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Abstract: In this paper, we aim at establishing certain integral transform and fractional integral formulas for the generalized Gauss
hypergeometric functions, which was introduced and studied byÖzerginet al. [J. Comput. Appl. Math. 235(2011), 4601-4610]. All the
results derived here are of general character and can yield a number of (known and new) results in the theory of integral transforms and
fractional integrals.
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1 Introduction

Recently, a function has attracted many researchers’
attention due mainly to diverse applications, which are
more general than the Beta type functionB(x,y),
popularly known as generalized Beta type functions.
These functions, as a part of the theory of confluent
hypergeometric functions, are important special functions
and their closely related ones are widely used in physics
and engineering, therefore, they are of interest to
physicists and engineers as well as mathematicians.
Morover, generalized Beta functions [7,8] have played a
pivotal role in the advancement of further research and
have proved to be exemplery in nature.

Recently,Özergin et al. [14] introduced and studied
some fundamental properties and characteristics of the

generalized Beta type functionB(α ,β )
p (x,y) in their paper

and defined by (see,e.g., [14, p. 4602, Eq.(4)]; see also,
[13, p.32, Chapter 4.]):

B(α ,β )
p (x,y) =

∫ 1

0
tx−1 (1− t)y−1

1F1

(

α;β ;
−p

t (1− t)

)

dt,

(1)

(ℜ(p)> 0(ℜ(x),ℜ(y),ℜ(α),ℜ(β ))> 0

and B(α ,β )
0 (x,y) = B(x,y)),

whereB(x,y) is a well known Euler’s Beta function
defined by:

B(x,y) =
∫ 1

0
tx−1(1− t)y−1dt (ℜ(x)> 0,ℜ(y)> 0). (2)

Along with, generalized Beta function (1), Özerginet
al. introduced and studied a family of the following
potentially useful generalized Gauss hypergeometric
functions defined as follows (see,e.g., [14, p. 4606,
Section 3.]; see also, [13, p.39, Chapter 4.]):

F(α ,β )
p (a,b;c;z) =

∞

∑
n=0

an
B(α ,β )

p (b+n,c−b)
B(b,c−b)

zn

n!

(|z|< 1), (3)

where min(ℜ(α), ℜ(β )) > 0;ℜ(c) > ℜ(b) > 0 and
ℜ(p)≥ 0.
Indeed, in their special case whenp = 0, the function

F(α ,β )
p (a,b;c;z) would reduce immediately to the

extensively-investigated Gauss hypergeometric function
2F1(.). The 2F1(.) is the special case of the well known
generalized hypergeometric seriespFq(.) defined by (see,
e.g., [21, Section 1.5]; see also, [22]):

pFq

[

α1, . . . , αp ;
β1, . . . , βq ; z

]

=
∞

∑
n=0

(α1)n · · ·(αp)n

(β1)n · · ·(βq)n

zn

n!

= pFq(α1, . . . , αp; β1, . . . , βq; z), (4)
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where (λ )n is the Pochhammer symbol defined (for
λ ∈ C) by (see [21, p. 2 and pp. 4–6]):

(λ )n =

{

1 (n= 0)
λ (λ +1) . . .(λ +n−1) (n∈ N)

=
Γ (λ +n)

Γ (λ )
(λ ∈ C\Z−

0 ), (5)

andZ−
0 denotes the set of nonpositive integers.

The above-mentioned detailed and systematic
investigation byÖzergin [13] (see also,[14]) was indeed
motivated largely by the demonstrated potential for
applications of the generalized Gauss hypergeometric

function F(α ,β )
p and their special cases in many diverse

areas of mathematical, physical, engineering and
statistical sciences (see, for details,[13] and the references
cited therein). Several further properties of the
generalized Gauss hypergeometric functions and
generating functions associated with them can be found in
the subsequent developments presented in (see, for
example, [13] and [6]). In the present sequel to these
recent works, we propose to derive several integral
transforms and image formulas for the generalized Gauss

hypergeometric functionF(α ,β )
p by applying a certain

integral transforms (like, Beta transform, Laplace
transform and Whittaker transforms) and the general pair
of fractional integral operators involving Gauss
hypergeometric function2F1, respectively, which we
introduce in Sections 2 and 3 respectively, below. We also
consider some interesting special cases and consequences
of our main results.

2 Integral Transform of the Generalized
Gauss Hypergeometric Functions

In this section, we shall prove three theorems, which
exhibit the connection between the integral transforms
like Euler transform, Laplace transform and Wittaker
transforms and the generalized Gauss hypergeometric

type functionsF(α ,β )
p (a,b;c;z) given by equation (3).

Theorem 1.The following Beta transform formula hold
true:

B
{

F(α ,β )
p (l +m,b;c;yz) : l ,m

}

= B(l ,m)
∞

∑
n=0

ln
B(α ,β )

p (b+n,c−b)
B(b,c−b)

yn

n!

= B(l ,m)F(α ,β )
p (l ,b;c;y) (6)

(ℜ(p)≥ 0;l ,m∈ C; |y|< 1) ,

where the Beta transform of f(z) is defined as [19]:

B{ f (z) : a,b}=
∫ 1

0
za−1(1−z)b−1 f (z)dz. (7)

Proof.On using the definition (7) and applying (3) to the
Euler (Beta) transform of (6), we get

∫ 1

0
zl−1(1−z)m−1F(α ,β )

p (l +m,b;c;yz)dz

=

∫ 1

0
zl−1(1−z)m−1

∞

∑
n=0

(l +m)n×

B(α ,β )
p (b+n,c−b)

B(b,c−b)
(yz)n

n!
dz. (8)

By change the order of integration and summation and
using Beta integral, we get

∫ 1

0
zl−1(1−z)m−1F(α ,β )

p (l +m,b;c;yz)dz

=
∞

∑
n=0

(l +m)n
B(α ,β )

p (b+n,c−b)
B(b,c−b)

Γ (l +n)Γ (m)

Γ (l +m+n)
(y)n

n!
,

=
Γ (l)Γ (m)

Γ (l +m)

∞

∑
n=0

(l)n
B(α ,β )

p (b+n,c−b)
B(b,c−b)

(y)n

n!
, (9)

which, upon using (3), yields our desired result (6). This
completes the proof of Theorem 1.

Theorem 2.If ℜ(s)> 0,ℜ(p)≥ 0
and| y

s|< 1 then:

L
{

zl−1F(α ,β )
p (a,b;c;yz)

}

=
Γ (l)

sl 1F(α ,β )
p

(

a, l ,b;c;
y
s

)

,

(10)

where the Laplace transform of f(z) is defined as
(see,[19]):

L{ f (z)}=
∫ ∞

0
e−szf (z)dz, (11)

provided that both sides of above result exist.

Proof.On using the definition (11) and applying (3), we get
∫ ∞

0
zl−1e−szF(α ,β )

p (a,b;c;yz)dz

=
∫ ∞

0
zl−1e−sz

∞

∑
n=0

(a)n
B(α ,β )

p (b+n,c−b)
B(b,c−b)

(yz)n

n!
dz. (12)

By change the of order of integration and summation and
using Laplace transform, we get

∫ ∞

0
zl−1e−szF(α ,β )

p (a,b;c;yz)dz

=
∞

∑
n=0

(a)n
B(α ,β )

p (b+n,c−b)
B(b,c−b)

Γ (l +n)
sl+n

(y)n

n!
, (13)

which, upon using (3), yields our desired result (10).
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Theorem 3.If ρ ,δ ∈ C, ℜ(p) ≥ 0 and |w
δ | < 1, then the

following Whittaker transform formula hold true:

∫ ∞

0
tρ−1e−δ t/2Wλ ,µ(δ t)F(α ,β )

p (a,b;c;wt)dt

= δ−ρ Γ (1
2 +µ +ρ)Γ (1

2 −µ +ρ)
Γ (1−λ +ρ)

×

2F(α ,β )
p,1

(

a,
1
2
+µ +ρ ,

1
2
−µ +ρ ,b;c,1−λ +ρ ;

w
δ

)

,(14)

where, it being assumed that the member of the Whittaker
transform exist.

Proof.Substitutingδ t = ν in LHS of (14), we get

∫ ∞

0

(ν
δ

)ρ−1
e−ν/2Wλ ,µ(ν)

∞

∑
n=0

(a)n
B(α ,β )

p (b+n,c−b)
B(b,c−b)

×

(wν)n

δ n δ n!
dν .

By change the of order of integration and summation,
we get

= δ−ρ
∞

∑
n=0

(a)n
B(α ,β )

p (b+n,c−b)
B(b,c−b)

×

wn

δ nn!

∫ ∞

0
νρ+n−1e−ν/2Wλ ,µ(ν)dν . (15)

Now, we use the following integral formula involving
the Whittaker function

∫ ∞

0
tν−1e−t/2Wλ ,µ(t)dt

=
Γ (1

2 +µ +ν)Γ (1
2 −µ +ν)

Γ (1
2 −λ +ν)

, (16)

(

ℜ(ν ±µ)>−
1
2

)

then equation (15) becomes in the following

= δ−ρ
∞

∑
n=0

(a)n
B(α ,β )

p (b+n,c−b)
B(b,c−b)

wn

δ nn!
×

Γ (1
2 +µ +ρ +n)Γ (1

2 −µ +ρ +n)

Γ (1−λ +ρ +n)
, (17)

which, upon using (3), yields our desired result (14). This
completes the proof of Theorem 3.

3 Fractional Calculus of the Generalized
Gauss Hypergeometric Functions

In view their importance and popularity in recent years,
the theory of operators of fractional calculus has been

developed widely and extensively (see, for example, [1-5,
9-12, 15-18; see also [20]). Here, in this section, we shall
establish six fractional integral formulas for the
generalized Gauss hypergeometric type functions

F(α ,β )
p (a,b;c;z). The results are given in the form of the

theorems and corollaries. The first two theorems are
derived and then the remaining four results are deduced
as their corollaries. For the purpose of these results, we
use the following pair of Saigo hypergeometric operators
of fractional integration.

For x> 0, µ ,ν ,η ∈ C andℜ(µ)> 0, we have:
(

I µ ,ν ,η
0,x f (t)

)

(x) =
x−µ−ν

Γ (µ)

∫ x

0
(x− t)µ−1×

2F1 (µ +ν ,−η ; µ ;1− t/x) f (t)dt, (18)

(

Jµ ,ν ,η
x,∞ f (t)

)

(x) =
1

Γ (µ)

∫ ∞

x
(t −x)µ−1 t−µ−ν ×

2F1 (µ +ν ,−η ; µ ;1−x/t) f (t)dt, (19)

where, the2F1(.) function occurring in the right-hand side
of the above equations, is the special case of the well
known generalized hypergeometric seriespFq(.) is given
by (4).

The operator I µ ,ν ,η
0,x (.) contains both the

Riemann-Liouville and the Erd ´elyi-Kober fractional
integral operators, by means of the following
relationships:

(

Rµ
0,x f (t)

)

(x) =
(

I µ ,−µ ,η
0,x f (t)

)

(x)

=
1

Γ (µ)

∫ x

0
(x− t)µ−1 f (t)dt, (20)

and
(

Eµ ,η
0,x f (t)

)

(x) =
(

I µ ,0,η
0,x f (t)

)

(x)

=
x−µ−η

Γ (µ)

∫ x

0
(x− t)µ−1 tη f (t)dt, (21)

where as the operator (19) unifies the Weyl type and the
Erdélyi-Kober fractional integral operators. Indeed we
have:
(

Wµ
x,∞ f (t)

)

(x) =
(

Jµ ,−µ ,η
x,∞ f (t)

)

(x)

=
1

Γ (µ)

∫ ∞

x
(t −x)µ−1 f (t)dt, (22)

and
(

Kµ ,η
x,∞ f (t)

)

(x) =
(

Jµ ,0,η
x,∞ f (t)

)

(x)

=
xη

Γ (µ)

∫ ∞

x
(t −x)µ−1 t−µ−η f (t)dt. (23)

In the sequel, we shall be using the following image
formulas which are easy consequences of the operators
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(18) and (19) ([16,18]):
(

I µ ,ν ,η
0,x tλ−1

)

(x) =
Γ (λ )Γ (λ −ν +η)

Γ (λ −ν) Γ (λ +µ +η)
×

xλ−ν−1 (λ > 0,λ −ν +η > 0), (24)

and

(

Jµ ,ν ,η
x,∞ tλ−1

)

(x) =
Γ (ν −λ +1) Γ (η −λ +1)

Γ (1−λ ) Γ (ν +µ −λ +η +1)
×

xλ−ν−1 (β −λ +1> 0,η −λ +1> 0).

(25)

The Saigo fractional integrations of generalized Gauss
hypergeometric type functions (3), are given by the
following results:

Theorem 4.Let µ ,ν ,η ,ρ ∈ C and x> 0 be such that
ℜ(µ) > 0,ℜ(p) ≥ 0,ℜ(ρ) > 0 and ℜ(ρ) >
max[0,R(ν −η)] , then:
(

I µ ,ν ,η
0,x

[

tρ−1F(α ,β )
p (a,b;c;et)

])

(x)

= xρ−ν−1 Γ (ρ)Γ (ρ −ν +η)
Γ (ρ +µ +η)Γ (ρ −ν)

×

2F(α ,β )
p,2

[

a,b,ρ ,ρ −ν +η ;

c,ρ −ν ,ρ +µ +η ;
ex

]

. (26)

Proof.For convenience sake, we denote the left-hand side
of the result (26) by I . Using definition (3), and then
changing the order of integration and summation, which
is valid under the condition of Theorem 4, we find that

I =

(

I µ ,ν ,η
0,x

[

tρ−1
∞

∑
n=0

an
B(α ,β )

p (b+n,c−b)
B(b,c−b)

(et)n

n!

])

(x)

=
∞

∑
n=0

an
B(α ,β )

p (b+n,c−b)
B(b,c−b)

en

n!

(

I µ ,ν ,η
0,t

{

tρ+n−1}
)

(x).

(27)

Now, on making use of result (24), we obtain

I = xρ−ν−1
∞

∑
n=0

an
B(α ,β )

p (b+n,c−b)
B(b,c−b)

×

Γ (ρ +n)Γ (ρ −ν +η +n)
Γ (ρ −ν +n)Γ (ρ +µ +η +n)

(ex)n

n!
. (28)

This, in accordance with definition (3), gives the
required result (26).

Theorem 5.Let µ ,ν ,η ,ρ ∈ C, x > 0 and satisfying the
inequalities ℜ(µ) > 0,ℜ(p) ≥ 0,ℜ(ρ) > 0,ℜ(ρ) <
1+min{ℜ(η),ℜ(ν)} , then:

(

Jµ ,ν ,η
x,∞

[

tρ−1F(α ,β )
p

(

a,b;c;
e
t

)])

(x)

= xρ−ν−1 Γ (1−ρ +ν)Γ (1−ρ +η)
Γ (1−ρ)Γ (1−ρ −η +ν +µ)

×

2F(α ,β )
p,2

[

a,b,1−ρ +ν ,1−ρ +η ;

c,1−ρ ,1−ρ +µ +ν −η ;
e
x

]

. (29)

Proof.Proceeding as in Theorem 4, and taking operator
(19) and result (25) into account, one can easily prove the
above theorem. Therefore, we omit the details of the
proof of this theorem.

Interestingly, on settingν = 0 and employing the
relations (21) and (23), the Theorems 4. and 5. yields to
the following corollaries.

Corollary 1.Let µ ,η ,ρ ∈ C and x> 0 be such that
ℜ(µ) > 0,ℜ(p) ≥ 0,ℜ(ρ) > 0 and ℜ(ρ) > R(−η),
then the rigt-side Erd́elyi-Kober fractional integrals of the
generalized Gauss hypergeometric type functions are
given by:

(

Eµ ,η
0,x

[

tρ−1F(α ,β )
p (a,b;c;et)

])

(x)

= xρ−1 Γ (ρ −η)
Γ (ρ +µ +η)1F(α ,β )

p,1

[

a,b,ρ −η ;

c,ρ +µ +η ;
ex

]

. (30)

Corollary 2.Let µ ,η ,ρ ∈ C, x > 0 and satisfying the
inequalities
ℜ(µ)> 0,ℜ(p)≥ 0,ℜ(ρ)> 0,ℜ(ρ)< 1+ℜ(η), then:

(

Kµ ,η
x,∞

[

tρ−1F(α ,β )
p

(

a,b;c;
e
t

)])

(x)

= xρ−1 Γ (1−ρ +η)
Γ (1−ρ −η +µ)1F(α ,β )

p,1

[

a,b,1−ρ +η ;

c,1−ρ +µ −η ;
e
x

]

.

(31)

Further, if we replaceν by −µ and make use of the
relations (20) and (22), in the Theorems 4. and 5., we
obtain yet another corollaries providing
Riemann-Liouville and Weyl fractional integrals of the

generalized Gauss hypergeometric type functionF(α ,β )
p ,

as follows:

Corollary 3.Let µ ,ρ ∈ C and x> 0, such thatℜ(µ) >
0,ℜ(p)≥ 0,ℜ(ρ)> 0, then:

(

Rµ
0,x

[

tρ−1F(α ,β )
p (a,b;c;et)

])

(x)

= xρ+µ−1 Γ (ρ)
Γ (ρ +µ)1F(α ,β )

p,1

[

a,b,ρ ;

c,ρ +µ ,;
ex

]

. (32)
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Corollary 4.Let µ ,ρ ∈ C, x > 0 and satisfying the
inequalitiesℜ(µ)> 0,ℜ(p)≥ 0,ℜ(ρ)> 0, then:

(

Wµ
x,∞

[

tρ−1F(α ,β )
p

(

a,b;c;
e
t

)])

(x)

= xρ+µ−1Γ (1−ρ −µ)
Γ (1−ρ) 1F(α ,β )

p,1

[

a,b,1−ρ −µ;

c,1−ρ ,;
e
x

]

. (33)

4 Concluding Remarks

In this section, we consider some consequences of the
main results derived in the preceding sections. If we set
α = β in (26) and (29) respectively, then by the known
formula due to Chadudharyet al. (see, e.g., [8]), the
Theorems 4. and 5. yields to the following corollaries:

Corollary 5.Let µ ,ν ,η ,ρ ∈ C and x> 0 be such that
ℜ(µ) > 0,ℜ(p) ≥ 0,ℜ(ρ) > 0 and ℜ(ρ) >
max[0,R(ν −η)] , then:
(

I µ ,ν ,η
0,x

[

tρ−1Fp (a,b;c;et)
]

)

(x)

= xρ−ν−1 Γ (ρ)Γ (ρ −ν +η)
Γ (ρ +µ +η)Γ (ρ −ν)

2Fp,2

[

a,b,ρ ,ρ −ν +η ;

c,ρ −ν ,ρ +µ +η ;
ex

]

. (34)

Corollary 6.Let µ ,ν ,η ,ρ ∈ C, x > 0 and satisfying the
inequalitiesℜ(µ) > 0,ℜ(p) ≥ 0,ℜ(ρ) > 0,ℜ(ρ) < 1+
min{ℜ(η),ℜ(ν)}, then:

(

Jµ ,ν ,η
x,∞

[

tρ−1Fp

(

a,b;c;
e
t

)])

(x)

= xρ−β−1 Γ (1−ρ +ν)Γ (1−ρ +η)
Γ (1−ρ)Γ (1−ρ −η +ν +µ)

2Fp,2

[

a,b,1−ρ +ν ,1−ρ +η ;

c,1−ρ ,1−ρ +µ +ν −η ;
e
x

]

, (35)

which are also believe to be new.
Furthermore, if we setp = 0 then, or make use of

result (3), Theorems 1 to 5 yield the various integral
transforms and fractional integral formulas for the
generalized hypergeometric function2F1.

The generalized Gauss hypergeometric type functions
defined by (3), possess the advantage that most of the
known and widely-investigated special functions are
expressible also in terms of the generalized Gauss

hypergeometric functionsF(α ,β )
p (for some interesting

examples and applications, see [13, Chapter 3 and 5 ]).
Therefore, we conclude this paper with the remark that,
the results deduced above are significant and can lead to
yield numerous other integral transforms and fractional
integral formulas involving various special functions by
the suitable specializations of arbitrary parameters in the
theorems. More importantly, they are expected to find

some applications in probability theory and to the
solutions of fractional differential and integral equations.
The results thus derived in this paper are general in
character and likely to find certain applications in the
theory of special functions.
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