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Abstract: In this paper, we suggest and analyze some new derivative free iterative methods for solving nonlinear equationf (x) = 0
using a suitable transformation. We also give several examples to illustratethe efficiency of these methods. Comparison with other
similar method is also given. These new methods can be considered as alternative to the developed methods. This technique can be
used to suggest a wide class of new iterative methods for solving nonlinear equations.
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1 Introduction

One of the most frequently occurring problems in
scientific work is to locate the approximate solution of a
nonlinear equation

f (x) = 0 (1)

Analytical methods for solving such equations are almost
nonexistent and therefore, it is only possible to obtain
approximate solutions by relying on numerical techniques
based on iteration procedures [1,2,3,4,5,6,8,9]. If the
function is not known explicitly or the derivative is
difficult to compute, a method that uses only computed
values of the function is more appropriate.

Some of the more classical numerical methods for solving
nonlinear equations without using derivative [9] include
the bisection method, secent method and regula falsi
method. These are the basic methods but have slow
convergence toward the solution.

Newton’s method, which is simple and converges
quadratically [9], is probably the best known and most
widely used algorithm which includes the derivative of
the function. However, Steffensen’s method [3,9]

xn+1 = xn−
[ f (xn)]

2

f (xn+ f (xn))− f (xn)
n= 0,1,2,3, ...

is variation of Newton’s method which does not employ
the derivative of the function. In this method the
derivative is approximated by the forward difference
scheme. Steffensen’s method has same order of
convergence as Newton’s method. Based on the
approximation of the first derivative, we construct some
derivative-free iterative methods for solving nonlinear
equations.

2 Iterative methods

In this section, we construct some iterative methods for
solving nonlinear equations. We use approximation of
first derivative of the function to obtain derivative-free
methods.

Let us approximate the first derivative of the function
f (xn) = 0, at the current iterationxn by

f ′(xn)≈ g(xn) =
f (xn+b f(xn))− f (xn)

b f(xn)
, (2)
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whereb∈ R, andb 6= 0. Using (2), in well known Newton
method, we obtain the following derivative-free iterative
method for solving nonlinear equation as:
Algorithm2.1. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

xn+1 = xn−
b[ f (xn)]

2

f (xn+b f(xn))− f (xn)
, n= 0,1,2,3, ...

If b = 1, then the Algorithm 2.1 reduces to the well
known Steffensen’s method.

He [2], Noor [5] and Noor and Noor [7], suggested the
iterative method for solving nonlinear equation which
involves the first derivative of the function is described as:
Algorithm2.2 [2,5]. For a given x0, find the
approximation solutionxn+1 by the following iterative
scheme:

xn+1 = xn−
f (xn)

f ′(xn)−α f (xn)
, n= 0,1,2,3, ...

whereα is a parameter.
Algorithm2.3 [7]. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
f (xn)

f (xn)−α f (xn)
,

xn+1 = yn−
f (yn)

f ′(xn)−α f (xn)
.

Algorithm2.4 [7]. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
f (xn)

f ′(xn)−α f (xn)
,

xn+1 = yn−
2 f (yn)

f ′(xn)−α f (xn)
+

f (xn) f (yn)

( f ′(xn)−α f (xn))2 .

Since the evaluation of derivatives is difficult task, we
replace the derivative off (x) by (2). That is,

f ′(xn) =
f (xn+b f(xn))− f (xn)

b f(xn)
,

where 06= b∈ R.
Consequently, we obtain the following new derivative free
iterative methods for solving the nonlinear equations (1).

Algorithm2.5. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
b[ f (xn)]

2

f (xn+b f(xn))− f (xn)
,

xn+1 = yn−
b f(yn) f (xn)

f (xn+b f(xn))− f (xn)−αb[ f (xn)]2
,

n= 0,1,2,3, ...

which is a third-order derivative-free method for solving
nonlinear equations.

Remark2.1. We would like to point out that the
Algorithm 2.3 and Algorithm 2.5 have at least second and
third-order convergence respectively for all values ofα. If
we take α = 0,α = 1

2,α = 1, .... in above derived
methods, we can obtain various classes of iterative
methods for solving nonlinear equations.

Remark2.2. It is important to point out that never choose
such a value ofα which makes the denominator zero. It is
necessary that sign ofα should be chosen so as to keep
the denominator largest in magnitude in above derived
Algorithms.
Algorithm2.6. For a givenx0, find the approximation
solutionxn+1 by the following iterative scheme:

yn = xn−
b[ f (xn)]

2

f (xn+b f(xn))− f (xn)
,

xn+1 = yn−
2b f(yn) f (xn)

f (xn+b f(xn))− f (xn)−αb[ f (xn)]2

+
b2 f (yn)( f (xn))

3

( f (xn+b f(xn))− f (xn)−αb[ f (xn)]2)2 ,

n= 0,1,2,3, ...

3 Convergence analysis

One can consider the convergence criteria of the iterative
methods developed in section 2, using the techniques
developed in [1,4]

Theorem 1.Assume that the function f: D ⊂ R → R for
an open interval inD with simple root p∈ D . Let f(x) be
a smooth sufficiently in some neighborhood of the root and
then the Algorithm 2.5 has third order convergence.

4 Numerical results

We now present some examples to illustrate the efficiency
of the new developed iterative methods in Tables 4.1-4.6.
We compare Steffensen’s method (SM), with the newly
developed methods for different values ofα and b
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involved in the iterative schemes. We use MAPLE for all
the computations. We use the following examples for the
comparison of the methods.

f1(x) = sin2x−x2+1,

f2(x) = x3+4x2−15,

f3(x) = x2−ex−3x+2,

f4(x) = cosx−x,

f5(x) = (x−2)−e−x,

f6(x) = x3+4x2+8x+8,

f7(x) = sinx−
1
2

x.

Table 4.1. Comparison of various iterative schemes.

f (x) x0 SM Alg 2.1 Alg 2.1 Alg 2.1
b= 1 b=−1 b= 1/2 b=−1/2

f1 −1 10 5 7 4

f2 2 18 10 11 14

f3 −2 38 9 5 7

f4 1.7 5 5 4 5

f5 0 7 4 6 4

f6 −1 9 8 5 5

f7 −1 7 4 6 4

Table 4.2. Comparison for α = 1.

f (x) x0 SM Alg 2.3 Alg 2.3 Alg 2.3
b= 1 b=−1 b= 1/2 b=−1/2

f1 −1 10 4 5 6

f2 2 18 14 9 6

f3 −2 38 6 12 13

f4 1.7 5 5 5 6

f5 0 7 5 7 6

f6 −1 9 6 8 9

f7 −1 7 6 7 6

Table 4.3. Comparison for α = 0.5.

f (x) x0 SM Alg 2.3 Alg 2.3 Alg 2.3
b= 1 b=−1 b= 1/2 b=−1/2

f1 −1 10 5 5 6

f2 2 18 8 10 5

f3 −2 38 7 9 10

f4 1.7 5 5 6 5

f5 0 7 7 7 7

f6 −1 9 7 7 7

f7 −1 7 4 4 6

Table 4.4. Comparison for α = 0.

f (x) x0 SM Alg 2.5 Alg 2.5 Alg 2.5
b= 1 b=−1 b= 1/2 b=−1/2

f1 −1 10 5 3 4

f2 2 18 6 7 4

f3 −2 38 6 4 5

f4 1.7 5 3 3 3

f5 0 7 3 4 3

f6 −1 9 5 5 3

f7 −1 7 7 5 5

Table 4.5. Comparison for α = 1.

f (x) x0 SM Alg 2.5 Alg 2.5 Alg 2.5
b= 1 b=−1 b= 1/2 b=−1/2

f1 −1 10 4 5 4

f2 2 18 6 7 7

f3 −2 38 4 4 5

f4 1.7 5 4 3 4

f5 0 7 3 5 3

f6 −1 9 4 4 4

f7 −1 7 4 5 5
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Table 4.6. Comparison for α = 0.5.

f (x) x0 SM Alg 2.5 Alg 2.5 Alg 2.5
b= 1 b=−1 b= 1/2 b=−1/2

f1 −1 10 4 3 4

f2 2 18 6 7 6

f3 −2 38 5 4 4

f4 1.7 5 4 3 3

f5 0 7 3 4 3

f6 −1 9 5 5 4

f7 −1 7 3 5 4

As convergence criteria, it was required that the distance
of two consecutive approximations for the zero was less
than 10−15. Displayed in all Tables 4.1–4.6 is the number
of iterations (IT) to approximate the zero for all the
methods. The computational results presented in above
Tables show that for most of the functions we tested, the
presented methods are efficient and show better
performance as compared with the Steffensen’s method.
Thus, presented methods in this contribution can be
considered as an improvement of the derivative-free
methods for solving nonlinear equations.

5 Conclusion

In this work, we have presented new iterative methods for
solving nonlinear equations. These all are derivative-free
methods. For different values of the parameterα, we can
obtain different classes of derivative-free methods for
solving nonlinear equations. These computed methods are
compared with well known Steffensen’s method and the
proposed methods have been observed to have at least
better performance.
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