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Abstract: In this paper we are interested in relative homology groups of digital im&ymme properties of the Euler characteristics for
digital images are given. We also present reduced homology grouggital images. The main purpose is to obtain some differences
between notions in digital topology and algebraic topology.
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1 Introduction Arslan et al. [] introduce the simplicial homology
groups ofn-dimensional digital images. Moreover, they
compute simplicial homology groups bSS;g.

Diaz-Pernil et.al. §] present a new solution for the
homology groups of binary 2D image problem which is
classical problem in homology theory which tries to
calculate the number of connected components and the
representative curves of the holes of these components

The fundamental group is a very valuable tool but it has
an important deficiency. It is not enough to solve
problems such as showing th& and S* are not
homeomorphic. Using the homology group of a simplicial
complex, this difficulty could be overcome. Homology
groups offer a different approach to hole counting. Forfr m iven binarv 2D im b ina membran
instance, with this approach, the-sphere has one om a given binary age, by using membrane
n-dimensional hole and nandimensional holes for computing techniques.

m= n. ~ Boxer, Karaca and Ozte¥] expand knowledge of the

The homology theory is the main field of algebraic f’r']rgFs)li'r%'slliggm%?nggq%;%?;’uogsdggrgﬂ%ﬁ;%g?iﬁ;ﬁg

topology. It plays a significant role in the classification closed surfaces. They also extend an earlier definition of

problems of topological spaces. There are various . A
approaches to the study of this theory. One of these is th e Euler chara_ctgrlsncs of d|g|tg| image and compute the
uler characteristics of several digital surfaces.

simplicial homology. Homology groups are invariants _
from algebraic topology which are frequently used in ~ Karaca and Egelfl] give some results related to the
digital image analysis and structural pattern recognition Simplicial homology groups of @2 digital images. They
They are related to the different n-dimensional holes,Show that if a bounded digital imagé C Z is nonempty
connected components, tunnels, cavities, etc., of #nd k-connected, then its homology groups at the first
geometric object. dimension are a trivial group. IrL]], it's proved that the
In 1927, Lefschetz defined the relative homology Nomology groups of the operands of a wedge of digital

groups. They are important and useful for a number of Mages need not be additive.

reasons, principally for computational ones, since they fit Ege and Karaca9] study the properties of the
into long exact sequences, which are powerfulSimplicial homology groups of digital images and
computational tools in homology. Moreover they help investigate Eilenberg-Steenrod axioms for the simplicial
determine what part of an absolute homology grouphomology groups of digital images.

comes from which subspace. The relative homology is  This article is organized as follows. In Section 2, we
defined to compute the holes modulo some region ofgive the general notions of digital images witk-
space in some applications. adjacency relations, digital homotopy groups and digital
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homology groups. In the next section we introduce theis (Ko, k1)-continuous and bijective and al§o! : Y — X
relative homology groups for digital images, give sampleis (K1, Ko)-continuous. For a digital imagex, k) and its
calculations and provide some important properties. Insubset(A k), we call (X,A) a digital image pair withk-
the section 4, we deal with properties of the Euleradjacency.

characteristics. In the last section we make somepgfinition 2.2. [3]. Let X € Z™ andY € Z™ be digital

conclusions.

2 Preliminaries

A pair (X, k) is called a digital image, whei is the set
of integers,X c Z" for some positive integen and k

represents certain adjacency relation for the members of

images withkp-adjacency andi-adjacency respectively.
For two (Ko, k1)-continuous functiond,g: X — Y, if
there is a positive integerm and a function
H : X x [0,m|z — Y such that

o for all x e X, H(x,0) = f(x) andH (x,m) = g(x);

o for all x € X, the induced functiohly : [0,m];, — Y

X. We give an adjacency relation which is used in the gefined by

study of digital images. Lét n be positive integers such

that 1< | < nand two distinct points

p:(pl7p27"'7pn)7 q: (Ql»QanaQn)

in Z". If there are at most distinct coordinates for
which |pj —qj| = 1 and for all other coordinateg,
pj = q; then we say thap andq arek-adjacent p]. The

number of pointg) € Z" that are adjacent to a given point

p € Z" are represented by la-adjacency relation. I1Z,
ki-adjacent points are called 2-adjacent; if?,

ki-adjacent points andkp-adjacent points are called

4-adjacent and 8-adjacent; finally &%, ki, k» and

ks-adjacent points are called 6-adjacent, 18-adjacent an

26-adjacent, respectively.

Let k be an adjacency relation defined @". A
k-neighbor ofp € Z" is a point ofZ" that isk-adjacent to
p. A digital imageX C Z" is k-connected1(] if and only
if for every pair of different pointx,y € X, there is a set
{X0,X1,...,%} of points of a digital imagexX such that
X=X, Y= X% andx and xj;1 are k-neighbors where
i=0,1,....,r—1. A k-component of a digital imag¥ is
a maximalk-connected subset of. A set of the form
[a,b]z = {z€ Z|a< z< b} is a digital interval 2], where
a,beZwitha<b.

Let (X,ko) C Z™ and(Y, K1) C Z™ be digital images.
A function f : X — Y is (Ko, K1)-continuous 8], if for
every Ko-connected subsetU of X, f(U) is a
k1-connected subset of. In [3], it is shown that a
function f : X — Y is (Ko, k1)-continuous if and only if
for every kp-adjacent points{Xg,x1} of X, either
f(x0) = f(x1) or f(xg) and f(x;) are aki-adjacent iry.

In a digital image(X, k), a (2, k)-continuous function
f :[0,m)z — X such thatf (0) = xandf(m) =yis called
a digital k-path [] from xtoy. If f(0) = f(m) thenf is
a digitalk-loop and the poinf (0) is the base point of the
loop f.

Definition 2.1. [4]. A simple closedk-curve of m > 4
points in a digital image X is a sequence
{f(0),f(2),...,f(m— 1)} of images of the k-path
f:[0,m—1]z — X such that f(i) and f(j) are
k-adjacent if and only iff =i+ modm.

Let (X,ko) C Z™ and(Y,k1) C Z™ be digital images.
A function f : X — Y is a (Ko, k1)-isomorphism @] if f

Hy(t) =H(x,t) forallte [0,m]z,

is (2, k1)-continuous; and

o for all t € [0,m]z, the induced functioit : X — Y

defined by
Hi(x) =H(x,t) forallxeX,

is (Ko, K1)-continuous, they are said to be digitally
(Ko,K1)-homotopic in Y and this is denoted by
f ~(oxy) 9 The function H is called a digital
?Ko,Kl)—homotopy betweenf and g. The digital
homotopy relation is equivalence relation among digitally
continuous functions (se8]).

Letf:X —Yandg:Y — X be(ko, K1) and(k1, Ko)
continuous functions respectively such that

fog~(q i) Iy and go f~q ) Ix

We say thaX andY have the saméo, k1)-homotopy type
and thatX andY are(kop, K1)-homotopy equivalent].
Definition 2.3.[3]. (i) A digital image(X, k) is said to be
K-contractible if its identity map ik, k)-homotopic to a
constant functiorc for somec € X where the constant
functionc: X — X is defined byc(x) = c for all x € X.

(i) Let (X,A) be a digital image pair with
k-adjacency and: A— X be the inclusion functionA
is called ak-retract of X if and only if there is a
K-continuous functiom : X — A such thatr(a) = a for
all a € A. Then the functiom is called ak-retraction ofX
ontoA.

(iii) A digital homotopyH : X x [0,m];, — X is a
deformationk-retract if the induced mapli(—,0) is the
identity map % and the induced mafH(—,m) is
retraction of X onto H(X x {m}) C X. The set
H (X x {m}) is called a deformatior-retract ofX.

Definition 2.4.[12]. Let (X,k) be a digital image an&

be a set of nonempty subset Assume that the following
hold:
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a) If pandq are distinct points o§ € S, thenp andq
arek-adjacent.
b) If se Sand 0#t C s, thent € S

Then the members @are called simplexes ¢, k).
An mrsimplex is a simplexs such thafS| = m+ 1.

Let P be a digital msimplex. If Pis a nonempty
proper subset d?, thenP' is called a face oP. Vert(P) is
used to denote the vertex setRfA digital subcompleXA
of a digital simplicial complexX with k-adjacency is a
digital simplicial complex 12] contained in X with
Vert(A) C Vert(X).

Let (X, k) be a finite collection of digitain-simplices,
0 < m< d for some non-negative integet. If the
following statements hold the(X, k) is called a finite
digital simplicial complex 1J:

o If P belongs taX, then every face oP also belongs
to X.

o If PQ € X, thenPNQ is either empty or a common
face of P andQ.

The dimension of a digital simplicial compléxis the
largest integem such thaX has arm-simplex.C{ (X) is a
free abelian groupl] with basis all digital(k , q)-simplices
in X.

Let (X,k) C Z" be a digital simplicial complex of
dimensionm. Boxer et.al. show that (see’]] for all
q > m, Cj(X) is a trivial group. The homomorphism
dq : Cg (X) — C§_1(X) defined (seel]]) by

J (=1 < po,pLs---s s Pg >, 4< M
dq(u):{%.o( )" < Po, PL,- - Bis- - P asn

is called a boundary homomorphism, whepe nieans
delete the pointg; and u =< po, p1,...,Pq >. In [1],
Havana et.al. show that for alld g < m,

aqf_’]_o aq =0.

Definition 2.5. [1]. Let (X,k) be a digital simplicial
complex.

(1) Z{(X) = Ker gq is called the group of digital
simplicial g-cycles.

(2) B§(X) =Im Jq+1 is called the group of digital
simplicial g-boundaries.

(3) Hg (X) = Z5(X)/Bg(X) is called theqgth digital
simplicial homology group.
Theorem 2.6. [7]. Let (X,k) be a directed digital
simplicial complex of dimensiom.

e Hi (X) is afinitely generated abelian group for every

q=>0.

e Hg (X) is a trivial group for alig > m.

e H/\(X) is a free abelian group, possible zero.
Theorem 2.7.[1]. If (X, k) is a single point digital image,

then
K __ Zaqzov
Ho _{O, q#0.

Theorem 2.8.[7]. For eachq > 0, H¥ is a covariant
functor from the category of digital simplicial complexes
and simplicial maps to the category of abelian groups.
Corollary 2.9. [1]. If f: (X,k1) — (Y,K2) is a digitally
(K1, K2)-isomorphism, therf, : H§*(X) — H§2(Y) is a
group isomorphism.

3 Digital relative homology groups

Let (A, k) be a digital subcomplex of the digital simplicial
complex(X, k). Then the chain grou@; (A) is a subgroup
of the chain grou|€; (X). The quotient group

C(X,A) = C§(X)/C (A)

is called the group of relative chains ¥fmoduloA. The
boundary operator

dq 1 CX(A) — CE4(A)

is the restriction of the boundary operator Gf(X). It
induces a homomorphism

Cq (X,A) — C{1(X,A)

of the relative chain groups and this is also denoteddoy

Definition 3.1.[9]. Let (A, k) be a digital subcomplex of
the digital simplicial complexX, k).

e Z;(X,A) = Ker dq is called the group of digital
relative simplicialg-cycles.

. Bg(_X,A)_ = Im Jy11 is called the group of digital
relative simplicialg-boundaries.

- Hy(X,A) = Z3(X,A)/B;(X,A) is called thegth

digital relative simplicial homology group.
Example 3.2.Let X = [0, 1] be the digital interval ané
be a single point digital imag€0}. Let's determine
HZ(X,A) for all g > 0. Forq =0,

Cs(X)=ZaZ, C5(A)=Z and C5(X,A) = Z.
Forq=1,
C2(X) =7, C2(A)=20 and CX(X,A) = Z.

Since there are no digité®, g)-simplexes of dimension 2
or higher, then
Ci(X,A) =0

and accordinghH3(X,A) = 0 for all g > 2.
Now consider the following short sequence:
0% c2(x,A) & c3(x,A) Ro.
There are obvious results such that

Imd,=0 and Kerdp = Z.
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The elements dE?(X,A) are of the form
z=g[0,17+C:(A), geZ.

Since
01(2) = 01(g.[0, 1)z + C(A))

=01z —-9.[0]z
= g.[1z +CE(A),
we get Imd; = Z. As a result, we havel3(X,A) = 0.
By the First Isomorphism Theorem,
Z/Kerdp =2Imo1 =27 = Kerody=0.

ConsequentlyH(X,A) = 0. Thus we havéiZ(X,A) =0
forallg> 0.

Ege and Karac&] show that the long sequence
P« 0«
= HE(A) S HEX) B HEXA) S HE ((A) — ..

is exact, where : A— X and p: X — (X,A) are
inclusion maps. This is called exactness axiom.

Proof. Consider the following long exact sequence:

L Bekx,a) B ekx,a) Bo.

It's clear that Kewdo = C§ (X, A). The elements dEf (X, A)
are of the form

z=0.y <ujuj1>+Cy(A), geZ
]
whereu; is an arbitrary point oK, < ujuj;+1 > is a digital
1-simplex inX and
Ci(A)={a<uj>aeZjel}.
Since

(71(2) = o"l(g Z < UjUj4+1 > +C'l< (A))
J
=g <uj> +C§ (A),
J

Im 0y = C5 (X, A). Therefore, we havel§ (X,A) =0.0
Proposition 3.6.1f A= {xo} is a single point digital image,

We now give some significant results about the reIativeHg(X,A) = Hg (X) for g > 0.

simplicial homology groups of digital images.

Proposition 3.3.Let (X, k) be a digital image ané C X.
If Ais empty set,

H(‘;(X,A) = H(’;(X)

forallqg> 0.

Proof. SinceA is empty, for allq > 0 we haveHf (A) = 0.
By the long sequence

o= HE(A) 55 HE(X) 25 HE (X A) & HE

q,l(A)%...,

for all g > 0, we have a short sequence
Ps
0— Hg (X) = H{ (X,A) — 0.
As a result,p, is an isomorphism and so
Hg (X) = H{ (X, A).

(]
Proposition 3.4.1f X = [JX] is a union ofk-connected
i

components, then

HE (X, A) = EDHE (X, A)),
j

whereA; = ANX;.
Proof. The proof is the same as in Algebraic Topolagy.

Theorem 3.5.1f X is k-connected and\ is nonemptyk-
connected digital image, then

HE (X, A) = 0.

Proof. From Theorem 2.7, we know thétj (A) = 0 for
g > 0. By the long sequence

C = HE(A) = HE(X) = HEOGA) B HE (A = .
for all g > 0, we have a short sequence
Ps
0— Hg (X) = H{ (X,A) — 0.
Sop. is an isomorphism and we get
Hg (X) = H{ (X, A).

(I
Proposition 3.7.For any digital imag€X, k),

Hc[]((xvx) =0,

forallg> 0.

Proof. Consider the exact digital homology sequence for
(X,X). It's clear that the inclusion map
i: (X,k) — (X,Kk) which is identity, induces identity
homomorphisni, : Hy (X) — Hg (X) for all g > 0. For
this reason, we get the required result.

Proposition 3.8.1f A C X is a deformatiork-retract, then
Hq (X,A) =0forallq> 0.

Proof. Let A be a deformatiork-retract of X. Then the
inclusion mapi : A — X is a (k,k)-homotopy
equivalence and the retract : X — A is its
(K, K)-homotopy inverse, i.e.,

ior ™ (k,K) 1x and roi (K k) 1a.

© 2014 NSP
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Thereford, : Hy (A) — Hg (X) is an(k, K )-isomorphism
for all g > 0. From the following long exact sequence

o HEA) 55 HEO) 5 HE (X A) B HE ((A) >

j« 1 HF(X) — Hg(X,A) must be a zero map. By
exactness,

Hg (X,A) = Ker d, =Im j, =0.

O
Example 3.9.Let

X = {pO = (0,0), Pp1= (170)7 P2 = (17 1)} - z?

be a digital image with 8-adjacency. Boxer et.d|.§how

that
Hi09=1{5 020
LetA={po} be a single point digital image. By Theorem
2.7, we have
e ={5 820
Define a mafH : X x [0,2]z — X by the following.

H(X7O):X7 t:0
H(po,1) =H(p2,1) = po,H(p1,1) = p1, t =1
H(pO;Z):H(pLZ):pO; t=2

wherex € X andt € [0, 2]. It's clear that this map is a 8-
deformation retract oK to A. Forq > 2, it's obvious that

Ha(X,A) = 0.

So we have the following short sequence:

0% H8(X,A) 525 Z - HE(X.A) = 0.

By Theorem 3, we getH8(X,A) = 0. From the First
Isomorphism Theorem and the fact that Kee Im i =0,

H3(X,A)/Ker j=Im j=Kerk=0 = HEX,A) =0.

As a result, we haveld(X,A) =0 for allq > 0.

Theorem 3.10.Let (X,A) be a digital image pair witl-
adjacency such th@h, k) is ak-retract of(X, k). Then

~

Hq (X)

= H{(A) @ HJ(X,A).

Proof. Since (A, k) is ak-retract of (X, k), roi = 1
wherei : (Ajk) — (X,Kk) and j : (X,0) — (X,A) are
inclusion maps and: (X,k) — (A,K) is ak-retraction
map. Sor,oi, = 1H§(A) and i, is a monomorphism.

0, is the trivial map because Keér = 0. Thusj, is an
epimorphism. Since Kep, =Im i, = Hg_l(A), we have

Ha-1(X)/Ker j. = Hg 1 (X)/Hg 1(A)
o Hg,l(X,A)
~Im j,

by the First Isomorphism Theorem. As a respltinduces
a (K, k)-isomorphisniJ

Example 3.11.Let
MSCg = {(1,0),(0,1),(~1,0),(0,~1)} C Z2
and
MSC, ={(1,0),(1,1),(0,1),(—1,1),(-1,0),(—1,-1),

(0,-1),(1,-1)} c 72

be digital images with 8-adjacency (see Figure 1).

Fig. 1: MSC, andMSCq

MSCq is digital 8-retract oM SC,. SinceMSCy andMSC,
are digital simple closed 8-curve,

8 148 'y J7Z,q=0,1
Hq(MSIL;)Hq(MSDB){Q 0201

(see L]). Consider the following long exact homology
sequence:

. — HE(MSCy) — H8(MSCy) — HE(MSC4, MSCy)

/

9 HB(MSCY) 15 HE(MSCs) 25 HB(MSCa, MSCy)

/

9 HB(MSC)) % HE(MSC4) 5 H8(MSC4, MSCy) — 0

So we get

05z% 2z HMc M) Sz 5z B0

Consider the exactness of the homology sequence oBy this exact sequence we haHé(MSQ,MS{:g):O. As

(X,A)

o HEOGA) B HE (A S HE () B HE (A S

aresult, foralig> 0

HE(MSC4) = H3(MSCg) @ HE(MSC4, MSC).
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We now calculate the relative homology groups of e Using the exact sequence, we get

(MS§6,A) where

A={co,C1,Cp,C3} C MSSQ5

has 6-adjacency.

Example 3.12. Let MSS% = {c = (0,0,0),c;1 =
(1,0,0),c2 = (1,1,0),c3 = (0,1,0),c4 = (0,0,1),c5 =
(1,0,1),c6 =(1,1,1),c7 = (0,1, 1)} (see F|gure 2).

Cs Cs ,/
. -
3 - o 4~ cz

L~

Fig. 2: MSS;

Its homology groups are’]

) Z, q=0
Hg’(MssB): 75, q=1
0, q+#0,1.

SinceAis digital simple closed 4-curve, we have

4ay_ ) 2,9=0,1
Hq(A)‘{o,q¢o,1

(see []). Consider the following long exact homology
sequence:

/ I '* /
He1(MSS;, A) = Hi (A) = HS(MSS;)
55 HAMss, A) -
Then we have

Ly

02 HAmss, A) 2z 5% 78 1y Hivss, A) 3z

" Himss,A) Bo.
By this exact sequence we have some conclusions:

° H§‘(MS’§6,A) = 0 because Inp, = 0= Ker &, and from
the First Isomorphism Theorem, we get

H3 (MSS;, A) /Ker & = Im &, = Keri, = 0.
e Since Kerdy = Hj (MSS;, A)

we have )
Hg (MSS;, A) =

=Iml,, Imk, =Kerl, =%

HJ(MSS;, A) /Ker & = Im & = Kerk, =0

= H(MS%;,A)
Similarly, since Kerj, = Im i, = Z° we have

=Kerd =1Im j,.

Z°/Kerj, =Imj, = Imj,=0

and consequentlif (MSS;, A) =
As a result, for all > 0, we haveH(MSS;, A) =
We define a digital version of the real projective line

RP! via quotient map fromMSC, with antipodal points.
Denote the digital projective plane BP*. Let

MSC; = {co = (—1,—1),¢c; = (0,—1),co = (1,—1),
C3 = (1,0),C4 = (l, 1),05 = (07 1),C6 = (—1, 1)7
cr=(-1,0)}.

If we take the quotient mag : MSCs — MSCs/x—x
where —x is the antipodal point ok € MSCy, then we
have the digital projective linEP* (see Figure 3).

Cs Cs Cs
CT @ CS C7 I_‘_.
Co c1 cz2 Co C1 C2

Fig. 3: MSC,4 and the Digital Projective Lin&P!

Define a mapH : ZP* x [0, 2]; — ZP* by the following.

H(c,0) =c, t=0
H(c7,1) =co,H(C2,1) =g, t =1
H(cq1,2) = co, t=2

wherec € ZP2. It's clear that this map is a 8-deformation
retract of ZP'. So ZP! is 8-contractible image. As a
result, ZP! has the same digital homology groups as a
single point image.

We want to calculate the relative homology groups of
(MSC,, ZPY) whereZP! ¢ MSC, is the digital projective
line.

Example 3.13.Digital homology groups of.P* are

4ol ) Z,9=0
Hq(ZP)—{O’q%O'

© 2014 NSP
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Consider the following long exact homology sequence:
i* j*
- = Hg (ZPY) =5 Hg (MSCy) =5 Hg (MSC4, ZPY)

SHE(ZPY - ..

Then we have
022 B uimsc,zPh Bz Lz

P pdMscy, zPY) 2 0.

By this exact sequence we have some conclusions:
e Since Imi, = 0= Ker p, and from the First Isomorphism
Theorem, we have

H}(MSC4,ZPY) = Z.

e It's clear thatHg(MSC4, ZP') = Ker do. By the exact
sequence and the First Isomorphism Theorem, we have

Z/Ker pp = 1m p; = 0.
So we geHg(MSCy, ZPY) = 0. As a result,

Z,q=1
0, q#1

If we make a little change the digital simplicial

Hq(MSC4,ZPY) = {

Proof. Since the sequence
0—Kere »C5(X) 52— 0

is exact,

Ker g
Im 01

Co (%)

&
—7Z—0
Im 01

0—

is also exact. It follows fron?Z is free that the above
sequence splits and we find that

HE (X) = HE (X) & Z.

The other statement is a trivial restlt.

4 Properties of Euler characteristics

In [7], Boxer, Karaca and Oztel have defined the Euler
characteristics of digital images. LéX, k) be a digital
image of dimensiorm, and for eachy > 0, let ag be the
number of digital (k,q)-simplexes inX. The Euler
characteristics oX, denoted by (X, k), is defined by

m

X(X.K) = (~1)%q.
&

They also prove that if(X,k) is a digital image of

homology, we get a new concept which is reduced digitaldimensionm, then

homology. The only difference between
homologies lies on the grougy (X).

Definition 3.14.[12]. Let (X,k) be a digital simplicial
complex. We define a homomorphismC{ (X) — Z by
putting £(v) = 1 for each vertexw of X and extending
linearly to C§(X). This homomorphism, called
augmentation map, is onto. & : C{(X) — C5(X) is
the boundary homomorphism, then 0; = 0.

B Ker e

is called the zero dimensional reduced digital homology

group of(X, k). If we putl:|7,§(X) =Hp(X) foreachp> 1,
then .

{H¥(X),i=0,1,...}
are called the reduced digital homology groupsXfK).
There is an induced inclusion magf(X) — Hg (X)
because In9; C Ker & C C§(X).
Theorem 3.15.[12]. For a digital simplicial complex

(X,K), there are the following formulas which are related

to reduced homology groups :

the two

m

XX, K) = qZb(fl)qrankHc’;(X).

We describe a few basic properties of the Euler
characteristics. The Euler characteristics is a funcjon
which associates to each digital imagés ) an integer
X(X,K). The Euler characteristics is determined by the
following properties which holds in Algebraic Topology.
Let X andY be any topological spaces, ade} be a
single point set.

Lx({p}) =1.
2.If X is homeomorphic t& thenx(X) = x(Y).

3.For any homotopic compact spaceandy,
X(X) = x(Y).
4.For every closed subsgtc X,
X(X) = x(C)+X(X\C).
This property has a dual form
X(X) = x(U)+x(X\U),

for every open subsét C X.
5X(XxY) = x(X)-x(Y).
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The Euler characteristics of a single point digital image respectively. So we have

{p}is x({p}) = 1 since

rﬁumv:{zqzo

0, g#0.

In [7], Boxer et.al. prove the property (2). The other
properties (3), (4) and (5) don't hold for digital images.
We show by an example that the property (3) need not b
hold for digital images.

Example 4.1. Let X = M&:é be digital image with
8-adjacency and = {p} be a single point digital image.
Havana et.al.q] show that

Z,q9=0,1

0, g#0,1

The Euler characteristics 0f is

00

e - {

X(X) = Zo(fl)irankHis(X)
=
=1-1+0-0+...
=0.
Since . 0
HS(Y) - { 0’7 g# 07
we obtain .
x(Y) = Z)(fl)irankHig(Y)
=
=1-0+0—...
=1

As a consequence, althoughis (8,8)-homotopic toY,
X(X) # x(Y). So the property (3) doesn't hold for digital
images.

X(X) # X (C) + X (X\C).

Now we show by an example that the property (5) need
not be hold for digital images.
Example 4.3.Let X = [0,1]z andY = [0,1]z x [0,1]z be
digital images with 2 and 4-adjacency, respectively.

Consider a digital image

X xY =[0,1]7 % [0,1]z, x [0,1]z = MSS;.
Boxer et.al. 7] show that
Z, q=0
Z°,q=1
0, q#0,1.

The Euler characteristics &f x Y is (see ¥])

HS(X x Y) = {

00

XX xY) = l;(—l)irankHiG(X X Y)

—1-54+0-0+...
S

On the other hand, since

We can show that the property (4) needn’t be hold forand

digital images.

Ca Cs Ca

L

Fig. 4: X\ C

Example 4.2.Let X be the digital imagéMSC,4. We take
the digital projective lineZP* which is the closed subset
of X. Let this image be denoted 6. Consider a digital
imageX \ C. This is again the digital projective lirgP*
(see Figure 4). The Euler characteristics$ofC andX \ C
are

X(X)=0, x(C)=1 and x(X\C)=1,

20y ) Z,4=0 anny _ ) 2,9=0,1
H““{Qq#O and H““{Qq#QL
we have .
X(X) = Z}(—l)ifankHiz(X)
i=
=1-0+0—...
=1
X(Y)= Z)(—l)ifanka‘(Y)
i=
=1-14+0-0+...
=0.

As a result, we get

X(XxY) # x(X).x(Y).

5 Conclusion

The main goal of this study is to compute the relative
homology groups and determine some properties of Euler
characteristics for digital images. We hope that this krtic
will be helpful in the study of digital homology groups
and that will yield us to compute the homology groups of
some part of the digital image when we know the
homology groups of an entire image.
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