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Abstract: Oscillatory integrals over fan-shaped regions widely exist in scattering analysis, and this paper proposes a new rapid
calculation routine for them. In the routine, the concerned bivariate scattering oscillatory integral is reduced to the calculation of
two univariate oscillatory integrals. One is calculated with the improved Levin quadrature method, and another is transformed to a
non-oscillatory integral that can be stably and accurately calculated with theGauss-Chebyshev integration rule. Numerical examples
show that the newly proposed method has the merits of being very accurate and efficient.
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1 Introduction

Due to the high oscillations of the incident wave and the

Green functionG(r , r ′) = eik|r−r ′|/4π |r − r ′|, we often
need to compute integrals of oscillatory type in
electromagnetic scattering simulations[1,2,3,4,5]:

I =
∫∫

S
f (k, r ′)eikg(k,|r−r ′|)d2r ′ (1)

where S denotes the surface of the object,k is
wavenumber of the incident wave,r andr ′ are vectors of
the field point and source point,f (k, r ′) is called the
amplitude function, andg(k, |r − r ′|) (generated from the
Green function) is called the phase function. For example,
when estimating the RCS of a perfect electrical conductor
using the physical optics method, the integral to be
calculated can be abstracted as[1]

Ipo =
∫∫

Slit

k̂ · n̂(r ′)ei2k·r ′ds, (2)

whereSlit is the lit region,k is the wavenumber vector,k̂
is the unit vector ofk, r ′ is the vector of a point on the
surface, and̂n(r ′) is the outward normal vector atr ′. It
is noted that for different scattering analysis method we
shall have different expressions of the amplitude function
and phase function.

For scattering problems at high frequencies (largek),
this kind of integral is generally very difficult to calculate
with conventional quadrature methods such as the
Simpson quadrature and Gauss quadrature[6], so efforts
have been made in the past decades to find rapid
calculation routines for them[7,8]. In [9,10,11,12] Li et
al. proposed a delaminating quadrature method to
calculate multi-dimensional highly oscillatory integrals
based on rectangular integration regions. But in practise
we often have to handle oscillatory integral over
fan-shaped integration regions. This paper concerns the
scattering oscillatory integrals over fan-shaped regions,
and proposes a new rapid calculate routine for them.

2 New routine to calculate scattering
oscillatory integrals over fan-shaped regions

2.1 Scattering Oscillatory Integrals Over
Fan-shaped Regions

The scattering oscillatory integral over a fan-shaped
integration region[θ−,θ+]× [0,R] can be written as

I =
∫ R

0

∫ θ+

θ−
f (θ ,ρ)eikg(θ ,ρ)dρdθ . (3)
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For simplicity the variablek in the amplitude function and
phase function has been omitted since it remains constant
for a fixed incident wave. Of course, a general fan-shaped
region[θ−,θ+]× [0,R(θ)] can also be transformed to the
above integration region if the coordinate transformation
ρ = R(θ)ρ ′ is used, so this paper pays the main attention
on the calculation of oscillatory integral as shown in (3).
In addition, the phase function in a scattering problem is
generated from the Green function

G(r , r ′) = eik|r−r ′|/4π |r − r ′|. In this sense,ρ = 0
corresponds to the case that the source pointr ′ coincides
with the local coordinate origin, and then the phase
functiong(θ ,0) will remain constant for differentθ .

2.2 The Impact of Critical Points

It is also noted that the critical points (stationary point
and resonant point) have to be carefully handled when
calculating oscillatory integrals with the delaminating
quadrature[9]. A resonant point (also called the boundary
critical point) is a point where the gradient of phase
function (∇g(θ ,ρ) = ( 1

ρ
∂g(θ ,ρ)

∂θ , ∂g(θ ,ρ)
∂ρ ) is orthogonal to

the boundary, and a stationary point (also called the inner
critical point) is a point where the gradient of phase
function vanishes. As analyzed in [9], the delaminating
quadrature method works well for oscillatory integrals
with critical points on the vertices of the integration
regions since the Chebyshev spectral method samples
densely around the vertices. In this sense, if critical point
is involved, the division of integration region is proposed
to make the critical points locate on the vertices. Fig.1
presents the schemes of region division with respect to
the locations of the critical points.

1.the case free of critical point (see Fig.1(a)): no region
division is required for this case.

2.the case with a resonant point on the arc (see Fig.1(b)):
in this case, the original fan-shaped region is divided
into two fan-shaped regions (I and II).

3.the case with a resonant point on the radius (see
Fig. 1(c)): in this case the region is divided into a
fan-shaped region (I) and a wedge (II).

4.the case with a stationary point (see Fig.1(d)): in this
case the original region is divided into two fan-shaped
regions (I and II) and two wedges (III and IV).

5.the case with multiple critical points: combination of
the above division scheme is proposed in this case.

After the division, the critical points are all located on the
vertices of the subregions, and each subregion is free of
inner and boundary critical point(s). Since the
delaminating quadrature method works well for
oscillatory integral over wedge regions, the following
section pays the main attention on the fan-shaped regions
(region I for case 1, regions I and II for case 2, region I
for case 3, regions I and II for case 4).

(a) The case free of critical
point

I

II

(b) The case with a resonant
point on the arc

I

II

(c) The case with a resonant
point on the radius

I

II

III
IV

(d) The case with a stationary
phase point

Fig. 1: Sub-division of the integration region.

2.3 New calculation routine

Without lose of generality, we study integral (3). We first
study the integration about variableρ . According to the
Levin method, it can be reduced to finding a function
p(θ ,ρ) to satisfy the following differential equation[9]:

∂ p(θ ,ρ)eikg(θ ,ρ)

∂ρ
= f (θ ,ρ)eig(θ ,ρ), (4)

which is equivalent to

p′ρ(θ ,ρ)+ ikg′ρ(θ ,ρ))p(θ ,ρ) = f (θ ,ρ). (5)

Substituting (5) or (4) into (3) gives

I =
∫ θ+

θ−
p(θ ,R)eikg(R,θ)dθ −

∫ θ+

θ−
p(θ ,0)eikg(θ ,0)dθ

, I1− I2.
(6)

Therefore the original bivariate oscillatory integral is
transformed into two univariate oscillatory integrals.
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In (6) the first integralI1 can be calculated with the
improved Levin method proposed in [12,9], but the
second one (I2) is a little special. As mentioned in section
2.2, the phase functiong(θ ,0) in scattering analysis
remains constant for different values ofθ . In this sense,
the integralI2 is in fact not an oscillatory integral, and the
factor eikg(θ ,0) can be directly extracted from the integral:

I2 = eikg(θ ,0)
∫ θ+

θ−
p(θ ,0)dθ . (7)

This integral is non-oscillatory, so it can be efficiently
calculated with a conventional quadrature method such as
the Gauss integration rule[6], and then the integral
I = I1− I2 is obtained.

The detailed procedures of this routine are as follows:

1.Solve the differential equaiton (5): At a given sample
of θ : θn = θ+−θ−

2 cosnπ
Nθ

+ θ++θ−
2 ,n = 0,1, . . . ,Nθ ,

we can solve the differential equation (5) using the
Chebyshev spectral method to get the unknown
function values p(θ ,ρ) at giving radius samples
(ρm = R

2 (cosmπ
Nρ

+1),m = 0,1, . . . ,Nρ )[9]:

(
2
R

DNρ + ikGρ
n

)

Pn = Fn, (8)

whereDNρ is the Chebyshev differentiation matrix of

orderNρ , Fn =
[

f (θn,ρ0), f (θn,ρ1), . . . , f (θn,ρNρ )
]T

is a numerical vector related to the amplitude
function, Gρ

n is a diagonal matrix:

Gρ
n = diag

(

g′ρ(θn,ρ0),g′ρ(θn,ρ1), . . . ,g′ρ(θn,ρNρ )
)

,

and Pn =
[
p(θn,ρ0), p(θn,ρ1), . . . , p(θn,ρNρ )

]T
is a

numerical vector to be computed. For differentθn we
shall get differentPn from (8), and the combination of
them give a numerical matrixP=

{
P0,P1, . . . ,PNθ

}
.

2.Calculate the integralI1: The calculation ofI1 can be
reduced to solving the following system of linear
equations[9]:

(
2

θ+−θ− DNθ + ikGθ
R

)

Q = P+, (9)

whereDNθ is the Chebyshev differentiation matrix of

order Nθ , Q =
[
q(θ0,R),q(θ1,R), . . . ,q(θNθ ,R)

]T
is

an unknown numerical vector,Gθ
R is a diagonal

matrix:
Gθ

R = diag
(
g′θ (θ0,R),g′θ (θ1,R), . . . ,g′θ (θNθ ,R)

)
, and

P+ is the transpose of the first row of matrixP. When
the unknown numerical vectorQ is calculated from
(9), the integralI1 in (6) is obtained as

I1 = Q0eikg(θ+,R)−QNθ−1eikg(θ−,R). (10)

3.Since we have obtained the function values ofp(θ ,0)
at Chebyshev-Lobatto nodes

(p(θn,0),n = 0,1, . . . ,Nθ ), we shall calculate the
integralI2 with the Gauss-Chebyshev integration rule
of the second kind[13]. However, the
Gauss-Chebyshev quadrature omits the function
values at the endpoints, so its accuracy is generally
not satisfactory for a integral with non-zero integrand
at the endpoints. In order to improve the accuracy of
integration, we transform the above integral as
follows:

I2 = eikg(θ ,0)
{∫ θ+

θ−
[p(θ ,0)−h(θ)]dθ +

∫ θ+

θ−
h(θ)dθ

}

, eikg(θ ,0)







∫ θ+

θ−
κ(θ)dθ

︸ ︷︷ ︸

I′2

+
∫ θ+

θ−
h(θ)dθ

︸ ︷︷ ︸

I′′2







.

(11)
whereh(θ) = p(θ−,0)+ p(θ+,0)−p(θ−,0)

θ+−θ− (θ −θ−) is a
linear function connecting the two endpoints
((θ−, p(θ−,0)) and (θ+, p(θ+,0))). In (11) the
integrand κ(θ) = p(θ ,0) − h(θ) vanishes at each
endpoint, so the Gauss-Chebyshev integration will be
very accurate for it.
(a)Calculation of integralI′2: We first employ the

coordinate transformation θ = θ+−θ−
2 t to

transform the integration interval to a standard
one:

I′2 =
θ+−θ−

2

∫ 1

−1
κ(

θ+−θ−

2
t)dt,

and then applying the Gauss-Chebyshev
integration rule to the integral gives

I′2 =
θ+−θ−

2

∫ 1

−1

√

1− t2

{

κ( θ+−θ−
2 t)√

1− t2

}

dt

≈ θ+−θ−

2

Nθ−1

∑
n=1

wn
κ( θ+−θ−

2 tn)
√

1− tn2
.

Since the weights and nodes of Gauss-Chebyshev
quadrature of the second kind are known:
wn =

π
Nθ

sin2 nπ
Nθ

andtn = cosnπ
Nθ

, we have

wn
√

1− t2
n

=
π

Nθ
sin

nπ
Nθ

,n = 1,2, · · · ,Nθ −1.

The function valuesp( θ+−θ−
2 tn,0) have been

computed in (8), so the function value samples
κ( θ+−θ−

2 tn) = p( θ+−θ−
2 tn,0) − h( θ+−θ−

2 tn) are
easy to calculate, and then the integralI′′2 is
obtained.

(b)Calculation of integralI′′2 : The integralI′′2 can be
obtained in a closed form:

I′′2 =
[p(θ+,0)+ p(θ−,0)](θ+−θ−)

2
.
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Then the integral I2 is obtained as:
I2 = eikg(θ ,0)(I′2+ I′′2 ).

4.Finally, the target integral result is obtained asI = I1−
I2.

3 Numerical Examples

This section presents two numerical examples to test the
performance of the newly proposed method: an oscillatory
integral free of critical point and another one with critical
points.

3.1 Example 1

In this example we take the physical optics (PO)
approximation (2) to test the performance of the newly
proposed method. The RCS estimated by the PO
approximation follows

σPO=
k2 |I|2

π
, (12)

where the PO integralI =
∫∫

Slit
k̂ · n̂ei2k·r ′ds is an oscillatory

integral.
We consider a fan-shaped integration region as shown

in Fig. 2, and the target PO integral can then be rewritten
as

I =
∫ θ+

θ−

∫ R

0
ρ cosβei2kρ sinβ cos(θ−φ)dρdθ . (13)

Let φ = π/6, β = π/6, R = 3, θ− = −π/4, θ+ = π/6,
and 50 incident frequency samples range from 5GHz to
10GHz evenly. Under this situation, the integral is free of
critical point, and no region division is required.

During the calculation, the numbers of nodes used in
the calculation areNρ = Nθ = 25. The performance of the
proposed method is presented in Fig.3, which is a double
y-axis plot with the left side axis denoting the RCS and the
right side axis denoting the relative error of this approach.

From the results it is observed that the RCS obtained
by the new method coincides well with that of Gauss
quadrature, and the relative errors of the proposed method
are very small (O(10−5) or even smaller), so the new
method is very accurate for this example. At the same
time, the electrical size of the integration region isO(102)
at frequency 9GHz, so a conventional quadrature has to
useO(103) or more grids in each dimension to calculate
the mentioned PO integral accurately. But for the present
method, we can get very accurate result with only 25
nodes in each dimensional, so the new method is also
very efficient.

Fig. 2: Geometry relation for example 1.
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Fig. 3: Performances of the new method for scattering
oscillatory integral free of critical point.

3.2 Example 2

In this example, we study the performance of this method
for scattering oscillatory integrals with critical points.
Here the PO integral is also taken as the target oscillatory
integral, but the amplitude function is set to a more
complex one:

f (θ ,ρ) =(sinθ +cosθ)·

·
[

1+ ik(ρ +1)(
sinθ

2
+

√
3cosθ

2
−2

√
3ρ)

]

.

Assume the concerned surface is governed by a
function z = s(x,y) = 9− x2− y2 and which projects to a
fan-shaped integration region (see Fig.4). Let φ = π/6,
β = π/6, R = 2, θ− = −π/3, θ+ = 2π/5, and 50
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incident frequency samples range from 3GHz to 5GHz
evenly. Under this situation the phase function can be
rewritten as g(θ ,ρ) = 2(ρ cosθ sinβ cosφ +
ρ sinθ sinβ sinφ + cosβ · s(ρ cosθ ,ρ sinθ)), and there
are three critical points: a stationary phase point at
Ps = (θs,ρs) = (π

6 ,
√

3
6 ), a resonant point on the arc

P1
r = (θ 1

r ,ρ1
r ) = (π

6 ,ρ
1
r ), and a resonant point on the

radiusP2
r = (θ 2

r ,ρ2
r ) = (θ+, cosθ+

4 +
√

3sinθ+

12 ).

I

II

III

IV

V

VI

Fig. 4: Geometry relation for example 2.

In order to test the impact of critical points on the new
method, two calculation schemes are employed.

–Scheme 1: no region division is used, and the numbers
of nodes adopted in the calculation areNρ = Nθ = 50.

–Scheme 2: the integration region is divided into six
sub-regions as shown in Fig.4 (I, II, III, IV, V, VI),
and the numbers of nodes used areNρ = Nθ = 25,
which are half of those in scheme 1.

The results are presented in Fig.5 with the left side axis
denoting the magnitude of integral|I| and the right side
axis denoting the corresponding relative errors.

From Fig.5 it is observed that if no region division is
adopted (scheme 1), the magnitude of integral (◦) does
not coincide with the result of Gauss quadrature (——)
and the relative error is aboutO(1), so the accuracy of
this scheme is very poor. However, if the division of
integration region is adopted (scheme 2), the method can
get very accurate integral results even if only small
number of nodes are used (the magnitude of integral (•)
well coincides with the result of Gauss quadrature (——),
and the the relative errors are aboutO(10−6)). This
phenomenon indicates that, if the division of integration
region is employed, the new method can also work well
for scattering oscillatory integrals with critical points.
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Fig. 5: Performances of the new method for scattering
oscillatory integral with critical points.
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