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Abstract: In this paper we are interested in relative homology groups of digital images. Some properties of the Euler characteristics for
digital images are given. We also present reduced homology groups for digital images. The main purpose is to obtain some differences
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1 Introduction

The fundamental group is a very valuable tool but it has
an important deficiency. It is not enough to solve
problems such as showing thatS3 and S4 are not
homeomorphic. Using the homology group of a simplicial
complex, this difficulty could be overcome. Homology
groups offer a different approach to hole counting. For
instance, with this approach, then-sphere has one
n-dimensional hole and nom-dimensional holes for
m 6= n.

The homology theory is the main field of algebraic
topology. It plays a significant role in the classification
problems of topological spaces. There are various
approaches to the study of this theory. One of these is the
simplicial homology. Homology groups are invariants
from algebraic topology which are frequently used in
digital image analysis and structural pattern recognition.
They are related to the different n-dimensional holes,
connected components, tunnels, cavities, etc., of a
geometric object.

In 1927, Lefschetz defined the relative homology
groups. They are important and useful for a number of
reasons, principally for computational ones, since they fit
into long exact sequences, which are powerful
computational tools in homology. Moreover they help
determine what part of an absolute homology group
comes from which subspace. The relative homology is
defined to compute the holes modulo some region of
space in some applications.

Arslan et al. [1] introduce the simplicial homology
groups ofn-dimensional digital images. Moreover, they
compute simplicial homology groups ofMSS18.

Diaz-Pernil et.al. [8] present a new solution for the
homology groups of binary 2D image problem which is
classical problem in homology theory which tries to
calculate the number of connected components and the
representative curves of the holes of these components
from a given binary 2D image, by using membrane
computing techniques.

Boxer, Karaca and Oztel [7] expand knowledge of the
simplicial homology groups of digital images. They study
the simplicial homology groups of certain minimal simple
closed surfaces. They also extend an earlier definition of
the Euler characteristics of digital image and compute the
Euler characteristics of several digital surfaces.

Karaca and Ege [11] give some results related to the
simplicial homology groups of 2D digital images. They
show that if a bounded digital imageX ⊂ Z is nonempty
and κ-connected, then its homology groups at the first
dimension are a trivial group. In [11], it’s proved that the
homology groups of the operands of a wedge of digital
images need not be additive.

Ege and Karaca [9] study the properties of the
simplicial homology groups of digital images and
investigate Eilenberg-Steenrod axioms for the simplicial
homology groups of digital images.

This article is organized as follows. In Section 2, we
give the general notions of digital images withκ-
adjacency relations, digital homotopy groups and digital
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homology groups. In the next section we introduce the
relative homology groups for digital images, give sample
calculations and provide some important properties. In
the section 4, we deal with properties of the Euler
characteristics. In the last section we make some
conclusions.

2 Preliminaries

A pair (X ,κ) is called a digital image, whereZ is the set
of integers,X ⊂ Z

n for some positive integern and κ
represents certain adjacency relation for the members of
X . We give an adjacency relation which is used in the
study of digital images. Letl,n be positive integers such
that 1≤ l ≤ n and two distinct points

p = (p1, p2, . . . , pn), q = (q1,q2, . . . ,qn)

in Z
n. If there are at mostl distinct coordinatesj for

which |p j − q j| = 1 and for all other coordinatesj,
p j = q j then we say thatp andq arekl-adjacent [5]. The
number of pointsq ∈ Z

n that are adjacent to a given point
p ∈ Z

n are represented by akl-adjacency relation. InZ,
k1-adjacent points are called 2-adjacent; inZ2,
k1-adjacent points andk2-adjacent points are called
4-adjacent and 8-adjacent; finally inZ3, k1, k2 and
k3-adjacent points are called 6-adjacent, 18-adjacent and
26-adjacent, respectively.

Let κ be an adjacency relation defined onZn. A
κ-neighbor ofp ∈ Z

n is a point ofZn that isκ-adjacent to
p. A digital imageX ⊂ Z

n is κ-connected [10] if and only
if for every pair of different pointsx,y ∈ X , there is a set
{x0,x1, . . . ,xr} of points of a digital imageX such that
x = x0, y = xr and xi and xi+1 are κ-neighbors where
i = 0,1, . . . ,r−1. A κ-component of a digital imageX is
a maximalκ-connected subset ofX . A set of the form
[a,b]Z = {z ∈ Z|a ≤ z ≤ b} is a digital interval [2], where
a,b ∈ Z with a < b.

Let (X ,κ0)⊂ Z
n0 and(Y,κ1)⊂ Z

n1 be digital images.
A function f : X −→ Y is (κ0,κ1)-continuous [3], if for
every κ0-connected subsetU of X , f (U) is a
κ1-connected subset ofY . In [3], it is shown that a
function f : X −→ Y is (κ0,κ1)-continuous if and only if
for every κ0-adjacent points{x0,x1} of X , either
f (x0) = f (x1) or f (x0) and f (x1) are aκ1-adjacent inY .

In a digital image(X ,κ), a (2,κ)-continuous function
f : [0,m]Z −→ X such thatf (0) = x and f (m) = y is called
a digital κ-path [6] from x to y. If f (0) = f (m) then f is
a digitalκ-loop and the pointf (0) is the base point of the
loop f .

Definition 2.1. [4]. A simple closedκ-curve of m ≥ 4
points in a digital image X is a sequence
{ f (0), f (1), . . . , f (m − 1)} of images of the κ-path
f : [0,m − 1]Z −→ X such that f (i) and f ( j) are
κ-adjacent if and only ifj = i± modm.

Let (X ,κ0)⊂ Z
n0 and(Y,κ1)⊂ Z

n1 be digital images.
A function f : X −→ Y is a (κ0,κ1)-isomorphism [6] if f

is (κ0,κ1)-continuous and bijective and alsof−1 : Y −→ X
is (κ1,κ0)-continuous. For a digital image(X ,κ) and its
subset(A,κ), we call (X ,A) a digital image pair withκ-
adjacency.

Definition 2.2. [3]. Let X ∈ Z
n0 andY ∈ Z

n1 be digital
images withκ0-adjacency andκ1-adjacency respectively.
For two (κ0,κ1)-continuous functionsf ,g : X −→ Y , if
there is a positive integerm and a function
H : X × [0,m]Z −→ Y such that

• for all x ∈ X , H(x,0) = f (x) andH(x,m) = g(x);

• for all x ∈ X , the induced functionHx : [0,m]Z −→Y
defined by

Hx(t) = H(x, t) for all t ∈ [0,m]Z,

is (2,κ1)-continuous; and

• for all t ∈ [0,m]Z, the induced functionHt : X −→ Y
defined by

Ht(x) = H(x, t) for all x ∈ X ,

is (κ0,κ1)-continuous, they are said to be digitally
(κ0,κ1)-homotopic in Y and this is denoted by
f ≃(κ0,κ1) g. The function H is called a digital
(κ0,κ1)-homotopy between f and g. The digital
homotopy relation is equivalence relation among digitally
continuous functions (see [3]).

Let f : X −→Y andg :Y −→X be(κ0,κ1) and(κ1,κ0)
continuous functions respectively such that

f ◦g ≃(κ1,κ1) 1Y and g◦ f ≃(κ0,κ0) 1X

We say thatX andY have the same(κ0,κ1)-homotopy type
and thatX andY are(κ0,κ1)-homotopy equivalent [3].

Definition 2.3. [3]. (i) A digital image(X ,κ) is said to be
κ-contractible if its identity map is(κ ,κ)-homotopic to a
constant function ¯c for somec ∈ X where the constant
function c̄ : X −→ X is defined by ¯c(x) = c for all x ∈ X .

(ii) Let (X ,A) be a digital image pair with
κ-adjacency andi : A −→ X be the inclusion function.A
is called a κ-retract of X if and only if there is a
κ-continuous functionr : X −→ A such thatr(a) = a for
all a ∈ A. Then the functionr is called aκ-retraction ofX
ontoA.

(iii) A digital homotopyH : X × [0,m]Z −→ X is a
deformationκ-retract if the induced mapH(−,0) is the
identity map 1X and the induced mapH(−,m) is
retraction of X onto H(X × {m}) ⊂ X . The set
H(X ×{m}) is called a deformationκ-retract ofX .

Definition 2.4. [12]. Let (X ,κ) be a digital image andS
be a set of nonempty subsetX . Assume that the following
hold:
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a) If p andq are distinct points ofs ∈ S, thenp andq
areκ-adjacent.

b) If s ∈ S and /06= t ⊂ s, thent ∈ S.

Then the members ofS are called simplexes of(X ,κ).
An m-simplex is a simplexS such that|S|= m+1.

Let P be a digital m-simplex. If P
′

is a nonempty
proper subset ofP, thenP

′
is called a face ofP. Vert(P) is

used to denote the vertex set ofP. A digital subcomplexA
of a digital simplicial complexX with κ-adjacency is a
digital simplicial complex [12] contained in X with
Vert(A)⊂Vert(X).

Let (X ,κ) be a finite collection of digitalm-simplices,
0 ≤ m ≤ d for some non-negative integerd. If the
following statements hold then(X ,κ) is called a finite
digital simplicial complex [1]:

• If P belongs toX , then every face ofP also belongs
to X .

• If P,Q ∈ X , thenP∩Q is either empty or a common
face ofP andQ.

The dimension of a digital simplicial complexX is the
largest integerm such thatX has anm-simplex.Cκ

q (X) is a
free abelian group [1] with basis all digital(κ ,q)-simplices
in X .

Let (X ,κ) ⊂ Z
n be a digital simplicial complex of

dimension m. Boxer et.al. show that (see [7]) for all
q > m, Cκ

q (X) is a trivial group. The homomorphism
∂q : Cκ

q (X)−→Cκ
q−1(X) defined (see [1]) by

∂q(u) =

{
∑q

i=0(−1)i < p0, p1, . . . , p̂i, . . . , pq >, q ≤ m
0, q > m

is called a boundary homomorphism, where ˆpi means
delete the pointpi and u =< p0, p1, . . . , pq >. In [1],
Havana et.al. show that for all 1≤ q ≤ m,

∂q−1◦∂q = 0.

Definition 2.5. [1]. Let (X ,κ) be a digital simplicial
complex.

(1) Zκ
q (X) = Ker ∂q is called the group of digital

simplicial q-cycles.
(2) Bκ

q (X) = Im ∂q+1 is called the group of digital
simplicial q-boundaries.

(3) Hκ
q (X) = Zκ

q (X)/Bκ
q (X) is called theqth digital

simplicial homology group.

Theorem 2.6. [7]. Let (X ,κ) be a directed digital
simplicial complex of dimensionm.

• Hκ
q (X) is a finitely generated abelian group for every

q ≥ 0.
• Hκ

q (X) is a trivial group for allq > m.
• Hκ

m(X) is a free abelian group, possible zero.

Theorem 2.7.[1]. If (X ,κ) is a single point digital image,
then

Hκ
q =

{
Z, q = 0,
0, q 6= 0.

Theorem 2.8. [7]. For eachq ≥ 0, Hκ
q is a covariant

functor from the category of digital simplicial complexes
and simplicial maps to the category of abelian groups.

Corollary 2.9. [1]. If f : (X ,κ1) −→ (Y,κ2) is a digitally
(κ1,κ2)-isomorphism, thenf∗ : Hκ1

q (X) −→ Hκ2
q (Y ) is a

group isomorphism.

3 Digital relative homology groups

Let (A,κ) be a digital subcomplex of the digital simplicial
complex(X ,κ). Then the chain groupCκ

q (A) is a subgroup
of the chain groupCκ

q (X). The quotient group

Cκ
q (X ,A) =Cκ

q (X)/Cκ
q (A)

is called the group of relative chains ofX moduloA. The
boundary operator

∂q : Cκ
q (A)−→Cκ

q−1(A)

is the restriction of the boundary operator onCκ
q (X). It

induces a homomorphism

Cκ
q (X ,A)−→Cκ

q−1(X ,A)

of the relative chain groups and this is also denoted by∂q.

Definition 3.1. [9]. Let (A,κ) be a digital subcomplex of
the digital simplicial complex(X ,κ).

• Zκ
q (X ,A) = Ker ∂q is called the group of digital

relative simplicialq-cycles.
• Bκ

q (X ,A) = Im ∂q+1 is called the group of digital
relative simplicialq-boundaries.

• Hκ
q (X ,A) = Zκ

q (X ,A)/Bκ
q (X ,A) is called theqth

digital relative simplicial homology group.

Example 3.2.Let X = [0,1]Z be the digital interval andA
be a single point digital image{0}. Let’s determine
H2

q (X ,A) for all q ≥ 0. Forq = 0,

C2
0(X)∼= Z⊕Z, C2

0(A)∼= Z and C2
0(X ,A)∼= Z.

For q = 1,

C2
1(X)∼= Z, C2

1(A)∼= 0 and C2
1(X ,A)∼= Z.

Since there are no digital(2,q)-simplexes of dimension 2
or higher, then

C2
q(X ,A) = 0

and accordinglyH2
q (X ,A) = 0 for all q ≥ 2.

Now consider the following short sequence:

0
∂2→C2

1(X ,A)
∂1→C2

0(X ,A)
∂0→ 0.

There are obvious results such that

Im ∂2 = 0 and Ker∂0
∼= Z.
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The elements ofC2
1(X ,A) are of the form

z = g.[0,1]Z+C2
1(A), g ∈ Z.

Since
∂1(z) = ∂1(g.[0,1]Z+C2

1(A))

= g.[1]Z−g.[0]Z

= g.[1]Z+C2
0(A),

we get Im∂1
∼= Z. As a result, we haveH2

0(X ,A) = 0.

By the First Isomorphism Theorem,

Z/Ker ∂1
∼= Im ∂1

∼= Z ⇒ Ker ∂1 = 0.

Consequently,H2
1(X ,A) = 0. Thus we haveH2

q (X ,A) = 0
for all q ≥ 0.

Ege and Karaca [9] show that the long sequence

. . .→ Hκ
q (A)

i∗→ Hκ
q (X)

p∗
→ Hκ

q (X ,A)
∂∗→ Hκ

q−1(A)→ . . .

is exact, wherei : A −→ X and p : X −→ (X ,A) are
inclusion maps. This is called exactness axiom.

We now give some significant results about the relative
simplicial homology groups of digital images.

Proposition 3.3.Let (X ,κ) be a digital image andA ⊂ X .
If A is empty set,

Hκ
q (X ,A)∼= Hκ

q (X)

for all q ≥ 0.

Proof. SinceA is empty, for allq ≥ 0 we haveHκ
q (A) = 0.

By the long sequence

. . .→ Hκ
q (A)

i∗→ Hκ
q (X)

p∗
→ Hκ

q (X ,A)
∂∗→ Hκ

q−1(A)→ . . . ,

for all q ≥ 0, we have a short sequence

0→ Hκ
q (X)

p∗
→ Hκ

q (X ,A)→ 0.

As a result,p∗ is an isomorphism and so

Hκ
q (X)∼= Hκ

q (X ,A).

�

Proposition 3.4. If X =
⋃
j
X j is a union ofκ-connected

components, then

Hκ
q (X ,A)∼=

⊕

j

Hκ
q (X j,A j),

whereA j = A∩X j.

Proof. The proof is the same as in Algebraic Topology.�

Theorem 3.5.If X is κ-connected andA is nonemptyκ-
connected digital image, then

Hκ
0 (X ,A) = 0.

Proof. Consider the following long exact sequence:

. . .
∂2→Cκ

1 (X ,A)
∂1→Cκ

0 (X ,A)
∂0→ 0.

It’s clear that Ker∂0 =Cκ
0 (X ,A). The elements ofCκ

1 (X ,A)
are of the form

z = g.∑
j
< u ju j+1 >+Cκ

1 (A), g ∈ Z

whereu j is an arbitrary point ofX , < u ju j+1 > is a digital
1-simplex inX and

Cκ
1 (A) = {α < u j >: α ∈ Z, j ∈ J}.

Since

∂1(z) = ∂1(g.∑
j
< u ju j+1 >+Cκ

1 (A))

= g.∑
j
< u j >+Cκ

0 (A),

Im ∂1 =Cκ
0 (X ,A). Therefore, we haveHκ

0 (X ,A) = 0.�

Proposition 3.6.If A= {x0} is a single point digital image,
Hκ

q (X ,A)∼= Hκ
q (X) for q > 0.

Proof. From Theorem 2.7, we know thatHκ
q (A) = 0 for

q > 0. By the long sequence

. . .→ Hκ
q (A)→ Hκ

q (X)→ Hκ
q (X ,A)

∂∗→ Hκ
q−1(A)→ . . . ,

for all q > 0, we have a short sequence

0→ Hκ
q (X)

p∗
→ Hκ

q (X ,A)→ 0.

So p∗ is an isomorphism and we get

Hκ
q (X)∼= Hκ

q (X ,A).

�

Proposition 3.7.For any digital image(X ,κ),

Hκ
q (X ,X) = 0,

for all q ≥ 0.

Proof. Consider the exact digital homology sequence for
(X ,X). It’s clear that the inclusion map
i : (X ,κ) −→ (X ,κ) which is identity, induces identity
homomorphismi∗ : Hκ

q (X) −→ Hκ
q (X) for all q ≥ 0. For

this reason, we get the required result.�

Proposition 3.8.If A ⊂ X is a deformationκ-retract, then
Hκ

q (X ,A) = 0 for all q ≥ 0.

Proof. Let A be a deformationκ-retract ofX . Then the
inclusion map i : A −→ X is a (κ ,κ)-homotopy
equivalence and the retractr : X −→ A is its
(κ ,κ)-homotopy inverse, i.e.,

i◦ r ≃(κ ,κ) 1X and r ◦ i ≃(κ ,κ) 1A.
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Thereforei∗ : Hκ
q (A)−→ Hκ

q (X) is an(κ ,κ)-isomorphism
for all q ≥ 0. From the following long exact sequence

. . .→ Hκ
q (A)

i∗→ Hκ
q (X)

j∗
→ Hκ

q (X ,A)
∂∗→ Hκ

q−1(A)→ . . . ,

j∗ : Hκ
q (X) −→ Hκ

q (X ,A) must be a zero map. By
exactness,

Hκ
q (X ,A) = Ker ∂∗ = Im j∗ = 0.

�

Example 3.9.Let

X = {p0 = (0,0), p1 = (1,0), p2 = (1,1)} ⊂ Z
2

be a digital image with 8-adjacency. Boxer et.al. [7] show
that

H8
q (X) =

{
Z, q = 0,
0, q 6= 0.

Let A = {p0} be a single point digital image. By Theorem
2.7, we have

H8
q (A) =

{
Z, q = 0,
0, q 6= 0.

Define a mapH : X × [0,2]Z −→ X by the following.




H(x,0) = x, t = 0
H(p0,1) = H(p2,1) = p0,H(p1,1) = p1, t = 1
H(p0,2) = H(p1,2) = p0, t = 2

wherex ∈ X andt ∈ [0,2]Z. It’s clear that this map is a 8-
deformation retract ofX to A. Forq ≥ 2, it’s obvious that

H8
q (X ,A) = 0.

So we have the following short sequence:

0
i
→ H8

1(X ,A)
j
→ Z

k
→ Z→ H8

0(X ,A)→ 0.

By Theorem 3.5, we getH8
0(X ,A) = 0. From the First

Isomorphism Theorem and the fact that Kerj = Im i = 0,

H8
1(X ,A)/Ker j ∼= Im j ∼= Ker k ∼= 0 ⇒ H8

1(X ,A) = 0.

As a result, we haveH8
q (X ,A) = 0 for all q ≥ 0.

Theorem 3.10.Let (X ,A) be a digital image pair withκ-
adjacency such that(A,κ) is aκ-retract of(X ,κ). Then

Hκ
q (X)∼= Hκ

q (A)⊕Hκ
q (X ,A).

Proof. Since(A,κ) is a κ-retract of(X ,κ), r ◦ i = 1(A,κ)
where i : (A,κ) −→ (X ,κ) and j : (X , /0) −→ (X ,A) are
inclusion maps andr : (X ,κ) −→ (A,κ) is a κ-retraction
map. Sor∗ ◦ i∗ = 1Hκ

q (A) and i∗ is a monomorphism.
Consider the exactness of the homology sequence of
(X ,A)

. . .→Hκ
q (X ,A)

∂∗→Hκ
q−1(A)

i∗→Hκ
q−1(X)

j∗
→Hκ

q−1(X ,A)
∂∗→ . . .

∂∗ is the trivial map because Keri∗ = 0. Thus j∗ is an
epimorphism. Since Kerj∗ = Im i∗ = Hκ

q−1(A), we have

Hκ
q−1(X)/Ker j∗ = Hκ

q−1(X)/Hκ
q−1(A)

∼= Hκ
q−1(X ,A)

∼= Im j∗

by the First Isomorphism Theorem. As a result,j∗ induces
a (κ ,κ)-isomorphism.�

Example 3.11.Let

MSC
′

8 = {(1,0),(0,1),(−1,0),(0,−1)} ⊂ Z
2

and

MSC4 = {(1,0),(1,1),(0,1),(−1,1),(−1,0),(−1,−1),

(0,−1),(1,−1)} ⊂ Z
2

be digital images with 8-adjacency (see Figure 1).

Fig. 1: MSC4 andMSC
′

8

MSC
′

8 is digital 8-retract ofMSC4. SinceMSC
′

8 andMSC4
are digital simple closed 8-curve,

H8
q (MSC4) = H8

q (MSC
′

8) =

{
Z, q = 0,1
0, q 6= 0,1

(see [1]). Consider the following long exact homology
sequence:

· · · → H8
2(MSC

′

8)→ H8
2(MSC4)→ H8

2(MSC4,MSC
′

8)

∂
→ H8

1(MSC
′

8)
i∗→ H8

1(MSC4)
j∗
→ H8

1(MSC4,MSC
′

8)

∂
→ H8

0(MSC
′

8)
i∗→ H8

0(MSC4)
j∗
→ H8

0(MSC4,MSC
′

8)→ 0

So we get

0→ Z
i∗→ Z

j∗
→ H8

1(MSC4,MSC
′

8)
∂
→ Z

i∗→ Z
j∗
→ 0

By this exact sequence we haveH8
1(MSC4,MSC

′

8) = 0. As
a result, for allq ≥ 0

H8
q (MSC4)∼= H8

q (MSC
′

8)⊕H8
q (MSC4,MSC

′

8).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


2342 O. Ege et. al. : Relative Homology Groups of Digital Images

We now calculate the relative homology groups of
(MSS

′

6,A) where

A = {c0,c1,c2,c3} ⊂ MSS
′

6

has 6-adjacency.

Example 3.12. Let MSS
′

6 = {c0 = (0,0,0),c1 =
(1,0,0),c2 = (1,1,0),c3 = (0,1,0),c4 = (0,0,1),c5 =
(1,0,1),c6 = (1,1,1),c7 = (0,1,1)} (see Figure 2).

Fig. 2: MSS
′

6

Its homology groups are [7]

H6
q (MSS

′

6) =





Z, q = 0
Z

5, q = 1
0, q 6= 0,1.

SinceA is digital simple closed 4-curve, we have

H4
q (A) =

{
Z, q = 0,1
0, q 6= 0,1

(see [1]). Consider the following long exact homology
sequence:

· · · → H4
q+1(MSS

′

6,A)
δ
→ H4

q (A)
i∗→ H6

q (MSS
′

6)

j∗
→ H4

q (MSS
′

6,A)→ . . .

Then we have

0
p∗
→ H4

2(MSS
′

6,A)
δ2→ Z

i∗→ Z
5 j∗
→ H4

1(MSS
′

6,A)
δ1→ Z

k∗→ Z

l∗→ H4
0(MSS

′

6,A)
δ0→ 0.

By this exact sequence we have some conclusions:
• H4

2(MSS
′

6,A) = 0 because Imp∗ = 0= Ker δ2 and from
the First Isomorphism Theorem, we get

H4
2(MSS

′

6,A)/Ker δ2
∼= Im δ2 = Ker i∗ = 0.

• Since Kerδ0 =H4
0(MSS

′

6,A) = Im l∗, Im k∗ =Ker l∗ =Z

we have
H4

0(MSS
′

6,A) = 0.

• Using the exact sequence, we get

H4
0(MSS

′

6,A)/Ker δ1
∼= Im δ1 = Ker k∗ = 0

⇒ H4
0(MSS

′

6,A) = Ker δ1 = Im j∗.

Similarly, since Kerj∗ = Im i∗ = Z
5 we have

Z
5/Ker j∗ ∼= Im j∗ ⇒ Im j∗ = 0

and consequentlyH4
1(MSS

′

6,A) = 0.

As a result, for allq ≥ 0, we haveH4
q (MSS

′

6,A) = 0.

We define a digital version of the real projective line
RP1 via quotient map fromMSC4 with antipodal points.
Denote the digital projective plane byZP1. Let

MSC4 = {c0 = (−1,−1),c1 = (0,−1),c2 = (1,−1),

c3 = (1,0),c4 = (1,1),c5 = (0,1),c6 = (−1,1),

c7 = (−1,0)}.

If we take the quotient mapq : MSC4 −→ MSC4/x∼−x
where−x is the antipodal point ofx ∈ MSC4, then we
have the digital projective lineZP1 (see Figure 3).

Fig. 3: MSC4 and the Digital Projective LineZP1

Define a mapH : ZP1× [0,2]Z −→ ZP1 by the following.




H(c,0) = c, t = 0
H(c7,1) = c0,H(c2,1) = c1, t = 1
H(c1,2) = c0, t = 2

wherec ∈ ZP1. It’s clear that this map is a 8-deformation
retract of ZP1. So ZP1 is 8-contractible image. As a
result,ZP1 has the same digital homology groups as a
single point image.

We want to calculate the relative homology groups of
(MSC4,ZP1) whereZP1 ⊂ MSC4 is the digital projective
line.

Example 3.13.Digital homology groups ofZP1 are

H4
q (ZP1) =

{
Z, q = 0
0, q 6= 0.

c© 2014 NSP
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Consider the following long exact homology sequence:

· · · → H4
q (ZP1)

i∗→ H4
q (MSC4)

j∗
→ H4

q (MSC4,ZP1)

δ
→ H4

q−1(ZP1)→ . . .

Then we have

0
i2→ Z

p2→ H4
1(MSC4,ZP1)

∂1→ Z
i1→ Z

p1→ H4
0(MSC4,ZP1)

∂0→ 0.

By this exact sequence we have some conclusions:
• Since Imi2 = 0=Ker p2 and from the First Isomorphism
Theorem, we have

H4
1(MSC4,ZP1) = Z.

• It’s clear thatH4
0(MSC4,ZP1) = Ker ∂0. By the exact

sequence and the First Isomorphism Theorem, we have

Z/Ker p1
∼= Im p1 = 0.

So we getH4
0(MSC4,ZP1) = 0. As a result,

H4
q (MSC4,ZP1) =

{
Z, q = 1
0, q 6= 1.

If we make a little change the digital simplicial
homology, we get a new concept which is reduced digital
homology. The only difference between the two
homologies lies on the groupHκ

0 (X).

Definition 3.14. [12]. Let (X ,κ) be a digital simplicial
complex. We define a homomorphismε : Cκ

0 (X)−→ Z by
putting ε(v) = 1 for each vertexv of X and extending
linearly to Cκ

0 (X). This homomorphism, called
augmentation map, is onto. If∂1 : Cκ

1 (X) −→ Cκ
0 (X) is

the boundary homomorphism, thenε ◦∂1 = 0.

H̃κ
0 (X) =

Ker ε
Im ∂1

is called the zero dimensional reduced digital homology
group of(X ,κ). If we putH̃κ

p (X) = Hκ
p (X) for eachp > 1,

then
{H̃κ

i (X), i = 0,1, . . .}

are called the reduced digital homology groups of(X ,κ).
There is an induced inclusion map̃Hκ

0 (X) −→ Hκ
0 (X)

because Im∂1 ⊂ Ker ε ⊂Cκ
0 (X).

Theorem 3.15. [12]. For a digital simplicial complex
(X ,κ), there are the following formulas which are related
to reduced homology groups :

Hκ
0 (X)∼= H̃κ

0 (X)⊕Z,

Hκ
p (X) = H̃κ

p (X), p ≥ 1.

Proof. Since the sequence

0→ Ker ε →Cκ
0 (X)

ε
→ Z→ 0

is exact,

0→
Ker ε
Im ∂1

→
Cκ

0 (X)

Im ∂1

ε
→ Z→ 0

is also exact. It follows fromZ is free that the above
sequence splits and we find that

Hκ
0 (X)∼= H̃κ

0 (X)⊕Z.

The other statement is a trivial result.�

4 Properties of Euler characteristics

In [7], Boxer, Karaca and Oztel have defined the Euler
characteristics of digital images. Let(X ,κ) be a digital
image of dimensionm, and for eachq ≥ 0, let αq be the
number of digital (κ ,q)-simplexes in X . The Euler
characteristics ofX , denoted byχ(X ,κ), is defined by

χ(X ,κ) =
m

∑
q=0

(−1)qαq.

They also prove that if(X ,κ) is a digital image of
dimensionm, then

χ(X ,κ) =
m

∑
q=0

(−1)qrankHκ
q (X).

We describe a few basic properties of the Euler
characteristics. The Euler characteristics is a functionχ
which associates to each digital images(X ,κ) an integer
χ(X ,κ). The Euler characteristics is determined by the
following properties which holds in Algebraic Topology.
Let X and Y be any topological spaces, and{p} be a
single point set.

1.χ({p}) = 1.
2.If X is homeomorphic toY thenχ(X) = χ(Y ).
3.For any homotopic compact spacesX andY ,

χ(X) = χ(Y ).

4.For every closed subsetC ⊂ X ,

χ(X) = χ(C)+ χ(X \C).

This property has a dual form

χ(X) = χ(U)+ χ(X \U),

for every open subsetU ⊂ X .
5.χ(X ×Y ) = χ(X).χ(Y ).
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The Euler characteristics of a single point digital image
{p} is χ({p}) = 1 since

Hκ
q ({p}) =

{
Z, q = 0
0, q 6= 0.

In [7], Boxer et.al. prove the property (2). The other
properties (3), (4) and (5) don’t hold for digital images.
We show by an example that the property (3) need not be
hold for digital images.

Example 4.1. Let X = MSC
′

8 be digital image with
8-adjacency andY = {p} be a single point digital image.
Havana et.al. [1] show that

H8
q (X) =

{
Z, q = 0,1
0, q 6= 0,1.

The Euler characteristics ofX is

χ(X) =
∞

∑
i=0

(−1)irankH8
i (X)

= 1−1+0−0+ . . .

= 0.

Since

H8
q (Y ) =

{
Z, q = 0
0, q 6= 0,

we obtain

χ(Y ) =
∞

∑
i=0

(−1)irankH8
i (Y )

= 1−0+0− . . .

= 1.

As a consequence, althoughX is (8,8)-homotopic toY ,
χ(X) 6= χ(Y ). So the property (3) doesn’t hold for digital
images.

We can show that the property (4) needn’t be hold for
digital images.

Fig. 4: X \C

Example 4.2.Let X be the digital imageMSC4. We take
the digital projective lineZP1 which is the closed subset
of X . Let this image be denoted byC. Consider a digital
imageX \C. This is again the digital projective lineZP1

(see Figure 4). The Euler characteristics ofX , C andX \C
are

χ(X) = 0, χ(C) = 1 and χ(X \C) = 1,

respectively. So we have

χ(X) 6= χ(C)+ χ(X \C).

Now we show by an example that the property (5) need
not be hold for digital images.

Example 4.3.Let X = [0,1]Z andY = [0,1]Z× [0,1]Z be
digital images with 2 and 4-adjacency, respectively.
Consider a digital image

X ×Y = [0,1]Z× [0,1]Z× [0,1]Z = MSS
′

6.

Boxer et.al. [7] show that

H6
q (X ×Y ) =





Z, q = 0
Z

5, q = 1
0, q 6= 0,1.

The Euler characteristics ofX ×Y is (see [7])

χ(X ×Y ) =
∞

∑
i=0

(−1)irankH6
i (X ×Y )

= 1−5+0−0+ . . .

=−4.

On the other hand, since

H2
q (X) =

{
Z, q = 0
0, q 6= 0 and H4

q (Y ) =

{
Z, q = 0,1
0, q 6= 0,1,

we have

χ(X) =
∞

∑
i=0

(−1)irankH2
i (X)

= 1−0+0− . . .

= 1.

and

χ(Y ) =
∞

∑
i=0

(−1)irankH4
i (Y )

= 1−1+0−0+ . . .

= 0.

As a result, we get

χ(X ×Y ) 6= χ(X).χ(Y ).

5 Conclusion

The main goal of this study is to compute the relative
homology groups and determine some properties of Euler
characteristics for digital images. We hope that this article
will be helpful in the study of digital homology groups
and that will yield us to compute the homology groups of
some part of the digital image when we know the
homology groups of an entire image.
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