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Abstract: The maximum independent set Problem is to find a biggest vertex independent set in a given undirected graph. It is a vitally
important NP problem in graph theory and applied mathematics, having numerous real life applications. It can be difficultly solved by
the electronic computer in exponential level time. Simultaneity in previous studies DNA molecular computation usually be used to solve
NP-complete continuous path search problems (for example HPP, traveling salesman problem), rarely for NP problems with discrete
vertex or path solutions result, such as the maximum independent set problem, graph coloring problem and so on. In this paper, we
present a new algorithm for solving the maximum independentset problem with DNA molecular operations. For an undirected graph
with n vertices, We reasonably design fixed length DNA strands representing the vertices and edges of graph, take appropriate steps
and get the solutions of the problem in proper length range using O(n2) time. We extend the application of DNA molecular operations
and simultaneity simplify the complexity of the computation.
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1 Introduction

DNA computing is a newly emerging crossdisciplinenary
science that uses DNA molecular biotechnologies to solve
conundrum problems of computer science and
computational mathematics. Huge storage capacity and
massive parallelism are two important advantages of
DNA computation. DNA computing can execute billions
of operations simultaneously. The massive parallelism of
DNA computing comes from the large number of
molecules which chemically interact in a small volume.
DNA also provides a huge storage capacity since they
encode information on the molecular scale. Meanwhile
DNA has a great application prospect for having wide
range of abundant resources. NP (nondeterministic
polynomial time) problems are a class of mathematical
problems which have most likely exponential complexity,
for which no efficient solution has been found yet [1]. As
the pioneering work for DNA computing, Adleman [2]
presented an idea of solving the Hamiltonian path
problem of sizen in O(n) steps using DNA molecules.

Lipton [3] demonstrated that Adleman’s experiment could
be used to figure out the NP-complete satisfiability (SAT)
problem (the first NP-complete problem). In recent years,
lots of papers have occurred for designing DNA
procedures and algorithms to solve various NP-complete
problems [4,5,6,7,8,9,10]. However, most of the
previous works in DNA computing are concentrated on
solving the path search problems that the optimum results
are continuous head-to-tail ligation edges or vertices sets.
For example, Lee [11] first designs different length’s
strands representing paths values and cities, takes
molecular operations to generate strands standing for all
possible paths, then uses biochemical techniques, such as
denaturation temperature gradient polymerase chain
reaction and temperature gradient gel, to get the optimum
solutions of the traveling salesman problem. To solve the
shortest path problem, Narayanan [12] respectively
carries out DNA reaction to get the strands for a list of
series paths, then chooses the shortest length strands as
the solution through DNA biotechnologies. The previous
researches have some insufficient factors. One is that the
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Fig. 1. An undirected graph G with 6 vertices

strands for the possible paths are usually very long, while
too long DNA strands can lead to error-prone in annealing
and separation procedures using modern biotechniques.
The other is that previous research problems are all
optimum path search problems, so that the possible
solutions can be relatively easily represented by DNA
strands. While the maximum independent set Problem is a
discrete vertices set problem with discontinuous path. So
representation of discrete data in DNA strands is an
important issue toward expanding the capability of DNA
computing to solve many optimization problems.

The maximum independent set problem is a problem
of central importance in graph theory and computational
Sciences. It is intractable to solve. Given a graphG, an
independent set is a subsetSof vertices inG such that no
two vertices inSare adjacent (connected by an edge). The
maximum independent set problem is to find an
independent set with the largest number of vertices in a
given graph. This problem is NP-hard, and it is
considered unlikely to exist an efficient algorithm for
solving it up to now. In this paper, a new biocomputing
procedure based on the research of Adleman [2] and
Lipton [3] is introduced for figuring out solutions of the
maximum independent set problem: Given an undirected
graphG = (V,E) with vertex setV = {v1,v2, · · · ,vn} and
edge setE = {ei, j |1≤ i < j ≤ n}, an independent set is a
subsetV

′
⊆ V such that for any vertices in subsetV

′

aren’t adjacent (connected by an edge). A independent set
V

′
is to be a maximum independent set of graphG, if for

any vertex independent setV
′′
⊆ V with |V

′
| ≥ |V

′′
|. For

instance, the undirected graphG in Fig. 1 defines such a
problem. It is not difficult to find that the vertex set
{v2,v3,v5,v6} is the solutions to the maximum
independent set problem for graphG in Fig. 1.

The rest of this paper is organized as follows. In
Section 2, the Adleman-Lipton model is introduced in
detail. Section 3 uses a DNA molecular algorithm for
solving the maximum independent set problem and the
complexity of the proposed algorithm is described. We
get conclusions in Section 4.

2 The Adleman-Liption Model

Bio-molecular computers work at the molecular level.
Because biological and mathematical operations have
some similarities, DNA, the genetic material that encodes
for living organisms, is stable and predictable in its
reactions and can be used to encode information for
mathematical systems.

DNA is the major information storage molecule in
living cells, and billions of years of evolution have tested
and refined both this wonderful informational molecule
and highly special enzymes that can either duplicate the
information in DNA molecules or transmit this
information to other DNA molecules.

A DNA(deoxyribonucleic acid) is a polymer, which is
strung together from monomers called
deoxyribonucleotides [14]. Distinct nucleotides are
detected only with their bases. Those bases are,
respectively, abbreviated as adenine (A) , guanine (G),
cytosine (C), and thymine (T). Two strands of DNA can
form (under appropriate conditions) a double strand, if the
respective bases are the Watson-Crick complements of
each other: A matches T and C matches G; also 3′ end
matches 5′ end, e.g., the singled strands
5′CTGCAGTACACC3′ and 3′GACGTCATGTGG5′ can
form a double strand. We also call the strand
3′GACGTCATGTGG5′ as the complementary strand of
5′CTGCAGTACACC3′ and simply denote
3′GACGTCATGTGG′ by CTGCAGTACACC. The length
of a single stranded DNA is the number of nucleotides
comprising the single strand. Thus, if a single stranded
DNA includes 20 nucleotides, it is called a 20mer. The
length of a double stranded DNA (where each nucleotide
is base paired) is counted in the number of base pairs.
Thus, if we make a double stranded DNA from a single
stranded 20 mer, then the length of the double stranded
DNA is 20 base pairs, also written as 20 bp.

The DNA operations proposed by Aldeman [2] and
Lipton [3] are described below. These operations will be
used for figuring out solutions of the maximum
independent set problem in this paper. The
Adleman-Lipton model: A (test) tube is a set of molecules
of DNA (i.e., a multi-set of finite strings over the alphabet
{A,C,G,T}). Given a tube, one can perform the following
operations:

(1) Merge (T1,T2): for two given test tubesT1,T2, it
stores the unionT1

⋃

T2 in T1 and leavesT2 empty;
(2)Copy(T1,T2): for a given test tubeT1, it produces a

test tubeT2 with the same contents asT1 ;
(3)Detect (T): given a test tubeT, it outputs ”yes” ifT

contains at least one strand, otherwise, outputs ”no”;
(4) Separation(T1,X,T2): for a given test tubeT1 and

a given set of stringsX, it removes all single strands
containing a string inX from T1, and produces a test tube
T2 with the removed strands;

(5) Selection(T1,L,T2): for a given test tubeT1 and a
given integerL, it removes all strands with lengthL from
T1, and produces a test tubeT2 with the removed strands;
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(6) Cleavage(T,γ0γ1): for a given test tubeT and a
string of two (specified) symbolsγ0γ1, it cuts each double

strand containing

[

γ0γ1
γ0γ1

]

in T into two double strands as

follows:
[

α0γ0γ1β0
α1γ0γ1β1

]

=⇒

[

α0γ0
α0γ0

]

,

[

γ1β0
γ1β0

]

;

(7)Annealing (T): for a given test tubeT, it produces all
feasible double strands inT. The produced double strands
are still stored inT after annealing;

(8) Denaturation (T): for a given test tubeT, it
dissociates each double strand inT into two single
strands;

(9) Ligation (T): for a given tubeT, the operation is
used to ligate together the strands inT;

(10)Discard (T): for a given test tubeT, it discards the
tubeT;

(11)Read (T): for a given tubeT, the operation is used
to describe a single molecule, which is contained in the
tubeT. Even ifT contains many different molecules each
encoding a different set of bases, the operation can give an
explicit description of exactly one of them;

(12)Append (T,Z): for a given test tubeT and a given
short DNA singled strandZ it appendsZ onto the end of
every strand in the tubeT.

Since these twelve manipulations are implemented
with a constant number of biological steps for DNA
strands [14], we assume that the complexity of each
manipulation isO(1) steps.

3 DNA algorithm for the maximum
independent set problem

For a given undirected graph G = (V,E),
V = {vk|k = 1,2, . . . ,n} is vertex set and
E = {ei, j |16 i < j 6 n} is edge set. Some verticesvi and
v j can be connected by the edgeei, j (i < j) in graph. We
let |E| = m and m6 n(n+ 1)/2. At the same time, the
graph processed in this paper has no self-loops.

In the following, the symbols #,#,0,1,Ak,Bk
(k = 1,2, . . . ,n) denote distinct DNA singled strands with
same length, sayt-mer (t can choose a small integer).
Obviously the length of the DNA singled strands greatly
depends on the size of the problem involved in order to
distinguish all above symbols and to avoid hairpin
formation [15]. Then in the below operations, we use the
distinct DNA singled strands symbolsAk0Bk,
Ak1Bk(k = 1,2, . . . ,n) to denote the vertexvk, with Ak1Bk
for vk including in the vertex set, whileAk0Bk for not.
Simultaneity the symbol #,# is the signal of division
between different vertex sets. We denote DNA singled
strandsyi, j to encode the edgeei, j connecting by the
verticesvi andv j with length of t-mer if there exists the
edgeei, j in graph G. For distinguishing whether some
vertices belonging to a vertex set or not, we meantime

design DNA stringX with t-mer length. Let

P= {0,1,#A1,Bn#,AkBk−1|k= 2,3, · · · ,n},

Q= {#,Bk1Ak,Bk0Ak|k= 1,2, · · · ,n},

R= {yi, j |16 i < j 6 n},

S= {X}.

For a graph withn vertices, every possible subset of
the vertex setV can be expressed by an-digit binary
number. A bit set to 1 represents the vertex in the subset,
and a bit set to 0 represents the vertex out of the subset.
For example in Fig. 1, the subset{v2,v4,v5} can be
expressed by the binary number 010110. In this way, we
transform all possible subsets ofV in a n-vertex graph
into an ensemble of alln-digit binary numbers. We call
this the data pool.

(1)We choose all possible sets of vertex in graph.
(1-1)Merge(P,Q);
(1-2)Aneealing(P);
(1-3)Ligation(P);
(1-4)Denaturation(P);
(1-5)Separation(P,{#A1},T1);
(1-6)Discard(P);
(1-7)Separation(T1,{Bn#},P).
After the above seven steps of manipulations, the
singled strands in tubeP will encode all possible sets
of vertex. For example, for the graph in Fig. 1, we
have singled strands:

#A11B1A21B2A30B3A41B4A50B5A61B6#∈ P

which denotes the set of vertex{v1,v2,v4,v6}
corresponding to the binary number 110101. This
operation can be finished inO(1) steps since each
manipulation above works inO(1) steps.

(2)Each singled strand in tubeP denotes one possible
vertex set after the first step. While the maximum
independent set problem require that any vertex
shouldn’t be connected with other vertices in a same
set by an edge. So we should check all the vertex sets
whether to satisfy the above restrictive condition. If
ei, j ∈ E in graph, We should discard the strands which
both verticesvi and v j are in the same set. For
example in Fig. 1, the singled strands
#A11B1A20B2A30B3A41B4A51B5A60B6#
(representing the set of vertex{v1,v4,v5}) should be
discarded for the verticesv4 andv5 in the set can be
connected by edgee4,5 ∈ E. Only so we can choose
all possible vertex independent sets in graph.

For i = 1 to i = n−1
For j = i +1 to j = n

(2-1)Separation(R,{yi, j},T2);
(2-2)If(Detect(T2))

Then

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2364 Z. Wang et. al.: Solving the Maximum Independent Set Problembased...

(2-3)Discard(T2);
(2-4)Separation(P,{Ai1Bi},T3);
(2-5)Separation(T3,{A j1B j},T4);
(2-6)Discard(T4);
(2-7)Merge(P,T3);
(2-8)Discard(T3).

End for
End for

After the above operations, the singled strands in tube
P are all vertex independent sets. Meanwhile we use
two “For” clauses, thus this operation can be finished
in O(n2) steps since each single manipulation above
works inO(1) steps.

(3)The maximum independent set problem should be a
biggest vertex set which satisfies the independent set
restrictive condition. So we choose the maximum
vertex independent set in all vertex independent sets.
If a vertexvi in the vertex set, we append additional
strandX at the end of previous strand in order to find
the optimum strand solutions. For example, for the
graph in Fig. 1, the singled strands

#A10B1A21B2A30B3A40B4A51B5A61B6#

in P represent containing the vertices{v2,v5,v6}, So
we append strandX three times at the previous strands
to

#A10B1A21B2A30B3A40B4A51B5A61B6#XXX

This is done by the following manipulations:
Fork= 1 to k= n
(3-1)Separation(P,{Ak1Bk},T5);
(3-2)Append(T5,X);
(3-3)Merge(P,T5);
(3-4)Discard(T5).
End for
In the above operation, we use one “For” clause, thus
this operation can be finished inO(n) steps since each
single manipulation above works inO(1) steps.

(4)We take out those singled strands inP with biggest
length, which represent the solutions to maximum
independent set problem. For example, for the graph
in Fig. 1, the singled strands inP with largest length
are

#A10B1A21B2A31B3A41B4A51B5A60B6#XXXX

Therefore, solutions to maximum independent set
problem for the graph in Fig. 1 are{v2,v3,v5,v6}
which contain four vertices.
Fork= 1 to k= n
(4-1)Selection(P,(3n+2)t+ kt,T6);
(4-2)If(Detect(T6))

Break;
End for
In the above operation, we use one “For” clause, the

worst conditions is that the algorithm stop atk = n,
thus this operation can be finished less thanO(n) steps
since each single manipulation above works inO(1)
steps.

(5)Finally the “Read” operation is applied to giving the
exact solutions to the maximum independent set
problem. For example, for the graph in Fig. 1, the
maximum independent set is{v2,v3,v5,v6}. This
operation works in O(1) steps.
(5-1)Read(T6);

The following theorem tells that the algorithm
proposed above really can get solutions of the maximum
independent set problem inO(n2) steps using DNA
molecules.

Theorem 1. The solutions of maximum independent
set problem for a graph with n vertices can be figured out
in O(n2) steps using DNA molecules parallel
supercomputing.

Proof. After the operations of first step, all the singled
strands in tubeP denote all possible sets of vertex. Then
the strands can be described:

#A1z1B1A2z2B2 · · ·AkzkBk · · ·AnznBn# zk = 0 or 1

.
After the operations of second step, all the strands inP
denotes one possible vertex independent set. In the first
instance we reasonably design the length of #,Ak,Bk,0,1
andX, For

||Ak||= ||Bk||= ||#||= ||0||= ||1||= ||zk||= ||X||= t

So we defineS as the strands after the third step. ThenS
can be described:

#A1z1B1A2z2B2 · · ·AkzkBk · · ·AnznBn#X · · ·X

The numberp of appendingX times is decided by the
existing vertices information on the strands. Due to the
possible timesp of containing verticesvk information is
between 1 andn, So

||S||

= ||#||+ ||A1||+ ||z1||+ ||B1||+ ||A2||+ ||z2||+ ||B2||+ · · ·+

||An||+ ||zn||+ ||An||+ ||#||+ ||X||+ · · ·+ ||X||

= 2||#||+
n

∑
k=1

||Ak||+
n

∑
k=1

||zk||+
n

∑
k=1

||Bk||+ p||X||

= (3n+2)t + pt

∵ 0≤ p≤ n

∴ (3n+2)t ≤ ||S|| ≤ (3n+2+n)t

So the length of strands which denote containing all the
vertices information must be between(3n+2)t and(3n+
2+n)t. So we can get the solution in step 4 in appropriate
length range.
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Besides,the manipulates of algorithm can be entirely
finished in finite operations. Such as step (1), (5) inO(1),
step (4) less thanO(n), Simultaneity step (2) inO(n2) and
step (3) inO(n). In conclusion, We can get the solution
of maximum independent set problem withn vertices in
O(n2).

4 Conclusion

In this paper, we present DNA algorithms for solving the
maximum independent set problem based on biological
operations in the Adleman-Lipton model. The proposed
algorithms have two advantages. Firstly, the proposed
algorithm actually has a lower rate of errors for
hybridization because we generate fixed reasonable DNA
sequences for generating the solutions of the problem.
Secondly, the proposed algorithms can works inO(n2)
steps for the maximum independent set problem of an
undirected graph withn vertices, Comparing exponential
level time by electronic computer. All our results in this
paper are based on a theoretical model. However, the
ability to perform complex operations in solution might
help us learn more about the nature of computation and
lead to the development of better DNA based
computation, capable of solving a wide range of complex
problems.
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