods to
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compare the numerical results in Table 4.5 and Table 4.6
respectively.

Table 4.5

Method IT xn | f (xn)| δ p

MNM 7 1.9999 0.00e-01 6.64e-12 2.0064

Alg 2.2 7 1.9999 0.00e-01 2.44e-10 2.9403

Alg 2.4 5 1.9999 0.00e-01 2.49e-05 2.8977

Alg 2.5 7 1.9999 0.00e-01 4.17e-10 2.2995

Alg 2.6 7 1.9999 0.00e-01 8.66e-13 1.9880

In Table 4.5, the numerical results for example 4.3 are
described. We use the initial guessx0 = 1.5 for the
computer program forα = 1. We observe that all the
methods approach to the approximate solution after equal
number of iterations but the computational order of
convergence has little bit difference.

Table 4.6

Method IT xn | f (xn)| δ p

MNM 7 1.9999 0.00e-01 6.64e-12 2.0064

Alg 2.2 6 1.9999 0.00e-01 1.25e-06 2.1777

Alg 2.4 6 1.9999 0.00e-01 1.64e-06 2.5298

Alg 2.5 6 1.9999 0.00e-01 2.17e-10 2.1995

Alg 2.6 6 1.9999 0.00e-01 1.94e-11 2.0456

In Table 4.6, the numerical results for example 4.3 are
described. We use the initial guessx0 = 1.5 for the
computer program forα = 0.5.. We observe that all the
methods approach to the approximate solution after equal
number of iterations but the computational order of
convergence has little bit difference.

Example 4.4. We consider the nonlinear equation

f4(x) = x10−
30
31

x6−2x5+
225
961

x2+
30
31

x+1.

We considerα = 1 andα = 0.5 for all the methods to
compare the numerical results in Table 4.7 and Table 4.8
respectively.

Table 4.7
Method IT xn | f (xn)| δ p

MNM 7 1.08828 0.00e-01 2.21e-18 1.9241

Alg 2.2 6 1.08828 0.00e-01 1.73e-20 2.0010

Alg 2.4 5 1.08828 0.00e-01 1.86e-11 2.2158

Alg 2.5 7 1.08828 0.00e-01 1.54e-14 2.0976

Alg 2.6 5 1.08828 0.00e-01 1.38e-16 2.0033

Table 4.7 shows the numerical results for example 4.4.
For the computer program we use the initial guessx0 = 1,
and α = 1. We note that the new derived methods have
better computational order of convergence and approach
to the desired result in less number of iterations.

Table 4.8
Method IT xn | f (xn)| δ p

MNM 7 1.08828 0.00e-01 2.21e-18 1.9241

Alg 2.2 6 1.08828 0.00e-01 6.68e-20 2.0005

Alg 2.4 5 1.08828 0.00e-01 2.23e-20 2.0403

Alg 2.5 7 1.08828 0.00e-01 5.53e-19 2.1859

Alg 2.6 5 1.08828 0.00e-01 1.90e-18 2.0002

Table 4.8 shows the numerical results for example 4.4.
For the computer program we use the initial guessx0 = 1,
andα = 0.5. We note that the new derived methods have
better computational order of convergence and approach
to the desired result in less number of iterations.

Example 4.5. We consider the nonlinear equation

f5(x) = x6−2x5+
5
3

x4−
74
27

x3+
59
27

x2−
56
81

x+
784
729

.

We considerα = 1 andα = 0.5 for all the methods to
compare the numerical results in Table 4.9 and Table 4.10
respectively.

Table 4.9
Method IT xn | f (xn)| δ p

MNM 8 1.3333 0.00e-01 3.64e-16 2.0257

Alg 2.2 5 1.3333 0.00e-01 2.54e-21 2.0255

Alg 2.4 6 1.3333 0.00e-01 8.82e-09 2.3741

Alg 2.5 7 1.3333 0.00e-01 1.25e-16 1.9993

Alg 2.6 5 1.3333 0.00e-01 8.69e-13 2.0277
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In Table 4.9, we show the numerical results for the
example 4.5. We use the initial guessx0 = 1, andα = 1,
for the computer program. We observe that the new
methods approach to the desired approximate solution in
equal or less number of iterations. We calculate the
computational order of convergence for all the methods
which verify the rate of convergence and efficiency of the
methods.

Table 4.10
Method IT xn | f (xn)| δ p

MNM 8 1.3333 0.00e-01 3.64e-16 2.0257

Alg 2.2 8 1.3333 0.00e-01 1.13e-18 2.1871

Alg 2.4 5 1.3333 0.00e-01 1.61e-10 1.8454

Alg 2.5 8 1.3333 0.00e-01 1.50e-18 2.0046

Alg 2.6 7 1.3333 0.00e-01 1.40e-17 1.9998

In Table 4.10, we show the numerical results for the
example 4.5. We use the initial guessx0 = 1, andα = 0.5,
for the computer program. We observe that the new
methods approach to the desired approximate solution in
equal or less number of iterations. We calculate the
computational order of convergence for all the methods
which verify the rate of convergence and efficiency of the
methods.

Example 4.6. We consider the nonlinear equation

f6(x) =

(

x3−
3
4

)3

.

We considerα = 1 andα = 0.5 for all the methods to
compare the numerical results in Table 4.11 and Table
4.12 respectively.

Table 4.11
Method IT xn | f (xn)| δ p

MNM 6 0.9085 1.62e-56 3.05e-10 2.0616

Alg 2.2 5 0.9085 6.60e-34 1.29e-06 2.1494

Alg 2.4 5 0.9085 3.77e-44 3.51e-08 2.2385

Alg 2.5 5 0.9085 2.45e-47 1.03e-08 2.1434

Alg 2.6 5 0.9085 3.49e-44 4.15e-08 2.1550

In Table 4.11, we show the numerical results for the
example 4.6. We use the initial guessx0 = 0.5 andα = 1.
for the computer program. We observe that the new
methods approach to the desired approximate solution in
less number of iterations.

Table 4.12
Method IT xn | f (xn)| δ p

MNM 6 0.9085 1.62e-56 3.05e-10 2.06156

Alg 2.2 5 0.9085 1.62e-38 4.12e-07 2.43355

Alg 2.4 5 0.9085 1.66e-64 1.42e-11 2.02849

Alg 2.5 5 0.9085 2.25e-62 3.22e-11 2.04121

Alg 2.6 5 0.9085 8.41e-47 1.18e-08 2.11010

In Table 4.12, we show the numerical results for the
example 4.6. We use the initial guessx0 = 0.5 and
α = 0.5. for the computer program. We observe that the
new methods perform in better way and approach to the
desired approximate solution in less number of iterations.

5 Conclusion

In this paper, we have suggested some new iterative
methods for obtaining multiple roots of nonlinear
equations by using variational iteration technique. The
suggested methods have significance that these methods
can be applied when multiplicity of the root is not known.
From the numerical examples, it is clear that all the
methods introduced in this paper perform better than the
modified Newton method for obtaining multiple roots of
nonlinear equations. Using the technique and idea, one
can suggest and analyze higher order iterative methods
for solving nonlinear equations as well as system of
nonlinear equations. We would like to point out that
Halley method and its variant forms are acquired from
these methods by suitable and appropriate selection of the
parameterα, which is also the innovative and narrative
aim of the presented technique.
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