
Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) 2251

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080520

HFM: Hybrid File Mapping Algorithm for SSD Space
Utilization
Jaechun No1,∗, Soo-Mi Choi1, Sung-Soon Park2 and Cheol-Su Lim3

1 College of Electronics and Information Engineering, Sejong University,98 Gunja-dong, Gwangjin-gu, 143-747, Seoul, Korea
2 Dept. of Computer Engineering, Anyang University and Gluesys Co. LTD, Anyang 5-dong, Manan-gu, Anyang, 430-714, Korea
3 Dept. of Computer Engineering, Seokyeong University, 16-1 Jungneung-dong, Sungbuk-gu, 136-704, Seoul, Korea

Received: 23 Aug. 2013, Revised: 20 Nov. 2013, Accepted: 21 Nov. 2013
Published online: 1 Sep. 2014

Abstract: Although the technology of flash memory is rapidly improving, SSD usage isstill limited due to the high cost per storage
capacity. An alternative is to construct the hybrid structure where a smallSSD partition is combined with the large HDD partition, to
expand the file system space to HDD storage capacity while exploiting the performance advantage of SSD. In such a hybrid structure,
increasing the space utilization of SSD partition is the critical aspect in generating high I/O performance. In this paper, we present HFM
(Hybrid File Mapping) that has been implemented for the hybrid file system integrated with SSD. HFM enables to divide SSD partition
into several, logical data sections with each composed of the different extent size. To minimize fragmentation overhead, HFM defines
three different ways of partitioning functions based on the extent size ofeach data section. Furthermore, file allocations on the extent
are performed on the partitioned unit (segment) of extents to reuse the remaining free space as much as possible. The experimental
result of HFM using three public benchmarks shows that HFM can be effective in increasing the usage of SSD partition and enables to
contribute to provide better I/O throughput.

Keywords: Hybrid file mapping, partitioning function, map function, map table, allocationunit

1 Introduction

Many file systems have been developed for the purpose of
optimizing the moving overhead of HDD disk arms in I/O
operations. However, as the new technologies, such as
SSD (Solid State Device), are rapidly improved, the file
system research for integrating those technologies into the
storage capacity has become received the great attention
because they possess the promising performance
characteristics to satisfy the need of commercial
applications. Especially, SSD that uses flash memory as
the storage medium is considered the next-generation
storage device, due to its advantages such as high random
I/O speed and non-volatility[1].

Although SSD reveals the peculiar device
characteristics that do not take place in HDD, such as
wear-leveling and block erasure [4,13], several researches
to overcome those obstacles have been performed either
by implementing FTL (Flash Translation Layer)[14,21],
or by implementing flash-specific file systems[9,39].
However, the major impediment in utilizing the
performance advantage of SSD for constructing the

large-scale storage space with only SSD still remains,
which is the high ratio of cost per capacity as compared to
that of HDD[31,36].

An alternative for solving the problem is to provide
the hybrid file system space in which both HDD and SSD
partitions are integrated in a single, virtual file system
address space in the cost-effective way. In the hybrid
structure, the major consideration is to maximize the
space utilization of SSD partition while efficiently
arranging SSD address space to generate the better I/O
bandwidth.

In this paper, we present the hybrid file mapping
method, called HFM (Hybrid File Mapping), where the
file system space is provided by constructing the hybrid
structure with HDD and SSD partitions. To maximize the
space utilization of SSD partition, HFM supports the
capability of dividing the address space of SSD partition
into multiple, logical data sections with each composed of
the different I/O unit (extent). The mapping between files
and data sections can be performed by considering the file
access characteristics including file size or usage.

∗ Corresponding author e-mail:jano@sejong.ac.kr

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080520

2252 J. No et. al. : HFM: Hybrid File Mapping Algorithm for SSD Space Utilization

Furthermore, such a file mapping can be changed without
affecting the directory hierarchy.

In order to reduce the fragmentation overhead in
providing the elastic extent size, file allocations in the
data section are performed in the units of segments
consisting of extents, which enables to reuse extents
containing the remaining free space as much as possible.
By evaluating HFM with three public benchmarks
including TPC-C, PostMark, and IOzone, we tried to
show the effectiveness of HFM in generating high I/O
performance. This paper is organized as follows: In
section 2, several researches related to SSD and file
systems are presented. The detailed structure of HFM is
described in section3. In section 4, the experimental
results using the benchmarks are presented. Finally, we
conclude in section5.

2 Related Studies

The SSD uses NAND flash memory for the storage
medium. Each flash memory is composed of a set of
blocks that are the erase units[1,2,22,35] and again a
block is consisted of a set of pages that are IO units. The
flash memory only allows erase-write-once behavior.
Therefore, to update to the same location, a free block is
selected and then the new data is written to the block,
along with copying the live data in the original block. The
original block is erased for the block reclamation. As
blocks are involved in the erase operations they become
worn out and also the lifetime of a flash block for which it
guarantees data reliability is limited (100K for SLC and
10K for MLC)[27]. As a result, evenly distributing the
erase-write cycles among flash blocks is the critical issue
in SSDs, which is called wear-leveling[13,37].

The wear-leveling is deeply related to the logical to
physical address mapping since the block worn-out
depends on how often each block is used for writing data.
In general, there are two kinds of address mappings to
convert the logical addresses to physical addresses:
page-level mapping and block-level mapping. Although
the address translation speed of the page-level mapping is
faster than that of block-level mapping, it suffers from the
large memory requirement to store the map table. On the
other hand, the block-level mapping suffers from the slow
translation speed due to the page-copy operation[29,40].

To overcome the disadvantages of both mappings,
several hybrid address translations were proposed. In the
log block-based mapping[21], a few number of log blocks
are reserved to collect flash pages. When all the log
blocks are exhausted, the pages in the log blocks are
merged with the corresponding data blocks. However, the
log block-based mapping can suffer from the low space
utilization due to the limited number of log blocks,
resulting in the frequent write and erase operations.

The fully-associative section translation[25] tried to
solve the low space utilization by eliminating the concept
of dedicating each log block to a specific data block. The

log block can be used by pages belonging to any data
blocks so that the merge with the data block can be
delayed to reduce the write and erase costs. However, if
the pages in the log block belong to the different data
blocks, then the method can cause the significant erase
operations to merge with the data blocks.

Another way of increasing the space utilization of log
blocks is to group data blocks into N data groups and also
to provide K log blocks at maximum for each data group.
The merge operation between pages in the log block and
original data blocks takes place in the dedicated data
group[29]. Chiang et al. also proposed data clustering
algorithm where data blocks are divided into several
regions based on the write access frequency[5]. When a
data block is updated, it moves to the upper region. On
the other hand, if a segment is selected for cleaning, then
all the valid blocks in the segment are copied into the
lower region. Therefore, the separation between hot data
and cold data can be done to reduce the erase operations.

Wu et al. proposed the adaptive flash translation layer
where the page-level mapping and the block-level
mapping are used according to the recentness[40]. The
page-level mapping is used for the most recently used
pages. Since the size of the page-level mapping table is
limited, some least recently used pages are moved to the
block-level mapping by using LRU list. Also, the
dual-pool algorithm proposed by Chang and Du manages
data blocks based on the erase count and prevents the old
block from being involved in the block reclamation[4].

Also, there were several researches related to the
write behavior of SSD. For example, Rajimwale et al.
found that the write amplification can be reduced by
merging and aligning data to stripe sizes[33]. However,
since the related information, such as SSD stripe size, is
rarely available to file systems, delegating the block
management to SSD and exposing the object-oriented
interface, such as OSD[11,12], to file system might be
effective.

Birrell et al. proposed a way of improving random
writes on flash disks, by introducing the volatile data
structures[3]. They tested several UFDs (USB Flash
Disks) while varying the distance between consequent
writes and found that several UFDs deploy the
performance degradation with far distance between writes
due to read-modify-write to the new flash location. They
proposed the volatile data structures and algorithms to
mitigate such an overhead in random writes.

Besides implementing the sophisticated method in
FTL, several researches tried to find a way of reducing
write and erase costs by rearranging data before passing
them to FTL. Most of such researches were to provide
LRU list to keep the frequently referenced pages in the
buffer since those pages will likely to be used soon. Due
to the limited buffer space, the least referenced pages will
be written to flash pages. There are several approaches for
selecting pages to evict them from the buffer. CFLRU[30]
divides the LRU list into two regions based on a window
size: working region for including the recently used pages

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) /www.naturalspublishing.com/Journals.asp 2253

and clean-first region for including clean pages. The
victim for the eviction is the page in the clean-first region.
The CFLRU/C, CFLRU/E, and DL-CFLRU/E[41] added
more flexibility in choosing the victim, by referencing the
access frequency and block erase count. For example, in
CFLRU/C, if no clean page is available for the eviction,
then the dirty page with the lowest access frequency will
be selected as a candidate. On the other hand, in
CFLRU/E, the dirty page with the lowest block erase
count will be chosen for the eviction.

In CFDC[28], the clean-first region of CFLRU is
arranged in two queues: one for the clean queue and the
other for the priority queue where dirty pages are
clustered. The page linked at the tail of the clean queue is
first selected as a victim. If no clean page is available,
then the first page in the lowest-priority cluster is selected
as a victim. LRU-WSR[17] proposed the page
replacement referencing an additional flag, called cold
flag. To delay flushing dirty pages, their cold flag is
checked. If it is marked, then the page is considered as a
victim. In case that a dirty page with its cold flag not
being marked is referenced, the page is moved to MRU
position while marking the cold-flag.

CCF-LRU[26] is another replacement algorithm using
the cold detection. It differentiates the clean pages
between hot and cold by using the cold-flag. It first
searches the cold clean page for the eviction. If no such
page is available, then it chooses the cold dirty page as a
victim, instead of choosing the hot clean page. In
FAB[15], pages in the buffer are clustered based on the
erasure block unit. When the buffer is full, FAB chooses a
block containing the largest number of pages as a victim,
with the expectation of the switch merge in FTL. In case
that the number of maximum pages of multiple blocks is
the same, a victim is chosen based on LRU order.

BPLRU[20] also selects a block as a victim. It uses the
write buffer inside SSD and arranges LRU list in units of
blocks. If a logical sector is referenced, then all sectors
belonging to the same block are moved to the front of the
list. It also chooses the least recent block for the eviction
while flushing all sectors in the victim together to flash
memory to reduce the log blocks in FTL.

Although the FTL and replacement algorithms
mentioned contribute to reduce the write and erase costs
in flash memory, most of them need to have accesses to
SSD internals, in order to obtain the block erase count or
to use the buffer inside SSD. However, such knowledge or
accesses cannot be available when using the commercial
SSD products. In HFM, we tried to exploit a way of
reducing the flash overhead on VFS layer without
requiring the knowledge about SSD internals, except for
the flash block size. In our method, given the flash block
size is known to HFM, the extent size of each data section
can be determined to be aligned to flash block boundaries.
In case that the extent size is smaller than the flash block
size, before passing data to SSD partition, the extents are
collected in the in-core map table.

Many researches[6,10,18,23] tried to reduce the cost
for write and erase operations by implementing the
log-structured I/O scheme on top of file systems. The
log-structured file system[34] was proposed to reduce the
data positioning overhead on top of HDD. Instead of
modifying data in-place, it provides out-of-place updates
by appending the logs at the tail. Since such an I/O
pattern well fits to flash memory, many flash file systems
have adopted the log-structured I/O in their
implementations. JFFS, JFFS2, and YAFFS were
implemented based on the log-structured mechanism.

JFFS2[39] organizes logs consisted of a linked list of
variable-length nodes. Each node contains file metadata,
such as file name and inode number, and a range of data
in the file. When the file system is mounted, the nodes are
scanned to construct the directory hierarchy and the map
between file positions and physical flash addresses. In
YAFFS[10], fixed-sized chunks are organized to contain
file metadata and data. The head chunk with chunk
number zero includes file metadata and is used for
constructing the directory hierarchy at file system mount.
YAFFS uses the tree-structured map to locate the physical
addresses associated with file positions.

TFFS[9] was designed for the small embedded
systems. In TFFS, each erase unit is consisted of
variable-length sectors and the sectors are divided into
two parts: one for including descriptors containing the
index to the associated data in the unit and the other for
real data. It also uses the logical pointer to reduce the
overhead of pointer modification due to the unit erasure.
One of the interesting flash file systems is FlexFS[24]
where the storage space is constructed in the hybrid
structure by using MLC and SLC. The new data is first
collected in the write buffer and flushed into MLC or SLC
log blocks. If no space for writing data is available, then
the data migration takes place to create more free spaces,
by moving data from the SLC region to the MLC region.

Conquest[38] also supports the hybrid storage space
by combining disk to RAM with battery backup. It stores
small files and metadata in RAM and stores large files in
disk to favor the performance potential of RAM. The
hFS[42] is another hybrid file system that provides the file
system space by combining the in-place update pattern of
FFS with the out-of-place update of LFS (Log-structured
file system). Also, TxFlash[32] provides a new device
interface to allow the transactional model. TxFlash
exports WriteAtomic(p1, .., pn) that enables to issue a
sequence of writes in the transaction. The consistency is
provided by implementing the new cyclic commit
protocol.

Finally, DFS[16] provides a support for the
virtualized flash storage layer using fusion-io ioDrive.
The virtualized flash storage layer integrates the
traditional block device driver with FTL, to provide a thin
software layer while favoring the fast direct speed of
ioDrive controller. Also, the layer is responsible for the
direct data path between DFS and the controller, logical
block to physical page mapping, wear-leveling, and data

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2254 J. No et. al. : HFM: Hybrid File Mapping Algorithm for SSD Space Utilization

distribution between multiple ioDrives. However, since
the layer is tightly coupled with the ioDrive controller, it
may not be portable to be used other than ioDrive.
Furthermore, the cost for providing DFS address space is
much higher than that of HDD.

The difference between flash file systems and HFM is
that HFM was designed to provide a large-scale storage
capacity by constructing the hybrid file system space.
Furthermore, I/Os in HFM take place in-place even
though it collects data in units of segments within extents
before passing them to SSD. Also, HFM does not use a
single I/O unit for the entire SSD storage space. Instead,
the different extent size (I/O unit) can be configured for
each logical data section, thus storing files to the different
data section with the appropriate extent size is possible.

3 System Model

3.1 Overview

The first objective of HFM is to improve the space
utilization of the restricted SSD storage resources.
Second, HFM has been implemented to reduce I/O cost
by mapping files to the appropriate data section while
considering their attributes, such as file size, usage, and
access pattern. The third objective is to collect as many
data as flash block size on VFS layer prior to passing
them to SSD partition, in order to reduce FTL overhead in
write and erase operations.

In Fig. 1, the entire file system space of SSD partition
is composed of three logical data sections. On top of those
data sections, their extent size can elastically be defined
based on the file attributes. The number of data sections
and the extent and section sizes are defined at file system
creation. In Fig.1, three data sections,D1, D2, andD3, are
defined with the different extent sizes:x in blocks forD1,
y in blocks forD2, andz in blocks forD3 wherex < y < z.

Definition 1. Given a data sectionDn, the associated
HFM is defined asF : attributes → Γn(E,s,ρ). The
partitioning function Γn of Dn is composed of the
followings:

– E is the extent ofDn ands is its size in blocks.
– ρ ∈ {1,2,3} ∪ φ is the parameter for the segment
partitioning on extents. Theρ = φ denotes the bypass
operation.

In providing with the logical data sections configured
with the elastic extent size, the major problem impeding
the space utilization is the extent fragmentation overhead.
HFM attempts to solve the fragmentation overhead by
classifying files according to file attributes and by
partitioning the extents to use the remaining space as
much as possible. There are two kinds of HFM for a file.
In the static HFM, the mapping between a file and data
section is defined by the mapping script, which is
submitted at file system mount. For instance, in Fig.1, the

Fig. 1: An overview of HFM

files and subdirectories to be created under/small, /mid,
and /large are mapped toD1, D2, andD3, respectively,
according to the mapping script. In case that file attributes
are changed, for instance creating a directory to store
large-size files in/small, the data section being mapped
to the new directory can be switched to the other data
section consisted of large-size extents, without changing
the directory hierarchy.

In the dynamic HFM, the files are mapped in any data
section based on file size. Letlen[f] be the file size in
blocks of a file f . In /dynamic, if len[f] ≤ x, then f is
allocated inD1. If len[f] ≥ z,then f is allocated inD3. In
neither of cases,f is allocated inD2. Eventually, in HFM,
the I/O cost for accessing large-size files can be reduced
by assigning large-size extents to them. Also, the files
denoting the sequential access pattern, such as
multimedia files, can have I/O benefit by using the
large-size extents.

On the other hand, the files representing the
unpredictable access pattern or size, such as emails, are
assigned to small-size extents to minimize the extent
fragmentation overhead. Furthermore, the files for backup
can bypass SSD partition, resulting in storing only in
HDD partition. As a result, the limited SSD space can be
used for only files requiring fast I/O bandwidth.

3.2 Segment Partitioning

In this section, we first describe the partitioning function
applied to each data section. Since data sections are
composed of the different extent sizes, HFM provides the
different partitioning function for each data section, to
reuse the extents possessing the enough free spaces to
allocate several files. Also, we describe the map function

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) /www.naturalspublishing.com/Journals.asp 2255

Fig. 2: The partitioning function, according to the extent
size andρ

corresponding to each partitioning function, which is used
to determine the block position for the next file allocation.

3.2.1 Partitioning Function

In the partitioning functionΓn(E,s,ρ) with ρ = 1 for a
data sectionDn, E is consisted of(log2s)+1 segments. In
Fig. 1, on top of D1, Γ1(E,x,1) partitions E into
{sgi

0|H ≤ i < log2x} whereH = −1. The i denotes the
segment index inE. If i = H, then it is the head segment.
Let start[sgi

0] and len[sgi
0] be the starting block position

and length in blocks of segmenti. Then,start[sgH
0] = 0

and len[sgH
0] = 1. Also, ∀i > H,start[sgi

0] = 2i and
len[sgi

0] = 2i. The partitioning function forD1 is defined
as

Γ1(E,x,1) = {(sgH
0 ,0)}∪

{(sgi
0,2

i)|i ∈ 0,1, · · · ,(log2x)−1}

Example. Fig. 2(a) shows an example of

Γ1(E,x,1) with x = 8 :
{(sgH

0 ,0),(sg0
0,1),(sg1

0,2),(sg2
0,4)}

In the partitioning functionΓn(E,s,ρ) with ρ = 2, the
segment partitioning is performed in two levels. As
pictured in Fig.1, in the partitioning functionΓ2(E,y,2)
of D2, E is partitioned in two levels. In level zero,E is
consisted of log2y segments. To minimize the
fragmentation overhead, the largest segment(log2y)− 1
is further split into the child segments in level one, The
starting block position and the length in blocks of the

segments at level zero are the same as inΓn(E,s,ρ) with
ρ = 1. On the other hand, for the child segments of the
level one, start[sgH

1] = s/2 and len[sgH
1] = 1. Also,

∀k > H,start[sgk
1] = s/2 + 2k and len[sgk

1] = 2k.
Therefore,Γ2(E,y,2) is defined as

Γ2(E,y,2) =
{(sgH

0 ,0)}∪{(sgi
0,2

i)|i ∈ 0,1, · · · ,(log2y)−2}∪
{(sgH

1 ,y/2)}∪{(sgk
1,y/2+2k)|k ∈ 0,1, · · · ,(log2y)−2}

Example. Fig. 2(b) shows an example of

Γ2(E,y,2) with y = 64 :
{(sgH

0 ,0),(sg0
0,1),(sg1

0,2), · · · ,(sg4
0,16)}∪

{(sgH
1 ,32),(sg0

1,33),(sg1
1,34), · · · ,(sg4

1,48)}

In the partitioning functionΓn(E,s,ρ) with ρ = 3, the
segment partitioning is recursively performed into the
subsequent level. In Fig.1, with the partitioning function
Γ3(E,z,3) of the data sectionD3, as long as the size of
segments is no smaller thanδ (segment index islog2δ),
the segments are partitioned into the lower level. This
partitioning function is used for the large-size extents to
consume the free spaces in extents after file allocations.

In the level zero,E is first partitioned into(log2z) +
1 segments whose starting block positions and lengths in
blocks are the same as specified inΓn(E,s,ρ) with ρ = 1.
The segments whose lengths in blocks are no smaller than
δ are recursively partitioned into the lower level until the
lengths of all the child segments become smaller thanδ .

Let sgp
L−1 be a segment at levelL − 1 and

len[sgp
L−1] ≥ δ . Then, sgp

L−1 is partitioned into

{sg j
L|H ≤ j < p}. Also, start[sgH

L] = start[sgp
L−1] and

len[sgH
L] = 1. Furthermore, ∀ j > H, start[sg j

L] =

start[sgp
L−1]+2j andlen[sg j

L] = 2j. As a result,Γ3(E,z,3)
is defined as

Γ3(E,z,3)
= {(sgH

0 ,0)}∪{(sgi
0,2

i)|i ∈ 0,1, · · · ,(log2z)−1}
= · · ·
= {(sgH

L ,start[sgp
L−1])}∪

{(sg j
L,start[sgH

L]+2j)| j ∈ 0,1, · · · , p−1},
if sgp

L−1 is the parent of those chunks andlen[sgp
L−1]≥ δ

= {(sgH
L+1,start[sg j

L])}∪

{(sgk
L+1,start[sgH

L+1]+2k)|k ∈ 0,1, · · · , j−1},

for ∀sg j
L such thatlen[sg j

L]≥ δ

Example. Fig. 2(c) shows an example ofΓ3(E,z,3) with
z = 512 andδ = 32 :

{(sgH
0 ,0),(sg0

0,1), · · · ,(sg8
0,256)}

f or sg8
0−−−−→ {(sgH

1 ,256),(sg0
1,257), · · · ,(sg6

1,320), · · ·}

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2256 J. No et. al. : HFM: Hybrid File Mapping Algorithm for SSD Space Utilization

f or sg6
1−−−−→ {(sgH

2 ,320),(sg0
2,321), · · · ,(sg5

2,352)}
f or sg5

2−−−−→ {(sgH
3 ,352),(sg0

3,353), · · · ,(sg4
3,368)}

3.2.2 Map Function

Definition 2. Given a HFMF : attributes → Γn(E,s,ρ) of
the data sectionDn, let pos be the block position onE
where the last file has been allocated. If the free space is
larger than a threshold value, thenmap(pos,ρ)
determines the starting segment from which the next file
is allocated onE.

In Γn(E,s,ρ) with ρ = 1, E is partitioned into(log2s)+1
segments. Therefore, if the last segment allocated to a file
is segmenti, then the next allocation starts from segment
i+1.

caseρ = 1 :
map(pos,ρ) = (sgi+1

0 ,2i+1) where 2i ≤ pos < 2i+1

In Γn(E,s,ρ) with ρ = 2, E is partitioned into two levels.
In case that an allocation ends a segmenti ≤ (log2s)−2,
the next allocation starts fromi + 1. Otherwise, the last
segment(log2s)− 1 is further partitioned into the child
segments in level one and the next allocation processes on
them.

caseρ = 2 :
if 2i ≤ pos < 2i+1 andi ≤ (log2s)−2,

map(pos,ρ) = (sgi+1
0 ,2i+1)

if 2i ≤ pos < 2i+1 andi > (log2s)−2,
map(pos,ρ) = map(l pos = pos− s/2,ρ)

= (sgk+1
1 ,s/2+2k+1)

where⌊2k⌋ ≤ l pos < 2k+1

In Γn(E,s,ρ) with ρ = 3, E is first split into (log2s)+ 1
and any segment whose length in blocks is no smaller
thanδ (segment index islog2δ) is further partitioned in
the subsequent level. As a result, on the level zero, if the
last allocation is completed in segmenti < log2δ , then the
next allocation starts from segmenti + 1. Otherwise,
segmenti+ 1 is further split prior to the next allocation
process.

caseρ = 3 : (level 0)
if 2i ≤ pos < 2i+1 andi < log2δ ,

map(pos,ρ) = (sgi+1
0 ,2i+1)

if 2i ≤ pos < 2i+1 andi ≥ log2δ ,
map(pos,ρ) = map(l pos = pos− start[sgi

0],ρ)

(level 1)
if ⌊2j⌋ ≤ l pos < 2j+1 and j < log2δ ,

map(l pos,ρ) = (sg j+1
1 ,start[sgi

0]+2j+1)

if ⌊2j⌋ ≤ l pos < 2j+1 and j ≥ log2δ ,
map(l pos,ρ) = map(l pos = pos− start[sg j

1],ρ)

. . .
(level L)
if ⌊2k⌋ ≤ l pos < 2k+1 andk < log2δ ,

map(l pos,ρ) = (sgk+1
L ,start[sgH

L]+2k+1)

if ⌊2k⌋ ≤ l pos < 2k+1 andk ≥ log2δ ,
map(l pos,ρ) = map(l pos = pos− start[sgk

L],ρ)

Example.

1. In Γn(E,s,ρ) with s = 8 andρ = 1, let pos = 3. The
next allocation takes place at segment 2:

map(3,1)
21≤3<22

−−−−−→ (sg2
0,4)

2. In Γn(E,s,ρ) with s = 64 andρ = 2, let pos = 35.
The next allocation takes place at segment 2 at level
one:

map(35,2)
35−s/2(32)=3
−−−−−−−−→

map(3,2)
21≤3<22

−−−−−→ (sg2
1,32+4= 36)

3. In Γn(E,s,ρ) with s = 512 andρ = 3, andδ = 32,
let pos = 161. The next allocation takes place at
segment 1 at level two:

map(161,3)
27≤161<28,161−start[sg7

0](128)=33
−−−−−−−−−−−−−−−−−−−−→

map(33,3)
25≤33<26,161−start[sg5

1](128+32=160)=1
−−−−−−−−−−−−−−−−−−−−−−−−→

map(1,3)
20≤1<21

−−−−−→ (sg1
2,160+2= 162)

Theorem 1. With extents of size s in blocks
composed of segmentssgi

L where i ∈ {H,0, · · · ,
(log2s)−1}, there is at least a sequence of file allocation
processes by using HFM of the data sectionDn.

Proof. Let ui be the probability that, after executing the
finite partitioning steps,sgi

L no longer participates in the
segment partitioning. Also, letpk(φ) be the probability
that k partitioning steps take place atsgi

L and ψi be the
probability distribution of the segments forn incoming
files. Let τ be the used portion ofsgi

L. In case that the
remaining spacelen[sgi

L] − τ becomes smaller thanδ
after k partitioning steps, the segment partitioning atsgi

L
does not take place. Therefore,ψi is determined as

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) /www.naturalspublishing.com/Journals.asp 2257

ψi =

{

ψi−1ui, 0≤ len[sgi
L]− τ < δ

p(φ)ψi−1, len[sgi
L]− τ ≥ δ (1)

For n files,

ψi = ψi−1ui + p(φ)ψi−1

= ψi−1ui + p(φ)[ψi−2ui + p(φ)ψi−2]

= ψi−1ui + p(φ)ψi−2ui + p2(φ)[ψi−3ui + p(φ)ψi−3]

= ψi−1ui + p(φ)ψi−2ui + p2(φ)ψi−3ui + p3(φ)ψi−3

= ψi−1ui + · · ·+ pk(φ)ψi−(k+1)ui + pk+1(φ)ψi−(k+1)

= ψi−1ui +
k

∑
r=1

pr(φ)ψi−(r+1)ui + pk+1(φ)ψi−(k+1)

Becauseψi−1ui implies no partitioning steps being
taken place forn files, it becomes 1. Also, the partitioning
steps cannot exceedk, pk+1(φ)ψi−(k+1) → 0. Therefore,

ψi = 1+
k

∑
r=1

pr(φ)ψi−(r+1)ui (2)

In (2), on average,

[
k

∑
r=1

pr(φ)ψi−(r+1)ui]/n = (ψi −1)/n (3)

If n files are all allocated on extents in terms of
segments, thenψi → n. As a result,

[
k

∑
r=1

pr(φ)ψi−(r+1)ui]/n = (n−1)/n ≈ 1 (4)

As a consequence, we notice that a file can eventually
be allocated in extents by using the segment partition
defined in HFM.

3.3 Extent Reuse

In HFM, the extent reuse is performed by using the in-core
map tableMT (E,s,ρ). TheMT (E,s,ρ) is responsible for
managing the extent free space in memory for reuse prior
to the write operation to SSD partition. Also, given the
flash block size of SSD partition is known to HFM, if the
extent size of a data section is smaller than the flash block
size, then collecting the extents before write operations is
performed in the map table.

TheMT (E,s,ρ) is constructed per data section and is
differently organized according to the extent size andρ .
With ρ = 1, MT (E,s,ρ) is consisted of a single tablemt0
to manage the segments split fromE. On the other hand,
with ρ = 2, two tables are included inMT (E,s,ρ): mt0
for managing the segments in level zero andmt1 for
managing the child segments in level one. Finally, in

MT (E,s,ρ) with ρ = 3, the segments partitioned at each
level are managed by the different table to be organized at
the level.

In MT (E,s,ρ), each table entryenti is connected to
the linked list of extent descriptors whose associated
extents have the largest free space starting from segment
i. The extent descriptor contains the mapping information
about the associated extent, such as extent address, data
size mapped to the extent, and pointer to the callback
function to be invoked when the corresponding extent is
moved to the other table entry. It also contains the
information about the files mapped to the extent including
inode number.

Fig. 1 shows theMT (E,s,ρ) structure according to
the extent size andρ . Let E0(r),E1(r), · · · ,Ek(r) be the
largest free spaces of extentsE0,E1, · · · ,Ek where those
free spaces start from segmenti at levelL. Also, for ∀k,
let d(Ek) be the extent descriptor ofEk and start[Ek(r)]
andlen[Ek(r)] be the starting block position and length in
blocks of the largest free space inEk. Suppose that the
descriptors are linked together, in the order of
d(E0),d(E1), · · · , d(Ek).

Definition 3. Given MT (E,s,ρ), a table entryenti of
mtL at levelL is defined as:
enti = {d(Ek)|∀k ≥ 0,start[Ek(r)] = start[sgi

L] and
len[E0(r)]≥ len[E1(r)]≥ ·· ·}

In case that the largest free spaces of several extents
start from the same segment, their descriptors are linked
together in the decreasing order of free spaces. In
Γn(E,s,ρ) with s = 512 andρ = 3, suppose that a file of
162 in blocks was allocated in an empty extent.
According to the partitioning rule, the next allocation
starts from(sg1

2,162). The extent descriptor is linked to
ent1 of mt2 in MT (E,s,ρ). If several extents have the
largest free space starting fromsg1

2, then their extent
descriptors are linked toent1 in the decreasing order of
free spaces.

Fig. 3 shows the steps for reusing extents whose free
spaces are larger than a thresholdθ . The f is the new file
to be allocated andtime denotes the difference between the
time for which the associated extent has been inserted into
the map table and the time for which the extent is checked
for the file allocation. In the algorithm, if the flash block
sizebs is known to HFM and the extent sizes is smaller
thanbs, then the extent collection takes place in memory
before writing to SSD partition. Fig.4 describes the steps
to determine the segment index and level where the next
allocation process on the same extent takes place.

HFM maintains the extent bitmap per data section for
the extent availability. At file system mount, HFM checks
the extent bitmap for each data section and pre-allocates
1K of empty extents to the map table. In HFM, file write
operations are simultaneously performed on both
partitions. When either of partitions completes the write
operation, control returns user.

The write completion is denoted by a two bits flag,
called SSD write done, stored in inode: 00 for

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2258 J. No et. al. : HFM: Hybrid File Mapping Algorithm for SSD Space Utilization

Algorithm 1 Extent Reuse
Input: MT (E,s,ρ), f , flash block sizebs if available
Output: MT (E,s,ρ)

1. HFM periodically organizes 1K of empty extents and
their descriptors are linked toentH to mt0;

2. if (len[f]≥ s)
3. use empty extents linked atentH in mt0

for allocating f ;
4. letE be the last extent andpos be the last

block position allocated tof on E;
5. else
6. for all enti ∈ mtL in MT (E,s,ρ)
7. select extentE whose largest free space is no

smaller thanlen[f] andtime(E) is the longest;
8. let pos be the last block position allocated tof ;
9. end for

10. end if
11. /* id andlevel are the segment index and level for the

next allocation */
12. callMap(pos,ρ ,∗id,∗level);
13. if (the remaining space drops belowθ)
14. if (s < bs)
15. collect extents until the total size reachesbs;
16. end if;
17. else
18. move the extent descriptor ofE to entid of mtlevel

in MT (E,s,ρ);
19. end if

Fig. 3: Algorithm for the Extent Reuse

initialization, 01 for the completion on HDD partition, 10
for the completion on SSD partition, and 11 for the
completion on both partitions. The flag is also used for the
file read operation. If the flag for SSD partition is marked
as one, then the data is read from SSD partition by using
the extent addresses stored in inode. Otherwise, the read
operation is performed in HDD partition, followed by the
duplication to SSD partition as a background.

4 Performance Evaluation

4.1 Experimental Platform

We executed the performance evaluation by using a PC
equipped with an AMD Phenom 8650 Triple-core
2.3GHz processor, 4GB of RAM, and Seagate Barracuda
320GB HDD. The SSD is 80GB of fusion-ioDrive [7].
The NAND type of fusion-ioDrive is SLC and the
reported bandwidth is 760MB/sec. for reads and
540MB/sec. for writes. The access latency is 26s and it
uses PCI-E bus interface. In the evaluation, we divided
SSD partition into three logical data sections and mapped
to /h f m/small, /h f m/mid, and/h f m/large, which are
composed of 8KB, 64KB, and 512KB of extent sizes,

Algorithm 2 Map
Input: pos, ρ
Output: id, level

1. case
2. ρ = 1 :
3. calculatei such that 2i ≤ pos < 2i+1;
4. return (i+1,0)

5. ρ = 2 :
6. if (pos ≥ s/2)
7. l pos = pos− s/2;
8. calculatek such that⌊2k⌋ ≤ l pos < 2k+1;
9. return (k+1,1)

10. else
11. calculatei such that 2i ≤ pos < 2i+1;
12. return (i+1,0)
13. end if

14. ρ = 3 :
15. level = 0;
16. calculatei such that 2i ≤ pos < 2i+1;
17. if (len[sgi

0]< δ) return (i+1,0) end if;
18. while (i ≥ log2δ)
19. l pos = pos− start[sgi

level]; level ++;
20. calculatei such that⌊2i⌋ ≤ l pos < 2i+1;
21. if (len[sgi

level]< δ) return (i+1, level) end if;
22. end while
23. end case

Fig. 4: Algorithm for the map function

Table 1: HFM definition and map table

HFM(1) map directory:/h f m/small
F : attributes → Γn(E,s,ρ)

with s = 8 andρ = 1
MT (E,s,ρ) = {mt0}

HFM(2) map directory:/h f m/mid
F : attributes → Γn(E,s,ρ)

with s = 64 andρ = 2
MT (E,s,ρ) = {mt0,mt1}

HFM(3) map directory:/h f m/large
F : attributes → Γn(E,s,ρ)

with s = 512 andρ = 3
MT (E,s,ρ) = {mt0,mt1, · · · ,mt4}

respectively. Each data section size is 16GB and HFM
block size is set to 1KB. Theδ for the segment
partitioning is marked as 32. Therefore, with 512KB of
extent size, the number of partitioning levels is 5
(log2s/δ + 1), resulting in constructing five map tables.
Table 1 represents the HFM and map table associated
with each directory hierarchy.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) /www.naturalspublishing.com/Journals.asp 2259

0

1

2

3

4

5

6

7

8

9

10

11

12

50 100 200 300 400 500

xfs(HDD) ext2(HDD) xfs(SSD) ext2(SSD)

HFM(1) HFM(2) HFM(3)

No. of clients

T
r
a

n
s

a
c

ti
o

n
 r

a
te

s
 (

x
1

0
0

0
)

(a) HFM integrated with ext2

0

1

2

3

4

5

6

7

8

9

10

11

12

50 100 200 300 400 500

ext4(HDD) ext4(SSD) HFM(1) HFM(2) HFM(3)

No. of clients

T
r
a

n
s

a
c

ti
o

n
 r

a
te

s
 (

x
1

0
0

0
)

(b) HFM integrated with ext4

Fig. 5: TPC-C Transaction rates (x1000) with 4GB of
RAM

4.2 TPC-C Experiments

TPC-C [8] is the public benchmark for measuring the
performance of online transaction processing systems
using database. TPC-C typically generates five types of
transactions and constructs nine variously structured
tables in database. The transactions are randomly
generated by a given number of simultaneously connected
clients. In TPC-C, we used Mysql 5.5 and the database
was installed on both HDD and SSD partitions. We
executed TPC-C on top of HFM(1), HFM(2), and
HFM(3) and compared their transaction rates. Also, the
performance result of HFM is compared to that of ext2,
ext4 and xfs installed on HDD and SSD. Each file system
uses the database installed on the same partition to
minimize the overhead for the database connection.

In Fig. 5(a), the HDD partition of HFM is integrated
with ext2 and its transaction rate(t pmC) is compared to

that of xfs and ext2. Also, in Fig.5(b), the HDD partition
of HFM is integrated with ext4 and its transaction rate is
compared to that of ext4. In both figures, the RAM size
was configured to 4GB. The number of clients
simultaneously connected to database is varied from 50 to
500. As can be seen in the figures, the performance
advantage of SSD is apparent because the performance of
xfs, ext2 and ext4 installed on SSD shows the large orders
of magnitude I/O improvement, compared to that of those
three file systems installed on HDD.

Although the database queries of TPC-C produce
various transactions that require to access data from the
random disk position, SSD rarely generates the
positioning overhead for such I/O patterns. In Fig.5(a)
and5(b), we can notice that, with 50 client connections,
the transaction rate of HFM(3) where the extent size is
512KB is 11% and 6% higher, respectively, than that of
HFM(1) where the extent size is 8KB. In the database, the
average data size for a single write operation is about
900KB that is larger than any of extent sizes in HFM.
Also, since we do not have the information about the flash
block size, the steps to collect extents whose sizes are
smaller than the flash block size do not take place prior to
the write operation. Consequently, the cost for taking the
necessary extents in HFM(1) is higher than that in
HFM(3).

As the number of client connections increases, the
transaction rates become small because of the contention
in I/O devices. Even in this case, the performance
superiority of SSD is noticeable as compared to that of
HDD.

Fig. 6(a)and6(b) show the transaction rate with 1GB
of RAM where the HDD partition of HFM is integrated
with ext2 in Fig.6(a) and with ext4 in Fig.6(b). Due to
the fact that the experiments use the smaller RAM size
than that in Fig.5(a) and 5(b), the virtual I/O activity
takes place in processing the transactions. For example, in
Fig. 6(a)and6(b), the transaction rate of HFM(1) with 50
clients decreases about 17% and 20%, respectively, as
compared to that with 4GB of RAM in Fig.5(a)and 5(b).
However, the benefit using the large-size extent is still
available since, with the same number of connections,
HFM(3) integrated with ext2 in Fig.6(a) shows 12% of
speedup, compared to HFM(1). The similar I/O behavior
can be observed in Fig.6(b) where almost 6% of
performance improvement can be possible with HFM(3)
as compared to HFM(1).

4.3 PostMark Experiments

PostMark has been implemented to measure the
performance of short-lived files, such as electronic mail,
netnews, and commerce service [19]. As we did with
TPC-C, we executed PostMark on three HFM
configurations and compared their performance results.
The number of files was changed from 1,000 to 20,000
and the file sizes were ranged between 500bytes and

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2260 J. No et. al. : HFM: Hybrid File Mapping Algorithm for SSD Space Utilization

0

1

2

3

4

5

6

7

8

9

10

11

12

50 100 200 300 400 500

xfs(HDD) ext2(HDD) xfs(SSD) ext2(SSD)

HFM(1) HFM(2) HFM(3)

No. of clients

T
r
a

n
s

a
c
ti

o
n
 r

a
te

s
 (

x
1

0
0

0
)

(a) HFM integrated with ext2

0

1

2

3

4

5

6

7

8

9

10

11

12

50 100 200 300 400 500

ext4(HDD) ext4(SSD) HFM(1) HFM(2) HFM(3)

No. of clients

T
r
a

n
s
a

c
ti

o
n

 r
a

te
s
 (

x
1

0
0

0
)

(b) HFM integrated with ext4

Fig. 6: TPC-C Transaction rates (x1000) with 1GB of
RAM

9.77Kbytes. In Fig.7(a), the HDD partition of HFM was
integrated with ext2 and in Fig.7(b), the HDD partition of
HFM was integrated with ext4. In both figures, we ran
100,000 transactions and markedset bias read as 5,
therefore append and read operations are equally likely to
occur. As can be seen, with large number of files such as
more than or equal to 10,000 files, the performance
advantage of SSD is apparent in the file systems due to
the rarely generated the mechanical moving overhead in
locating the desired data.

When we executed PostMark on top of HFM(1), it
generates the similar bandwidth to ext2 and ext4 installed
on SSD. However, on top of HFM(3) with 1000 files, we
can observe about 6% performance speedup on ext2 and
ext4. As a result, coalescing data into the large I/O
granularity on VFS layer would be effective on accessing
the continuously being produced small-size files, by
reducing the allocation cost. Also, we guess that such an

0

1

2

3

4

5

6

7

8

9

10

11

12

1000 5000 10000 15000 20000

xfs(HDD) ext2(HDD) xfs(SSD) ext2(SSD)

HFM(1) HFM(2) HFM(3)

No. of files

T
r
a

n
s

a
c

ti
o

n
 r

a
te

s
 (

x
1

0
0

0
)

(a) HFM integrated with ext2

0

1

2

3

4

5

6

7

8

9

10

11

12

1000 5000 10000 15000 20000

ext4(HDD) ext4(SSD) HFM(1) HFM(2) HFM(3)

No. of files

T
r
a

n
s

a
c
ti

o
n
 r

a
te

s
 (

x
1

0
0

0
)

(b) HFM integrated with ext4

Fig. 7: PostMark Transaction rates (x1000) with 100,000
transactions

I/O behavior could reduce the FTL bottleneck in SSD
partition by converting into the large, sequential I/O
access pattern.

In PostMark, the small-size files are continuously
generated so that there is little delay in the map table to
collect files into the large-size extents. However, if the
delay becomes larger, then collecting files in the map
table can be an obstacle in achieving high I/O
performance. Therefore, choosing the appropriate HFM
configuration should carefully be performed to achieve
I/O improvement. The transaction rates of the
experiments decrease as the number of files becomes
large because of the reduced number of the available
inodes in the current directory.

Fig. 8(a) and8(b) show the performance results with
500,000 transactions. In case of xfs, accessing the large
number of small-size files does not produce high I/O
bandwidth on HDD due to the mechanical moving

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) /www.naturalspublishing.com/Journals.asp 2261

0

1

2

3

4

5

6

7

8

9

10

11

12

1000 5000 10000 15000 20000

xfs(HDD) ext2(HDD) xfs(SSD) ext2(SSD)

HFM(1) HFM(2) HFM(3)

No. of files

T
r
a

n
s

a
c

ti
o

n
 r

a
te

s
 (

x
1

0
0

0
)

(a) HFM integrated with ext2

0

1

2

3

4

5

6

7

8

9

10

11

12

1000 5000 10000 15000 20000

ext4(HDD) ext4(SSD) HFM(1) HFM(2) HFM(3)

No. of files

T
r
a

n
s

a
c
ti

o
n
 r

a
te

s
 (

x
1

0
0

0
)

(b) HFM integrated with ext4

Fig. 8: PostMark Transaction rates (x1000) with 500,000
transactions

overhead. However, in Fig.8(a), we can observe that, with
1000 files, such an overhead can be alleviated in SSD
because of its device characteristics. Also, ext2 and HFM
all favor such a promising performance benefit on SSD.
On the other hand, in Fig.8(b), with less than 10,000
files, there is little advantage in using SSD on top of ext4
due to its extent metadata structure. However, converting
into the large granularity still produces the performance
improvement, as can be seen in the bandwidth
comparison between ext4 and HFM(3). As the number of
files increases the bandwidth decrement takes place due
to the large number of files being created in the directory.

4.4 IOzone Experiments

In this section, we describe the performance results of
IOzone benchmark. In the first experiment, we modified

0

100

200

300

400

500

600

700

10,000 50,000 100,000 150,000 200,000 250,000 270,000

xfs(HDD) ext2(HDD) ext4(HDD)

xfs(SSD) ext2(SSD) ext4(SSD)

No. of files

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
e

c
.)

(a) ext2, ext4 and xfs

0

100

200

300

400

500

600

700

10,000 50,000 100,000 150,000 200,000 250,000 270,000

HFM(1) HFM(2) HFM(3)

No. of files

I
/
O

b
a

n
d

w
id

t
h

(
M

B
/
s
e

c
.
)

(b) HFM integrated with ext2

0

100

200

300

400

500

600

700

10,000 50,000 100,000 150,000 200,000 250,000 270,000

HFM(1) HFM(2) HFM(3)

No. of files

I
/
O

b
a

n
d

w
i
d

t
h

(
M

B
/
s
e

c
.
)

(c) HFM integrated with ext4

Fig. 9: Type 1 IOzone bandwidth

IOzone in which about 32GB of HDD space and 16GB of
fusion-io SSD space are filled with two types of files. In
the first type, 96% (266,240) of small-size files whose
sizes are ranged from 8KB to 16KB and 4% (10,200) of
large-size files whose sizes are from 512KB to 4MB are
randomly generated to occupy both HDD and SSD
spaces. In the second type, only the large-size files from
512KB to 4MB are written in two devices. We measured
the bandwidth of the two types with HFM(1), HFM(2),
and HFM(3). Also, the I/O throughput of ext2, ext4 and
xfs installed on HDD and SSD was compared to that of
HFM.

The first objective of this experiment is to verify the
hybrid structure of HFM by observing whether it can
possess the performance advantage of SSD partition
while expanding the storage capacity as much as its HDD
partition offers. The second objective is to notice the
effect of its hybrid file mapping based on the file size.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2262 J. No et. al. : HFM: Hybrid File Mapping Algorithm for SSD Space Utilization

0

100

200

300

400

500

600

700

1,000 3,000 5,000 7,000 9,000 11,000 12,000

xfs(HDD) ext2(HDD) ext4(HDD)

xfs(SSD) ext2(SSD) ext4(SSD)

No. of files

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
e

c
.)

(a) ext2, ext4 and xfs

0

100

200

300

400

500

600

700

1,000 3,000 5,000 7,000 9,000 11,000 12,000

HFM(1) HFM(2) HFM(3)

No. of files

I
/
O

b
a

n
d

w
i
d

t
h

(
M

B
/
s
e

c
.
)

(b) HFM integrated with ext2

0

100

200

300

400

500

600

700

1,000 3,000 5,000 7,000 9,000 11,000 12,000

HFM(1) HFM(2) HFM(3)

No. of files

I
/
O

b
a

n
d

w
id

t
h

(
M

B
/
s
e

c
.
)

(c) HFM integrated with ext4

Fig. 10: Type 2 IOzone bandwidth

Fig. 9(a) shows the write throughput of type 1 for
ext2, ext4 and xfs installed of HDD and SSD. Also, both
Fig. 9(b)and Fig.9(c) show the result of the same type on
HFM integrated with ext2 and ext4, respectively.
Although ext2, ext4 and xfs installed on SSD enable to
produce high I/O performance, their storage capacity is
quickly exhausted as compared to that of the same file
systems built on HDD. However, in HFM, since its file
system space is integrated with HDD, it can write until
the entire HDD partition is occupied with files.

In type 1, the majority is the small-size files and
therefore the delay in the map table takes place with the
large-size extents, which degrades I/O bandwidth with
HFM(3). In Fig.9(b)and Figure9(c), we can observe that
about 12% and 14% of performance difference occurs
between HFM(1) and HFM(3) with 10,000 files,
respectively. Also, we can notice that the periodic
performance turbulence takes place in HFM due to the
extent replacement. We believe that, with the larger SSD

capacity, the period between consecutive replacements
becomes longer so that the turbulence would be
alleviated.

Fig. 10(a)illustrates the write throughput of type 2 for
ext2, ext4 and xfs installed on HDD and SSD. In Type 2,
the file sizes being written are between 512KB and 4MB.
With such file sizes, the storage capacity of SSD is
exhausted when the number of files exceeds about 7,500.
However, as can be seen in Fig.10(b) and10(c), the file
system space of HFM is restricted by HDD capacity
rather than SSD due to its hybrid structure. In Fig.10(b),
with the large-size files, the performance advantage of
HFM(3) is apparent as compared to that of ext2 installed
on SSD and that of HFM(1). This is because HFM(3)
requires to allocate the less number of I/O units than ext2
and HFM(1) do. For example, with 1,000 files, HFM(3)
shows 23% and 16% of performance improvement,
compared to ext2 on SSD and HFM(1). We can observe
the similar I/O behavior in Fig.10(c) where about 14%
and 9% of bandwidth speedup can be observed with
HFM(3) as compared to that of ext4 on SSD and HFM(1).

In the second experiment pictured in Fig.11(a)
and 11(b) where the HDD partition of HFM was
integrated with ext2 in Fig.11(a) and was with ext4 in
Fig. 11(b). We varied file sizes and mapped those files to
each extent size of HFM, in order to observe what kind of
mapping is effective for each file size. In both figures,
with 8KB of file size, using HFM(3) composed of 512KB
of extent size produces rather less I/O throughput than
using HFM(1) composed of 8KB of extent size. This is
because 8KB of file sizes should wait at the map table
until the whole extent size is used for storing several files.
However, with 256MB of files, using HFM(3) shows 6%
of improvement in Fig.11(a)and 3% of improvement in
Fig. 11(b)as compared to using HFM(1). This is because
it does not cause any delay at the map table and also
needs the less number of extents than using 8KB of
extents.

It is noted that the mapping between files and SSD
data section should carefully be performed to produce
better I/O performance. One efficient way is to use the
large-size extent for storing the large-size files. Also,
using the large-size extent can be effective even with the
small-sized streaming files. However, for the
unpredictable-sized files, using the large-size extent may
not be efficient due to the delay to fill out the whole
extent. In this case, those files should be mapped to SSD
data section configured with the small-size or
medium-size extent.

5 Conclusion

Due to its promising advantages, integrating SSD into the
storage capacity is becoming the main issue in the file
system development. Although its peculiar device
characteristics, such as erase-write-once and
wear-leveling, can be overcome either by implementing

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) /www.naturalspublishing.com/Journals.asp 2263

0

200

400

600

800

1000

8KB 64KB 512KB 1MB 4MB 16MB 64MB 256MB

xfs(HDD) ext2(HDD) xfs(SSD) ext2(SSD)

HFM(1) HFM(2) HFM(3)

File size

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
e

c
.)

(a) HFM integrated with ext2

0

200

400

600

800

1000

8KB 64KB 512KB 1MB 4MB 16MB 64MB 256MB

ext4(HDD) ext4(SSD) HFM(1) HFM(2) HFM(3)

File size

I/
O

 b
a

n
d

w
id

th
 (

M
B

/s
e

c
.)

(b) HFM integrated with ext4

Fig. 11: IOzone bandwidth compared to ext2, ext4 and xfs
installed on HDD and SSD

an efficient FTL algorithm, or by implementing
flash-specific file systems, the high ratio of cost per
capacity as compared to HDD remains an obstacle in
building the large-scale storage subsystems with only
SSDs. An alternative is to construct the hybrid structure
where a small SSD partition is combined with the large
HDD partition, to provide a single virtual address space
while favoring the performance advantage of SSD. In
such a hybrid structure, maximizing the space usage of
SSD partition is the critical issue in generating high I/O
performance. HFM was developed to improve the space
utilization of the restricted SSD storage resources. In
HFM, SSD partition can be organized into several, logical
data sections with each composed of the different extent
size. In order to reduce the fragmentation overhead, HFM
defines three ways of partitioning functions based on the
extent size. In the small-size extent(ρ = 1), the extent of
size s is composed of(log2s) + 1 segments and the file

allocation steps are performed in units of segments in the
extent. In the medium-size extent(ρ = 2), the last
segment is more split into level one to reuse the
remaining free space of the extent and then in the
large-size extent(ρ = 3), the segments whose segment
size is larger than or equal to the threshold(δ) are
recursively partitioned until the sizes of all segments
become smaller than the threshold. We executed the
performance evaluation of HFM by using three public
benchmarks, including TPC-C, PostMark, and IOzone. In
the evaluation, SSD partition is divided into three logical
data sections and each data section is configured with
8KB, 64KB, and 512KB of extents, followed by mapping
them to the different directory hierarchies. In TPC-C, the
performance advantage of SSD is apparent because the
performance of HFM and ext2 and ext4 installed on SSD
shows the large orders of magnitude I/O improvement,
compared to those file systems installed on HDD. Also,
since I/O size in TPC-C is larger than any of extent sizes,
using the large I/O granularity produces better I/O
bandwidth than using the small-size extent. Such an I/O
behavior is also available even though the transaction
rates become small due to the increased number of
simultaneous client connections. In PostMark experiment,
we can notice that, in most cases, SSD works better than
HDD in accessing small-size files because of the absence
of the mechanical moving overhead in SSD. Also, even
with small-size files, using the large-size extent
contributes to generate the performance speedup because
the delay in the map table is reduced due to the
contiguously being generated files. In IOzone benchmark,
we can observe that HFM enables to expand its storage
capacity to its HDD partition due to the hybrid structure.
However, there is a delay in writing small-size files with
the large-size extent, therefore the mapping between files
and SSD data section should carefully be performed. One
efficient way is to use the large-size extent for storing the
large-size files or the small-sized streaming files.
However, for the unpredictable-sized files, using the
large-size extent may not be efficient due to the delay to
fill out the whole extent. In this case, those files should be
mapped to SSD data section configured with the
small-size or medium-size extent. As a future work, we
will experiment HFM with real applications where a large
number of various-sized files are generated, to verify its
effectiveness in generating better I/O performance.

Acknowledgement

This work was supported by the Industrial Convergence
Strategic Technology Development Program, Grants No.
10045299 and 10047118, funded by the Ministry of
Science, ICT and Future Planning, Korea 2013. Also, this
work was partially supported by BRL program through
the NRF of Korea (2010-0019373).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2264 J. No et. al. : HFM: Hybrid File Mapping Algorithm for SSD Space Utilization

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M.
Manasse and R. Panigrahy, Design Tradeoffs for SSD
Performance, Proc. USENIX Annual Technical Conference,
San Diego, CA, 57-90 (2008).

[2] R. Bez, E. Camerlenghi, A. Modelli and A. Visconti,
Introduction to Flash Memory, In Proceedings of the IEEE,
91, 489-502 (2003).

[3] A. Birrell, M. Isard, C. Thacker and T. Wobber, A Design for
High-Performance Flash Disks, ACM SIGOPS Operation
Systems Review,41, 88-93 (2007).

[4] L.P. Chang and C.D. Du, Design and Implementation of
an Efficient Wear-Leveling Algorithm for Solid-State-Disk
Microcontrollers, ACM Transactions on Design Automation
of Electronic Systems,15, 1-36 (2009).

[5] M.L. Chiang, P. Lee and R.C. Chang, Using Data Clustering
to Improve Cleaning Performance for Flash Memory,
Software-Practice and Experience,29, 267-290 (1999).

[6] H. Dai, M. Neufeld and R. Han, ELF: An Efficient Log-
Structured Flash File System For Micro Sensor Nodes, Proc.
SenSys’04, Baltimore, USA, (2004).

[7] Fusion-io, ioDrive User Guide for Linux, (2009).
[8] Fujitsu Technology Solutions, Benchmark Overview TPC-

C, White paper, (2003).
[9] E. Gal and S. Toledo, A Transactional Flash File System

for Microcontrollers, Proc. USENIX Annual Technical
Conference, Anaheim, CA, 89-104 (2005).

[10] E. Gal and S. Toledo, Algorithms and data structures for
flash memories, ACM Computing Surveys (CSUR),37, 1-
30 (2005).

[11] G.A. Gibson, D.F. Nagle, K. Amiri, J. Butler, F.W. Chang,
H. Gobioff, C. Hardin, E. Riedel, D. Rochberg and J.
Zelenka, A Cost-Effective, High-Bandwidth Storage
Architecture, Proc. 8th International Conference on
Architectural Support for Programming Languages and
Operating Systems, 92-103 (1998).

[12] J. Griffin, S. Schlosser, G. Ganger and D. Nagle, Operating
System Management of MEMS-based Storage Devices,
Proc. 4th Symposium on Operating Systems Design and
Implementation, San Diego, CA, (2000).

[13] J.W. Hsieh, T.W. Kuo and L.P. Chang, Efficient
Identification of Hot Data for Flash-Memory Storage
Systems, ACM Transactions on Storage,2, 22-40 (2006).

[14] Intel Corporation, Understanding the flash translation
layer(FTL) specification, Technical Report, (1998).

[15] H. Jo, J. Kang, S. Park, J. Kim and J. Lee, FAB: Flash-Aware
Buffer Management Policy for Portable Media Players,
IEEE Transactions on Consumer Electronics,52, 485-493
(2006).

[16] W. Josephson, L. Bongo, K. Li and D. Flynn, DFS: A File
System for Virtualized Flash Storage, Proc. 8th USENIX
conference on file and storage technologies (FAST’10), San
Jose, CA, (2010).

[17] H. Jung, H. Shim, S. Park, S. Kang and J, Cha, LRU-
WSR: Integration of LRU and Writes Sequence Reordering
for Flash Memory. IEEE Transactions on Consumer
Electronics,54, 1215-1223 (2008).

[18] J. Jung, Y. Won, E. Kim, H. Shin and B. Jeon, FRASH:
Exploiting Storage Class Memory in Hybrid File System for
Hierarchical Storage, ACM Transactions on Storage,6, 1-25
(2010).

[19] J. Katcher, PostMark: A New File System Benchmark,
Technical report, Network Appliance, Inc., (1997).

[20] H. Kim and S. Ahn, BPLRU: A Buffer Management Scheme
for Improving Random Writes in Flash Storage, Proc. 6th
USENIX Symposium on File and Storage Technologies,
San Jose, CA, 239-252 (2008).

[21] J. Kim, J.M. Kim, S. Noh, S. Min and Y. Cho, A
Space-Efficient Flash Translation Layer for CompactFlash
Systems, IEEE Transactions on Consumer Electronics,48,
366-375 (2002).

[22] J. Kim, H. Lee, S. Choi and K. Bahng, A PRAM and NAND
Flash Hybrid Architecture for High-Performance Embedded
Storage Subsystems, Proc. EMSOFT’08, Atlanta, GA,
(2008).

[23] C. Lee, S. Baek and K. Park, A Hybrid Flash File System
Based on NOR and NAND Flash Memories for Embedded
Devices, IEEE Transactions on Computers,57, 1002-1008
(2008).

[24] S. Lee, K. Ha, K. Zhang, J. Kim and J. Kim, FlexFS: A
Flexible Flash File System for MLC NAND Flash Memory,
Proc. USENIX Annual Technical Conference, San Diego,
USA, (2009).

[25] S. Lee, D. Park, T. Chung, D. Lee, S. Park and H.Song,
A Log Buffer-Based Flash Translation Layer Using Fully-
Associative Sector Translation, ACM Transactions on
Embedded Computing Systems,6, 1-27 (2007).

[26] Z. Li, P. Jin, X. Su, K. Cui and L. Yue, CCF-LRU: A
New Buffer Replacement Algorithm for Flash Memory,
IEEE Transactions on Consumer Electronics,55, 1351-1359
(2009).

[27] A. Olson and D. Langlois, Solid State Drives-Data
Reliability and Lifetime. White paper, Imation Inc., (2008).

[28] Y. Ou, T. Harder and P. Jin, CFDC: A Flash-aware
Replacement Policy for Database Buffer Management. Proc.
fifth International Workshop on Data Management on New
Hardware, Province, RI, 15-20 (2009).

[29] C. Park, W. Cheon, J. Kang, K. Roh, W. Cho and J. Kim, A
Reconfigurable FTL(Flash Translation Layer) Architecture
for NAND Flash based Applications, ACM Transactions on
Embedded Computing Systems,7, 1-23 (2008).

[30] S. Park, D. Jung, J. Kang, J. Kim and J. Lee, CFLRU:
A Replacement Algorithm for Flash Memory, 2006
international conference on compilers, architecture and
synthesis for embedded systems, Seoul, Korea, (2006).

[31] M. Polte, J. Simsa and G. Gibson, Comparing Performance
of Solid State Devices and Mechanical Disks, Proc. 3rd
Petascale Data Storage Workshop held in conjunction with
Supercomputing’08, Auxtin, TX, (2008).

[32] V. Prabhakaran, T. Rodeheffer and L. Zhou, Transactional
Flash, Proc. 8th USENIX Symposium on Operating Systems
Design and Implementation, San Diego, CA, 147-160
(2008).

[33] A. Rajimwale, V. Prabhakaran and J. Davis, Block
Management in Solid-State Devices, Proc. USENIX Annual
Technical Conference, San Diego, CA, (2009).

[34] M. Rosenblum and J. Ousterhout, The Design and
Implementation of a Log-Structured File System, ACM
Transactions on Computer Systems,10, (1992).

[35] Samsung Electronics, K9XXG08XXM Flash Memory.
Technical paper, Samsung Inc., (2007).

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2251-2265 (2014) /www.naturalspublishing.com/Journals.asp 2265

[36] M. Saxena and M. Swift, FlashVM: Virtual Memory
Management on Flash, Proc. USENIX Annual Technical
Conference. Boston, Massachusetts, (2010).

[37] G. Soundararajan, V. Prabhakaran, M. Balakrishnan and T.
Wobber, Extending SSD Lifetimes with Disk Based Write
Caches, Proc. 8th USENIX Conference on File and Storage
Technologies (FAST’10), San Jose, CA, (2010).

[38] A. Wang, G. Kuenning, P. Reiher and G. Popek, The
Conquest File System: Better Performance Through a
Disk/Persistent-RAM Hybrid Design, ACM Transactions on
Storage,2, 1-33 (2006).

[39] D. Woodhouse, JFFS: The Journaling Flash File System.
Proc. Ottawa Linux Symposium, Ottawa, (2001).

[40] C. Wu, H. Lin and T. Kuo, An Adaptive Flash Translation
Layer for High-Performance Storage Systems, IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems,29, 953-965 (2010).

[41] Y. Yoo, H. Lee, Y. Ryu and H. Bahn, Page Replacement
Algorithms for NAND Flash Memory Storages, Proc. of
ICCSA, Kuala Lumpur, Malaysia, 201-212 (2007).

[42] Z. Zhang and K. Ghose, hFS: A Hybrid File System
Prototype for Improving Small File and Metadata
Performance, Proc. EuroSys’07, Lisboa, Portugal, (2007).

Jaechun No received
the Ph.D. degree in Computer
Science from Syracuse
University in 1999. She
worked as a postdoctoral
researcher at Argonne
National Laboratory
from 1999 to 2001. She also
worked at Hewlett-Packard
from 2001 to 2003. She is

professor of the College of Electronics and Information
Engineering at Sejong University. Her research areas
include file systems, large-scale storage system and cloud
computing.

Soo-Mi Choi

is currently an Associate
Professor in the Department
of Computer Engineering at
Sejong University, Seoul, Korea.
She received her B.S., M.S.
and Ph.D. degrees in Computer
Science and Engineering
from Ewha University of
Korea in 1993, 1995 and 2001,

respectively. After she received her Ph.D., she joined the Center
for Computer Graphics and Virtual Reality (CCGVR) at Ewha
University as a Research Professor. In 2002, she became a
faculty member in the Department of Computer Engineering at
Sejong University. From September 2008 to August 2009 she
was a Visiting Scholar at the CG Lab of ETH Zurich in
Switzerland. Her current research interests include computer
graphics, virtual reality, human-computer interaction, and
ubiquitous computing.

Sung-Soon Park
received the Ph.D. degree
in Computer Science from
Korea University in 1994. He
worked as a Fulltime Lecturer
at Korea Air Force Academy
from 1988 to 1990. He
also worked as a postdoctoral
researcher at Northwestern
University from 1997 to

1998. He is professor of the Department of Computer
Science and Engineering at Anyang University and also
CEO of Gluesys Co. LTD. His research areas include
network storage system and cloud computing.

Cheol-Su Lim

received the Master’s
degree from Indiana
Univ. and Ph.D. degree in
Computer Engineering from
Sogang Univ. respectively. He
worked as a senior researcher
at SK Telecomm from 1994
to 1997. He also worked as
National Research Program

Director from 2009 to 2010. He is professor of the Dept.
Computer Engineering at Seokyeong University. His
research areas include multimedia system and cloud
computing.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Related Studies
	System Model
	Performance Evaluation
	Conclusion

