

Applied Mathematics & Information Sciences An International Journal

http://dx.doi.org/10.12785/amis/080519

Prime (m,n) Bi- Γ -Hyperideals in Γ -Semihypergroups

Naveed Yaqoob^{1,*} and Muhammad Aslam^{1,2}

¹ Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan

² Department of Mathematics, College of Science, King Khalid University, Abha, Saudi Arabia

Received: 22 Aug. 2013, Revised: 19 Nov. 2013, Accepted: 20 Nov. 2013 Published online: 1 Sep. 2014

Abstract: Relations between rough sets and algebraic structures have been already considered by many mathematicians. Motivated by studying the properties of rough (m,n) bi- Γ -hyperideals in Γ -semihypergroups, we now introduced the notion of prime (m,n) bi- Γ -hyperideals in Γ -semihypergroups and investigated several properties of these prime (m,n) bi- Γ -hyperideals. Also we applied the rough set theory to these prime (m,n) bi- Γ -hyperideals and proved that the lower and upper approximation of a prime (m,n) bi- Γ -hyperideal is a prime (m,n) bi- Γ -hyperideal in a Γ -semihypergroup. In the end we established some results on rough prime (m,n) bi- Γ -hyperideals in the quotient Γ -semihypergroups.

Keywords: Γ -semihypergroups, Prime (m, n) bi- Γ -hyperideals, Rough prime (m, n) bi- Γ -hyperideals.

1 Introduction

Prime bi-ideals of groupoids was studied by Lee [1]. Further, many other authors studied the prime bi-ideals in different structures. Shabir and Kanwal [2], studied prime bi-ideals of semigroups and proved interesting results on strongly prime, prime, semiprime, strongly irreducible and irreducible bi-ideals of semigroups. The notion of (m,n)-ideals of semigroups was introduced by Lajos [3, 4]. Further Ansari et al. [5,6] added some results on (m,n)-ideals in semigroups and Γ -semigroups.

Hyperstructure theory was introduced in 1934, when Marty [7] defined hypergroups, began to analyze their properties and applied them to groups. Nowadays, hyperstructures have a lot of applications to several domains of mathematics and computer science and they are studied in many countries of the world. In a classical algebraic structure, the composition of two elements is an element, while in an algebraic hyperstructure, the composition of two elements is a set. A lot of papers and several books have been written on hyperstructure theory, see [8], [9], [10]. A recent book on hyperstructures [11] points out on their applications in rough set theory, cryptography, codes, automata, probability, geometry, lattices, binary relations, graphs and hypergraphs.

Recently, Davvaz, Hila and et. al. [12], [13], [14], [15], [16], [17], introduced the notion of Γ -semihypergroup as a generalization of a semigroup, a

[18] as a formal tool for modeling and processing incomplete information in information systems. Some authors have studied the algebraic properties of rough sets, for instance Aslam et al. [19,20], Chinram [21], Kuroki [22], Yaqoob et al. [23,24,25,26,27,28,29], Ansari and Khan [30,31], Anvariyeh et al. [32] and Davvaz [33,34,35].

In this paper we introduced the concept of prime (m,n) bi- Γ -hyperideals in Γ -semihypergroup and apply the rough set theory to prime (m,n) bi- Γ -hyperideals.

2 Some notions in Γ -semihypergroups

Here we recall the basic terms and definitions from the theory of Γ -semihypergroups. Throughout the paper *S* denote a Γ -semihypergroup.

Definition 1. [15] A map $\circ : S \times S \to \mathscr{P}^*(S)$ is called a hyperoperation or join operation on the set S, where S is a non-empty set and $\mathscr{P}^*(S)$ denotes the set of all non-empty subsets of S. A hypergroupoid is a set S with together a (binary) hyperoperation. A hypergroupoid (S, \circ) , which is

generalization of a semihypergroup and a generalization of a Γ -semigroup. They presented many interesting examples and obtained a several characterizations of Γ -semihypergroups. The notion of a rough set was proposed by Pawlak

^{*} Corresponding author e-mail: nayaqoob@ymail.com

associative, that is $x \circ (y \circ z) = (x \circ y) \circ z$, $\forall x, y, z \in S$, is called a semihypergroup.

Let A and B be two non-empty subsets of S. Then, we define

$$A\Gamma B = \bigcup_{\gamma \in \Gamma} A\gamma B = \bigcup \left\{ a\gamma b \mid a \in A, \ b \in B \text{ and } \gamma \in \Gamma \right\}.$$

Let (S, \circ) be a semihypergroup and let $\Gamma = \{\circ\}$. Then, *S* is a Γ -semihypergroup. So, every semihypergroup is Γ -semihypergroup.

Let *S* be a Γ -semihypergroup and $\gamma \in \Gamma$. A non-empty subset *A* of *S* is called a sub Γ -semihypergroup of *S* if $x\gamma y \subseteq A$ for every $x, y \in A$. A Γ -semihypergroup *S* is called *commutative* if for all $x, y \in S$ and $\gamma \in \Gamma$, we have $x\gamma y = y\gamma x$.

Example 1. [15] Let S = [0, 1] and $\Gamma = \mathbb{N}$. For every $x, y \in S$ and $\gamma \in \Gamma$, we define $\gamma: S \times S \longrightarrow \mathscr{O}^*(S)$ by $x\gamma y = \begin{bmatrix} 0, \frac{xy}{\gamma} \end{bmatrix}$. Then, γ is a hyperoperation. For every $x, y, z \in S$ and $\alpha, \beta \in \Gamma$, we have $(x\alpha y)\beta z = \begin{bmatrix} 0, \frac{xyz}{\alpha\beta} \end{bmatrix} = x\alpha(y\beta z)$. This means that *S* is a Γ -semihypergroup.

Example 2. [15] Let (S, \circ) be a semihypergroup and Γ be a non-empty subset of *S*. We define $x\gamma y = x \circ y$ for every $x, y \in S$ and $\gamma \in \Gamma$. Then, *S* is a Γ -semihypergroup.

Definition 2. [15] A non-empty subset A of a Γ -semihypergroup S is a right (left) Γ -hyperideal of S if $A\Gamma S \subseteq A$ ($S\Gamma A \subseteq A$), and is a Γ -hyperideal of S if it is both a right and a left Γ -hyperideal.

Definition 3. [15] A sub Γ -semihypergroup B of a Γ -semihypergroup S is called a bi- Γ -hyperideal of S if $B\Gamma S\Gamma B \subseteq B$.

Definition 4. [23] A subset A of a Γ -semihypergroup S is called an (m,0) Γ -hyperideal ((0,n) Γ -hyperideal) of S if $A^m \Gamma S \subseteq A$ $(S\Gamma A^n \subseteq A)$.

Definition 5. [23] A sub Γ -semihypergroup A of a Γ -semihypergroup S is called an (m,n) bi- Γ -hyperideal of S, if $A^m\Gamma S\Gamma A^n \subseteq A$, where m, n are non-negative integers $(A^m$ is suppressed if m = 0).

Here if m = n = 1 then A is called bi- Γ -hyperideal of S. By a proper (m,n) bi- Γ -hyperideal we mean an (m,n) bi- Γ -hyperideal, which is a proper subset of S.

Example 3. [23] Let S = [0,1] and $\Gamma = \mathbb{N}$. Then, S together with the hyperoperation $x\gamma y = \begin{bmatrix} 0, \frac{xy}{\gamma} \end{bmatrix}$ is a Γ -semihypergroup. Let $t \in [0,1]$ and set T = [0,t]. Then, clearly it can be seen that T is a sub Γ -semihypergroup of S. Since $T^m \Gamma S = [0,t^m] \subseteq [0,t] = T$ ($S\Gamma T^n = [0,t^n] \subseteq [0,t] = T$), so T is an (m,0) Γ -hyperideal $((0,n) \Gamma$ -hyperideal) of S. Since $T^m \Gamma S \Gamma^n = [0,t^{m+n}] \subseteq [0,t] = T$, then T is an (m,n) bi- Γ -hyperideal of Γ -semihypergroup S.

Example 4. [23] Let S = [-1,0] and $\Gamma = \{-1,-2,-3,\cdots\}$. Define the hyperoperation $x\gamma y = \begin{bmatrix} \frac{xy}{\gamma}, 0 \end{bmatrix}$ for all $x, y \in S$ and $\gamma \in \Gamma$. Then, clearly S is a Γ -semihypergroup. Let $\lambda \in [-1,0]$ and the set $B = [\lambda, 0]$. Then, clearly B is a sub Γ -semihypergroup of S. Since $B^m \Gamma S = [\lambda^{2m+1}, 0] \subseteq [\lambda, 0] = B$ ($S\Gamma B^n = [\lambda^{2n+1}, 0] \subseteq [\lambda, 0] = B$), so B is an (m, 0) Γ -hyperideal $((0, n) \ \Gamma$ -hyperideal) of S. Since $B^m \Gamma S \Gamma B^n = [\lambda^{2(m+n)+1}, 0] \subseteq [\lambda, 0] = B$, then B is an (m, n) bi- Γ -hyperideal of Γ -semihypergroup S.

3 Prime (m, n) bi- Γ -hyperideals

In this section we will define prime (m,n) bi- Γ -hyperideals of a Γ -semihypergroup and discuss some related properties.

Definition 6. An (m,n) bi- Γ -hyperideal B of a Γ -semihypergroup S is called prime if for $x, y \in S$, $x^m \alpha S \beta y^n \subseteq B$ (or $x^m \alpha z \beta y^n \subseteq B$, for all $z \in S$) implies $x \in B$ or $y \in B$, for all $\alpha, \beta \in \Gamma$.

Definition 7. An (m,n) bi- Γ -hyperideal B of a Γ -semihypergroup S is called semiprime if for $x \in S$, $x^m \alpha S \beta x^n \subseteq B$ (or $x^m \alpha z \beta x^n \subseteq B$, for all $z \in S$) implies $x \in B$, for all $\alpha, \beta \in \Gamma$.

Example 5. Let $S = M_2(\mathbb{Z})$ be the set of all 2×2 matrices, then *S* is a semigroup under usual multiplication. Let

$$T_{1} = \left\{ \begin{pmatrix} a & -b \\ -c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\},$$

$$T_{2} = \left\{ \begin{pmatrix} a & b \\ -c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\},$$

$$T_{3} = \left\{ \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} : a, b, d \in \mathbb{Z} \right\},$$

$$T_{4} = \left\{ \begin{pmatrix} a & 0 \\ c & d \end{pmatrix} : a, c, d \in \mathbb{Z} \right\},$$

be non-empty subsets of *S*. Let $\Gamma = \{\beta_1, \beta_2, \beta_3, \beta_4\}$. We define $A_1\beta_iA_2 = A_1T_iA_2$ for every $A_1, A_2 \in S$, and $\beta_i \in \Gamma$, $1 \leq i \leq 4$. Then *S* is a Γ -semihypergroup. Let $B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in 2\mathbb{Z} \right\}$. Since $B^m \Gamma S \Gamma B^n \subseteq B$. Then *B* is a prime (m, n) bi- Γ -hyperideal of *S*.

Example 6. Let $S = \{a, b, c, d, e, f\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined below:

γ	a	b	С	d	е	f
а	a	b	а	а	а	a
b	b	b	b	b	b	b
С	a	b	$\{a,c\}$	а	а	$\{a,f\}$
d	a	b	$\{a,e\}$	а	а	$\{a,d\}$
е	a	b	$\{a,e\}$	а	а	$\{a,d\}$
f	a	b	$a \\ b \\ \{a,c\} \\ \{a,e\} \\ \{a,e\} \\ \{a,c\} \end{cases}$	а	а	$\{a,f\}$

β	а	b	С	d	е	f
а	а	b	а	а	а	a
b	b	b	b	b	b	b
С	а	b	а	а	а	а
d	а	b	a	$\{a,d\}$	$\{a,e\}$	a
е	а	b	а	а	а	а
f	а	b	а	a b a $\{a,d\}$ a $\{a,f\}$	$\{a,c\}$	а

Then S is a Γ -semihypergroup. The (m, 0) Γ -hyperideals are $\{a, b\}$, $\{b\}$, $\{a, b, c, f\}$, $\{a, b, d, e\}$ and S. The (0, n) Γ -hyperideals are $\{a, b\}$, $\{b\}$, $\{a, b, c, e\}$, $\{a, b, d, f\}$ and S. The (m, n) bi- Γ -hyperideals are $\{a, b\}$, $\{b\}$, $\{a, b, c\}$, $\{a, b, f\}$, $\{a, b, d\}$, $\{a, b, c, e\}$, $\{a, b, d, f\}$, $\{a, b, c, f\}$, $\{a, b, d, e\}$ and S.

The only prime (m,n) bi- Γ -hyperideals of S are $\{b\}$ and S, and hence these are semiprime.

Furthermore $\{a,b\}$, $\{a,b,c\}$, $\{a,b,f\}$, $\{a,b,d\}$, $\{a,b,c,e\}$, $\{a,b,d,f\}$, $\{a,b,c,f\}$, $\{a,b,d,e\}$ are not prime (m,n) bi- Γ -hyperideals. Indeed

 $e^m \Gamma S \Gamma f^n \subseteq \{a, b\}, \text{ but } e, f \notin \{a, b\}, \\ e^m \Gamma S \Gamma f^n \subseteq \{a, b, c\}, \text{ but } e, f \notin \{a, b, c\}, \\ c^m \Gamma S \Gamma d^n \subseteq \{a, b, f\}, \text{ but } c, d \notin \{a, b, f\}, \\ e^m \Gamma S \Gamma f^n \subseteq \{a, b, d\}, \text{ but } e, f \notin \{a, b, d\}, \\ d^m \Gamma S \Gamma f^n \subseteq \{a, b, c, e\}, \text{ but } d, f \notin \{a, b, c, e\}, \\ c^m \Gamma S \Gamma e^n \subseteq \{a, b, d, f\}, \text{ but } c, e \notin \{a, b, d, f\}, \\ d^m \Gamma S \Gamma e^n \subseteq \{a, b, c, f\}, \text{ but } d, e \notin \{a, b, c, f\}, \\ c^m \Gamma S \Gamma f^n \subseteq \{a, b, d, e\}, \text{ but } c, f \notin \{a, b, d, e\}.$

Theorem 1. If an (m,n) bi- Γ -hyperideal B of a Γ -semihypergroup S is prime, then for an (m,0) Γ -hyperideal R and a (0,n) Γ -hyperideal L of S, $R\Gamma L \subseteq B$ implies $R \subseteq B$ or $L \subseteq B$.

Proof. Suppose that $R\Gamma L \subseteq B$ for an (m,0) Γ -hyperideal R and a (0,n) Γ -hyperideal L of S and $R \nsubseteq B$. Then there exists $x \in R \setminus B$. Let $y \in L$. Then

 $x^m \Gamma S \Gamma y^n \subseteq R^m \Gamma S \Gamma L^n \subseteq R \Gamma L \subseteq B.$

Since *B* is a prime (m,n) bi- Γ -hyperideal and $x \notin B$, we have $y \in B$. Thus $L \subseteq B$. \Box

Proposition 1. If an (m,n) bi- Γ -hyperideal B of a Γ -semihypergroup S is prime, then B is a (0,n) Γ -hyperideal or an (m,0) Γ -hyperideal of S.

Proof. Since $B^m \Gamma S$ is an (m,0) Γ -hyperideal of S and $S\Gamma B^n$ a (0,n) Γ -hyperideal of S such that

 $(B^m \Gamma S) \Gamma(S \Gamma B^n) \subseteq B^m \Gamma S \Gamma B^n \subseteq B,$

we get $B^m \Gamma S \subseteq B$ or $S \Gamma B^n \subseteq B$ by Theorem 1. Hence *B* is a (0,n) Γ -hyperideal or an (m,0) Γ -hyperideal of *S*. \Box

Definition 8. An (m,n) bi- Γ -hyperideal B of a Γ -semihypergroup S is called a strongly prime (m,n) bi- Γ -hyperideal if $B_1\Gamma B_2 \cap B_2\Gamma B_1 \subseteq B$ implies $B_1 \subseteq B$ or $B_2 \subseteq B$ for any (m,n) bi- Γ -hyperideals B_1 and B_2 of S.

Every strongly prime (m,n) bi- Γ -hyperideal of a Γ -semihypergroup S is a prime (m,n) bi- Γ -hyperideal and every prime (m,n) bi- Γ -hyperideal is a semiprime (m,n) bi- Γ -hyperideal. A prime (m,n) bi- Γ -hyperideal is not necessarily strongly prime.

Example 7. Let $S = \{e, a, b, c, d\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined below:

γ	е	а	b	С	d
е	е	е	е	е	е
а	е	$\{a,b\}$	} b	b	b
b	е	b	b	b	b
С	е	С	С	С	С
d	е	d	d	d	d
0					
β	e	а	b	С	d
$\frac{\beta}{e}$	e e	а е	$\frac{b}{e}$	c e	$\frac{d}{e}$
-					
e	e	e a	е	е	е
e a	e e	e a	e a	e a	e a

Then *S* is a Γ -semihypergroup. The (m,n)bi- Γ -hyperideals of *S* are $\{e\}$, $\{e,c\}$, $\{e,d\}$, $\{e,a,b\}$, $\{e,c,d\}$ and *S*. Here all (m,n) bi- Γ -hyperideals of *S* are prime and hence semiprime. However, the prime (m,n)bi- Γ -hyperideal $\{e\}$ is not strongly prime (m,n)bi- Γ -hyperideal of *S* because

$$\{e,c\}\Gamma\{e,d\}\cap\{e,d\}\Gamma\{e,c\}=\{e\}\subseteq\{e\},$$

but neither $\{e, c\}$ nor $\{e, d\}$ is contained in $\{e\}$.

Definition 9. An (m,n) bi- Γ -hyperideal B of a Γ -semihypergroup S is called an irreducible (resp. strongly irreducible) (m,n) bi- Γ -hyperideal if $B_1 \cap B_2 = B$ (resp. $B_1 \cap B_2 \subseteq B$) implies $B_1 = B$ or $B_2 = B$ (resp. $B_1 \subseteq B$ or $B_2 \subseteq B$).

In Example 7, the irreducible (m,n) bi- Γ -hyperideals of *S* are $\{e,c\}$, $\{e,d\}$, $\{e,a,b\}$, $\{e,c,d\}$ and *S*. But the (m,n) bi- Γ -hyperideal $\{e\}$ is not irreducible, because $\{e,c\} \cap \{e,d\} = \{e\}$ but neither $\{e,c\} = \{e\}$ nor $\{e,d\} = \{e\}$.

Lemma 1. The intersection of any family of prime (m,n)bi- Γ -hyperideals of a Γ -semihypergroup is a semiprime (m,n) bi- Γ -hyperideal.

Proof. The proof is straightforward. \Box

Theorem 2. Every strongly irreducible, semiprime (m,n)bi- Γ -hyperideal of a Γ -semihypergroup S is a strongly prime (m,n) bi- Γ -hyperideal.

Proof. Let *B* be a strongly irreducible semiprime (m,n) bi- Γ -hyperideal of *S*. Let B_1, B_2 be any (m,n) bi- Γ -hyperideals of *S* such that $B_1\Gamma B_2 \cap B_2\Gamma B_1 \subseteq B$. Since

$$(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2$$
 and $(B_1 \cap B_2)^2 \subseteq B_2 \Gamma B_1$,
 $(B_1 \cap B_2)^2 \subseteq B_1 \Gamma B_2 \cap B_2 \Gamma B_1 \subseteq B$.

Since *B* is a semiprime (m,n) bi- Γ -hyperideal, $B_1 \cap B_2 \subseteq B$. Because *B* is a strongly irreducible (m,n)bi- Γ -hyperideal of *S*, so either $B_1 \subseteq B$ or $B_2 \subseteq B$. Thus *B* is a strongly prime (m,n) bi- Γ -hyperideal of *S*. \Box **Theorem 3.** Let *B* be an (m,n) bi- Γ -hyperideal of a Γ -semihypergroup *S* and $a \in S$ such that $a \notin B$ for a positive integer *m*. Then there exists an irreducible (m,n) bi- Γ -hyperideal *I* of *S* such that $B \subseteq I$ and $a \notin I$.

Proof. Let \mathscr{A} be the collection of all (m,n) bi- Γ -hyperideals of S which contain B and do not contain a. Then \mathscr{A} is nonempty, because $B \in \mathscr{A}$. The collection \mathscr{A} is a partially ordered set under inclusion. If \mathscr{C} is any totally ordered subset of \mathscr{A} then $\cup \mathscr{C}$ is an (m,n) bi- Γ -hyperideal of S containing B. Hence by Zorn's Lemma, there exists a maximal element I in \mathscr{A} . We show that I is an irreducible (m,n) bi- Γ -hyperideal. Let C and D be two (m,n) bi- Γ -hyperideals of S such that $I = C \cap D$. If both C and D properly contain I then $a \in C$ and $a \in D$. Hence $a \in C \cap D = I$. This contradicts the fact that $a \notin I$. Thus I = C or I = D. \Box

Definition 10. An element $x \in S$ is called regular if there exist a in S and $\alpha, \beta \in \Gamma$ such that $x \in x\alpha \alpha \beta x$. If every element of a Γ -semihypergroup S is regular then S called regular Γ -semihypergroup.

Definition 11. An element a of a Γ -semihypergroup S is called intra-regular if there exist $x, y \in S$ such that $a \in x\alpha a^2\beta y$, for all $\alpha, \beta \in \Gamma$ and S is called intra-regular, if every element of S is intra-regular.

Theorem 4. Let *S* be a regular and intra-regular Γ -semihypergroup. Then the following assertions, for an (m,n) bi- Γ -hyperideal *B* of *S*, are equivalent:

(*i*) *B* is strongly irreducible.

(ii) B is strongly prime.

Proof. The proof is straightforward. \Box

Theorem 5. For a Γ -semihypergroup S the following assertions are equivalent:

(i) The set of (m,n) bi- Γ -hyperideals of S is totally ordered under inclusion,

(ii) Each (m,n) bi- Γ -hyperideal of S is strongly irreducible,

(*iii*) Each (m, n) bi- Γ -hyperideal of S is irreducible.

Proof. $(i) \implies (ii)$ Let *B* be an arbitrary (m,n) bi- Γ -hyperideal of *S* and B_1 , B_2 be two (m,n) bi- Γ -hyperideals of *S* such that $B_1 \cap B_2 \subseteq B$. Since the set of (m,n) bi- Γ -hyperideals is totally ordered, either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. Thus either $B_1 \cap B_2 = B_1$ or $B_1 \cap B_2 = B_2$. Hence $B_1 \cap B_2 \subseteq B$ implies either $B_1 \subseteq B$ or $B_2 \subseteq B$. This shows that *B* is a strongly irreducible (m,n) bi- Γ -hyperideal.

(*ii*) \implies (*iii*) Let *B* be an arbitrary (*m*,*n*) bi- Γ -hyperideal of *S* and *B*₁, *B*₂ be two (*m*,*n*) bi- Γ -hyperideals of *S* such that $B_1 \cap B_2 = B$. Then $B \subseteq B_1$ and $B \subseteq B_2$. By hypothesis, either $B_1 \subseteq B$ or $B_2 \subseteq B$. Hence either $B_1 = B$ or $B_2 = B$. That is, *B* is an irreducible (*m*,*n*) bi- Γ -hyperideal.

 $(iii) \Longrightarrow (i)$ Let B_1 and B_2 be any two (m,n) bi- Γ -hyperideals of S. Then $B_1 \cap B_2$ is an (m,n) bi- Γ -hyperideal

of *S*. So by hypothesis, either $B_1 = B_1 \cap B_2$ or $B_2 = B_1 \cap B_2$, that is, either $B_1 \subseteq B_2$ or $B_2 \subseteq B_1$. \Box

Proposition 2. If every (m,n) bi- Γ -hyperideal of S is semiprime then S is regular.

Proof. Suppose that every (m,n) bi- Γ -hyperideal of *S* is semiprime. Let $B = x^m \Gamma S \Gamma x^n$ for $x \in S$. Then using [23, Lemma 2.1], we have

 $B^{m}\Gamma S\Gamma B^{n} = (x^{m}\Gamma S\Gamma x^{n})^{m}\Gamma S\Gamma (x^{m}\Gamma S\Gamma x^{n})^{n}$ $\subseteq x^{m}\Gamma S\Gamma x^{n} = B,$

thus *B* is an (m, n) bi- Γ -hyperideal of *S*. As *B* is semiprime for all $x \in S$. Since $B = x^m \Gamma S \Gamma x^n$, we get $x \in x^m \Gamma S \Gamma x^n = B$. Now for any $x \in S$,

$$x \in x^m \Gamma S \Gamma x^n \subseteq x \Gamma S \Gamma x.$$

Hence for all $x \in S$, there exists $a \in S$ such that $x \in x \alpha a \beta x$, for all $\alpha, \beta \in \Gamma$. Therefore *S* is regular. \Box

Lemma 2. A Γ -semihypergroup S is completely regular if and only if

 $A \subseteq (A\Gamma A) \, \Gamma S\Gamma \, (A\Gamma A)$

for every $A \subseteq S$. Equivalently, if $x \in x\Gamma x\Gamma S\Gamma x\Gamma x$ for all $x \in S$.

Theorem 6. If every (m,n) bi- Γ -hyperideal of S is semiprime then S is completely regular.

Proof. Let $x \in S$. Let

$$B = (x\Gamma x)^m \Gamma S\Gamma (x\Gamma x)^n = x^m \Gamma x^m \Gamma S\Gamma x^n \Gamma x^n.$$

Then using [23, Lemma 2.1], we have

 $B^{m}\Gamma S\Gamma B^{n}$ = $(x^{m}\Gamma x^{m}\Gamma S\Gamma x^{n}\Gamma x^{n})^{m}\Gamma S\Gamma (x^{m}\Gamma x^{m}\Gamma S\Gamma x^{n}\Gamma x^{n})^{n}$ $\subseteq x^{m}\Gamma x^{m}\Gamma S\Gamma x^{n}\Gamma x^{n} = (x\Gamma x)^{m}\Gamma S\Gamma (x\Gamma x)^{n} = B,$

thus *B* is an (m,n) bi- Γ -hyperideal of *S*. As *B* is semiprime for all $x \in S$. Since $B = (x\Gamma x)^m \Gamma S \Gamma (x\Gamma x)^n$, we get $x \in (x\Gamma x)^m \Gamma S \Gamma (x\Gamma x)^n = B$. Now for any $x \in S$, $x \in (x\Gamma x)^m \Gamma S \Gamma (x\Gamma x)^n \subseteq x\Gamma x\Gamma S \Gamma x\Gamma x$. Hence for all $x \in S$, there exists $a \in S$ such that $x \in x \alpha x \gamma a \delta x \beta x$, for all $\alpha, \beta, \gamma, \delta \in \Gamma$. Therefore *S* is completely regular. \Box

4 Rough prime (m, n) bi- Γ -hyperideals

In this section we will study rough prime (m,n) bi- Γ -hyperideals.

Definition 12. Let *S* be a Γ -semihypergroup. An equivalence relation ρ on *S* is called regular on *S* if

 $(a,b) \in \rho$ implies $(a\gamma x, b\gamma x) \in \rho$ and $(x\gamma a, x\gamma b) \in \rho$,

for all $x \in S$ and $\gamma \in \Gamma$.

If ρ is a regular relation on S, then, for every $x \in S$, $[x]_{\rho}$ stands for the class of x with the represent ρ . A regular relation ρ on S is called complete if $[a]_{\rho}\gamma[b]_{\rho} = [a\gamma b]_{\rho}$ for all $a, b \in S$ and $\gamma \in \Gamma$. In addition, ρ on S is called congruence if, for every $(a,b) \in S$ and $\gamma \in \Gamma$, we have $c \in [a]_{\rho} \gamma[b]_{\rho} \Longrightarrow [c]_{\rho} \subseteq [a]_{\rho} \gamma[b]_{\rho}.$

Let A be a non-empty subset of a Γ -semihypergroup S and ρ be a regular relation on S. Then, the sets

$$\underline{Apr}_{\rho}(A) = \left\{ x \in S : [x]_{\rho} \subseteq A \right\}$$

and
$$\overline{Apr}_{\rho}(A) = \left\{ x \in S : [x]_{\rho} \cap A \neq \emptyset \right\}$$

are called ρ -lower and ρ -upper approximations of A, respectively. For a non-empty subset A of S, $Apr_{\rho}(A) = (\underline{Apr}_{\rho}(A), \overline{Apr}_{\rho}(A))$ is called a rough set with respect to ρ if $\underline{Apr}_{\rho}(A) \neq \overline{Apr}_{\rho}(A)$.

Theorem 7. [32] Let ρ be a regular relation on a Γ -semihypergroup S and let A and B be non-empty subsets of S. Then,

 $(1) \overrightarrow{Apr}_{\rho} (A) \Gamma \overrightarrow{Apr}_{\rho} (B) \subseteq \overrightarrow{Apr}_{\rho} (A\Gamma B);$ $(2) \quad If \qquad \rho \qquad is \qquad complete,$ $(Apr_{\rho} (A) \Gamma Apr_{\rho} (B) \subseteq Apr_{\rho} (A\Gamma B).$ then

A subset A of a Γ -semihypergroup S is called a ρ upper (resp. ρ -lower) rough (m, n) bi- Γ -hyperideal of S if $Apr_{\rho}(A)$ (resp. $\underline{Apr}_{\rho}(A)$) is an (m,n) bi- Γ -hyperideal of

Theorem 8. [23] Let ρ be a regular relation on a Γ -semihypergroup S. If A is an (m,n) bi- Γ -hyperideal of S, then it is a ρ -upper rough (m,n) bi- Γ -hyperideal of S.

Theorem 9. [23] Let ρ be a complete regular relation on a Γ -semihypergroup S. If A is an (m,n) bi- Γ -hyperideal of S, then $\underline{Apr}_{\rho}(A)$ is, if it is nonempty, an (m,n) bi- Γ hyperideal of S.

Let ρ be a regular relation on a Γ -semihypergroup S. Then a subset A of S is called a ρ -lower rough prime (m,n) bi- Γ -hyperideal of S if $\underline{Apr}_{\rho}(A)$ is a prime (m,n)bi- Γ -hyperideal of S. A ρ -upper rough prime (m,n)bi- Γ -hyperideal of S is defined analogously. A is called a rough prime (m,n) bi- Γ -hyperideal of S if A is a ρ -lower and a ρ -upper rough prime (m, n) bi- Γ -hyperideal of S.

Theorem 10. Let ρ be a complete regular relation on a Γ -semihypergroup S. If A is a prime (m,n)bi- Γ -hyperideal of S, then A is a ρ -upper rough prime (m,n) bi- Γ -hyperideal of S.

Proof. Since A is an (m,n) bi- Γ -hyperideal of S, then by Theorem 8, $\overline{Apr}_{\rho}(A)$ is an (m, n) bi- Γ -hyperideal of S. Let *w* be any element of *S*. Let $x, y \in S$ and $\beta, \gamma \in \Gamma$ such that $x^{m}\beta w\gamma y^{n} \subseteq Apr_{\rho}(A)$. Thus

$$[x^m \beta w \gamma y^n]_{\rho} \cap A = [x^m]_{\rho} \beta [w]_{\rho} \gamma [y^n]_{\rho} \cap A \neq \phi.$$

Thus there exist $a^m \subseteq [x^m]_{\rho} = [x]_{\rho}^m, w' \in [w]_{\rho}$ and $b^n \subseteq$ $[y^n]_{\rho} = [y]^n_{\rho}$ such that $a^m \beta w' \gamma b^n \subseteq A$. Since A is a prime (m,n) bi- Γ -hyperideal, we have $a \in A$ or $b \in A$. Now

$$a^m \subseteq [x]^m_{\rho} \Longrightarrow a \in [x]_{\rho}$$
 also $b^n \subseteq [y]^n_{\rho} \Longrightarrow b \in [y]_{\rho}$.

Thus $a \in [x]_{\rho} \cap A$ or $b \in [y]_{\rho} \cap A$. So $[x]_{\rho} \cap A \neq \phi$ or $[y]_{\rho} \cap$ $A \neq \phi$, and so $x \in \overline{Apr}_{\rho}(A)$ or $y \in \overline{Apr}_{\rho}(A)$. Therefore $\overline{Apr}_{o}(A)$ is a prime (m,n) bi- Γ -hyperideal of S. \Box

Theorem 11. Let ρ be a complete regular relation on a Γ semihypergroup S and A is a prime (m,n) bi- Γ -hyperideal of S. Then $\underline{Apr}_{0}(A)$ is, if it is nonempty, a prime (m,n)bi- Γ -hyperideal of S.

Proof. Since A is an (m,n) bi- Γ -hyperideal of S, by Theorem 9, we know that $\underline{Apr}_{\rho}(A)$ is an (m,n)bi- Γ -hyperideal of S. We suppose that $\underline{Apr}_{\rho}(A)$ is not a prime (m,n) bi- Γ -hyperideal, then for $\beta, \gamma \in \Gamma$ there exists $x, y \in S$ and any element $w \in S$, such that $x^{m}\beta w\gamma y^{n} \subseteq \underline{Apr}_{\rho}(A)$, but $x \notin \underline{Apr}_{\rho}(A)$ and $y \notin \underline{Apr}_{\rho}(A)$. Thus $[x]_{\rho} \nsubseteq A$ and $[y]_{\rho} \nsubseteq A$. Then there exist

$$a \in [x]_{\rho}$$
 but $a \notin A$ and $b \in [y]_{\rho}$ but $b \notin A$.

We have for all $w \in S$ and $\beta, \gamma \in \Gamma$,

$$a^{m}\beta w\gamma b^{n} \subseteq [x]^{m}_{\rho}\beta[w]_{\rho}\gamma[y]^{n}_{\rho} = [x^{m}]_{\rho}\beta[w]_{\rho}\gamma[y^{n}]_{\rho}$$
$$= [x^{m}\beta w\gamma y^{n}]_{\rho} \subseteq A.$$

This implies that $a^m \beta w \gamma b^n \subseteq A$. Since *A* is a prime (m, n)bi- Γ -hyperideal, we have $a \in A$ or $b \in A$. It contradicts the supposition. This means that $\underline{Apr}_{\rho}(A)$ is, if it is nonempty, a prime (m, n) bi- Γ -hyperideal of S. \Box

The following example shows that the converse of Theorem 10 and Theorem 11 does not hold.

Example 8. Let $S = \{a, b, c, d, e\}$ and $\Gamma = \{\gamma, \beta\}$ be the sets of binary hyperoperations defined below:

γ	а	b	С	d	е
a	$\{a,b\}$	$\{b,c\}$	С	$\{d, e\}$	е
b	$\{b,c\}$	С	С	$\{d, e\}$	е
С	С	С	С	$\{d, e\}$	е
d	$\{d,e\}$	$\{d, e\}$	$\{d, e\}$	d	е
е	е	е	е	е	е
β	a	b	С	d	е
$\frac{\beta}{a}$	a { b,c }	<i>b</i> <i>c</i>	С С	$\frac{d}{\{d,e\}}$	e e
			-		
$\frac{1}{a}$	$\{b,c\}$	С	С	$\{d, e\}$	e
a b	$\{b,c\}$ c	с с	C C	$ \begin{cases} d, e \\ \{d, e \} \end{cases} $	e e

Then S is a Γ -semihypergroup. Let ρ be a complete regular relation on S such that ρ -regular classes are the subsets $\{a,b,c\}$, $\{d,e\}$. Then for $A = \{c,d,e\} \subseteq S$,

 $\overline{Apr}_{\rho}(A) = \{a, b, c, d, e\}, \text{ and } \underline{Apr}_{\rho}(A) = \{d, e\}.$ It is clear that $\overline{Apr}_{\rho}(A)$, $\underline{Apr}_{\rho}(A)$ are prime (m,n)bi- Γ -hyperideals of S. The (m, n) bi- Γ -hyperideal A is not a prime (m,n) bi- Γ -hyperideal for $b^m \Gamma c \Gamma a^n = c \in A$ but $b \notin A$ and $a \notin A$.

5 Rough prime (m,n) bi- Γ -hyperideals in the quotient Γ -semihypergroups

Let ρ be a regular relation on a Γ -semihypergroup S. We put $\widehat{\Gamma} = \{\widehat{\gamma} : \gamma \in \Gamma\}$. For every $[a]_{\rho}, [b]_{\rho} \in S/\rho$, we define $[a]_{\rho}\widehat{\gamma}[b]_{\rho} = \{[z]_{\rho} : z \in a\gamma b\}.$

Theorem 12. [32, Theorem 4.1] If S is a Γ -semihypergroup, then S/ρ is a $\widehat{\Gamma}$ -semihypergroup.

Definition 13. Let ρ be a regular relation on a Γ -semihypergroup S. The ρ -lower approximation and ρ -upper approximation of a non-empty subset A of S can be presented in an equivalent form as shown below:

$$\underbrace{\underline{Apr}}_{and} (A) = \left\{ [x]_{\rho} \in S/\rho : [x]_{\rho} \subseteq A \right\}$$

and
$$\overline{\overline{Apr}}_{\rho} (A) = \left\{ [x]_{\rho} \in S/\rho : [x]_{\rho} \cap A \neq \emptyset \right\},$$

respectively.

Theorem 13. [23] Let ρ be a regular relation on a Γ -semihypergroup S. If A is an (m,n) bi- Γ -hyperideal of S. Then,

(1) $\overline{Apr}_{\rho}(A)$ is an (m,n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ . (2) $\underline{Apr}_{\rho}(A)$ is, if it is non-empty, an (m,n)bi- $\widehat{\Gamma}$ -hyperideal of S/ρ .

Theorem 14. Let ρ be a complete regular relation on a Γ -semihypergroup S. If A is a ρ -upper rough prime (m,n)bi- Γ -hyperideal of S, then $\overline{Apr}_{\rho}(A)$ is a prime (m,n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ .

Proof. Let A be a ρ -upper rough prime (m,n)bi- Γ -hyperideal of S, by Theorem 13(1), we know that $\overline{Apr}_{\rho}(A)$ is an (m,n) bi- Γ -hyperideal of S/ρ . Suppose for any $w \in S$, $\beta, \gamma \in \Gamma$ and $[x]_{\rho}, [y]_{\rho} \in S/\rho$, such that

$$\begin{split} [x]^m_{\rho}\widehat{\beta}w\widehat{\gamma}[y]^n_{\rho} &= [x^m]_{\rho}\widehat{\beta}w\widehat{\gamma}[y^n]_{\rho} \\ &= [x^m\beta w\gamma y^n]_{\rho} \subseteq \overline{\overline{Apr}}_{\rho}(A) \end{split}$$

for $\widehat{\beta}, \widehat{\gamma} \in \widehat{\Gamma}$. Thus $[x^m \beta w \gamma y^n]_{\rho} \cap A \neq \phi$. Now there exist *t*, such that $t \in x^m \beta w \gamma y^n \subseteq \overline{Apr}_{\rho}(A)$. Since A is a ρ -upper rough prime (m,n) bi- Γ -hyperideal of S, that is $\overline{Apr}_{\rho}(A)$ is a prime (m,n) bi- Γ -hyperideal, we have $x \in \overline{Apr}_{\rho}(A)$ or $y \in \overline{Apr}_{\rho}(A)$. Now as $t \in x^{m}\beta w\gamma y^{n}$, we obtain $[t]_{\rho} \in$ $[x]^{m}_{\rho}\widehat{\beta}w\widehat{\gamma}[y]^{n}_{\rho}$. On the other hand, since $t \in \overline{Apr}_{\rho}(A)$, we have $[t]_{\rho} \cap A \neq \phi$. So $[x]_{\rho} \cap A \neq \phi$ or $[y]_{\rho} \cap A \neq \phi$. Hence $[x]_{\rho} \in \overline{Apr}_{\rho}(A)$ or $[y]_{\rho} \in \overline{Apr}_{\rho}(A)$. Therefore $\overline{Apr}_{\rho}(A)$ is a prime (m,n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ .

Theorem 15. Let ρ be a complete regular relation on a Γ -semihypergroup S. If A is a ρ -lower rough prime (m,n)bi- Γ -hyperideal of S, then $\underline{Apr}_{\rho}(A)$ is a prime (m,n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ .

Proof. Let A be a ρ -lower rough prime (m,n)bi- Γ -hyperideal of S, by Theorem 13(2), we know that <u>Apr</u>(A) is an (m,n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ . Suppose for any $w \in S$, $\beta, \gamma \in \Gamma$ and $[x]_{\rho}, [y]_{\rho} \in S/\rho$, such that

$$\begin{split} [x]^m_{\rho}\widehat{\beta}w\widehat{\gamma}[y]^n_{\rho} &= [x^m]_{\rho}\widehat{\beta}w\widehat{\gamma}[y^n]_{\rho} \\ &= [x^m\beta w\gamma y^n]_{\rho} \subseteq \underline{Apr}_{\rho}(A). \end{split}$$

for $\widehat{\beta}, \widehat{\gamma} \in \widehat{\Gamma}$. Thus $[x^m \beta w \gamma y^n]_{\rho} \subseteq A$. Now there exist *t*, such that $t \in x^m \beta w \gamma y^n \subseteq \underline{Apr}_{\rho}(A)$. Since *A* is a ρ -lower rough prime (m,n) bi- Γ -hyperideal of S, that is $Apr_{\alpha}(A)$ is a prime (m,n) bi- Γ -hyperideal, we have $x \in \underline{Apr}_{0}^{r}(A)$ or $y \in \underline{Apr}_{\rho}(A)$. Now as $t \in x^m \beta w \gamma y^n$, we obtain $[t]_{\rho} \in [x]_{\rho}^{m} \widehat{\beta} w \widehat{\gamma}[y]_{\rho}^{n}$. On the other hand, since $t \in \underline{Apr}_{\rho}(A)$, we have $[t]_{\rho} \subseteq A$. So $[x]_{\rho} \subseteq A$ or $[y]_{\rho} \subseteq A$. Hence $[x]_{\rho} \in \underline{Apr}_{\rho}(A)$ or $[y]_{\rho} \in \underline{Apr}_{\rho}(A)$. Therefore $\underline{Apr}_{\rho}(A)$ is a prime (m,n) bi- $\widehat{\Gamma}$ -hyperideal of S/ρ . \Box

6 Conclusion

In this paper, we investigated some properties of prime (m,n) bi- Γ -hyperideals in Γ -semihypergroups. Also we applied the rough set theory to these prime (m,n)bi- Γ -hyperideals.

In our future study, the following topics may be considered:

(i) Study on rough fuzzy Γ -hyperideals in Γ -semihypergroups.

(ii) Study on rough fuzzy prime Γ -hyperideals in Γ semihypergroups.

Acknowledgement

The authors are highly grateful to referee's for their valuable comments and suggestions for improving the paper.

References

- S.K. Lee, Prime bi-ideals of groupoids, Kangweon Kyungki Math. J., 13, 217-221 (2005).
- [2] M. Shabir and N. Kanwal, Prime bi-ideals of semigroups, Southeast Asian Bull. Math., 31, 757-764 (2007).
- [3] S. Lajos, Generalized ideals in semigroups, Acta Sci. Math., 22, 217–222 (1961).
- [4] S. Lajos, Notes on (m,n)-ideals I, Proc. Japan Acad., 39, 419-421 (1963).
- [5] M.A. Ansari, M.R. Khan and J.P. Kaushik, Notes on generalized (m,n) bi-ideals in semigroups with involution, Int. J. Algebra, **3**, 945-952 (2009).
- [6] M.A. Ansari and M.R. Khan, Notes on (m, n)-bi- Γ -ideals in Γ -semigroups, Rend. Circ. Mat. Palermo, **60**, 31-42 (2011).
- [7] F. Marty, Sur une generalization de la notion de group, 8th Congres Math. Scandinaves, Stockholm, 45-49 (1934).
- [8] P. Corsini, Prolegomena of hypergroup theory, Second edition, Aviani editor, (1993).
- [9] B. Davvaz and V. L. Fotea, Hyperring theory and applications, International Academic Press, USA, (2007).
- [10] T. Vougiouklis, Hyperstructures and their representations, Hadronic Press, Florida, (1994).
- [11] P. Corsini and V. Leoreanu, Applications of hyperstructure theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, (2003).
- [12] D. Heidari, S.O. Dehkordi and B. Davvaz, Γsemihypergroups and their properties, U.P.B. Sci. Bull., Series A, 72, 197-210 (2010).
- [13] K. Hila, B. Davvaz and J. Dine, Study on the structure of Γ -semihypergroups, Commun. Algebra, **40**, 2932-2948 (2012).
- [14] S. Mirvakili, S. M. Anvariyeh and B. Davvaz, Γsemihypergroups and regular relations, J. Math., Article ID 915250, 9 pages (2013).
- [15] S.M. Anvariyeh, S. Mirvakili, B. Davvaz, On Γ -hyperideals in Γ -semihypergroups, Carpathian J. Math., **26**, 11-23 (2010).
- [16] S. Abdullah, K. Hila and M. Aslam, On bi-Γ-hyperideals of Γ-semihypergroups, U.P.B. Sci. Bull., Series A, 74, 79-90 (2012).
- [17] S. Abdullah, M. Aslam and T. Anwar, A note on *M*-hypersystems and *N*-hypersystems in *Γ*-semihypergroups, Quasigroups Related Systems, **19**, 101-104 (2011).
- [18] Z. Pawlak, Rough sets, Int. J. Comput. Inform. Sci., 11, 341-356 (1982).
- [19] M. Aslam, M. Shabir, N. Yaqoob and A. Shabir, On rough (m,n)-bi-ideals and generalized rough (m,n)-bi-ideals in semigroups, Ann. Fuzzy Math. Inform., **2**, 141-150 (2011).
- [20] M. Aslam, S. Abdullah, B. Davvaz and N. Yaqoob, Rough M-hypersystems and fuzzy M-hypersystems in Γ -semihypergroups, Neural Comput. Appl., **21**, 281-287 (2012).
- [21] R. Chinram, Rough prime ideals and rough fuzzy prime ideals in Γ -semigroups, Commun. Korean Math. Soc., **24**, 341-351 (2009).
- [22] N. Kuroki, Rough ideals in semigroups, Inform. Sci., 100, 139-163 (1997).
- [23] N. Yaqoob, M. Aslam, B. Davvaz and A.B. Saeid, On rough (m,n) bi- Γ -hyperideals in Γ -semihypergroups, U.P.B. Sci. Bull., Series A, **75**, 119-128 (2013).

- [24] N. Yaqoob, S. Abdullah, N. Rehman and M. Naeem, Roughness and fuzziness in ordered ternary semigroups, World Appl. Sci. J., 17, 1683-1693 (2012).
- [25] N. Yaqoob, Applications of rough sets to Γ-hyperideals in left almost Γ-semihypergroups, Neural Comput. Appl., 21, 267-273 (2012).
- [26] N. Yaqoob, M. Aslam and K. Hila, Rough fuzzy hyperideals in ternary semihypergroups, Advances in Fuzzy Systems, Article ID 595687, 9 pages (2012).
- [27] N. Yaqoob and M. Aslam, On rough Quasi-Γ-hyperideals in Γ-semihypergroups, Afrika Matematika, doi: 10.1007/s13370-013-0207-x. 1-13 (2013)
- [28] N. Yaqoob and R. Chinram, On prime (m,n) bi-ideals and rough prime (m,n) bi-ideals in semigroups, Far East J. Math. Sci., **62**, 145-159 (2012).
- [29] N. Yaqoob, M. Aslam and R. Chinram, Rough prime biideals and rough fuzzy prime bi-ideals in semigroups, Ann. Fuzzy Math. Inform., 3, 203-211 (2012).
- [30] M.A. Ansari and M.R. Khan, On rough (m,n) quasi- Γ -ideals in Γ -semigroups, Int. J. Math. Res., **3**, 31-38 (2011).
- [31] M.A. Ansari and M.R. Khan, On rough (m, n) quasi-ideals in semigroups, Indian J. Math. Math. Sci., **6**, 134-143 (2010).
- [32] S.M. Anvariyeh, S. Mirvakili and B. Davvaz, Pawlak's approximations in Γ -semihypergroups, Comput. Math. Applic., **60**, 45-53(2010).
- [33] B. Davvaz, Roughness in rings, Inform. Sci., **164**, 147-163 (2004).
- [34] B. Davvaz, Roughness based on fuzzy ideals, Inform. Sci., 176, 2417-2437 (2006).
- [35] B. Davvaz, Approximations in a semigroup by using a neighborhood system, Int. J. Comput. Math., 88, 709-713 (2011).