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Abstract: In this paper, we consider the existence of countably many positive sifio nonlinear singular boundary value problem
on time scales. By using the fixed-point index theory and a new fixed-fhe@orem in cones, the sufficient conditions for the existence
of countably many positive solutions are established.
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1 Introduction A projection ¢ : R — R is called an increasing
homeomorphism and positive homomorphism if the
The theory of time scales, which has recently received &ollowing conditions are satisfied:
lot of attention, was introduced and developed by
Aulbach and Hilger 11] in 1988. It has been created in
order to unify continuous and discrete analysis, and | : i
allows a simultaneous treatment of differential and . &S0 continuous;
difference equations, extending those theories to sedall (i) @(xy) = @) @(y),Vx,y € R
dynamic equations. Further, the study of time scales has If the above conditions hold, then it implies thatis
led to several important applications, e.g., in the study ofhomogeneous and generatep-aaplacian operator, i.e.,
insect population models, heat transfer, neural networksg(u) = [u[P~2u, for some p > 1.
phytoremediation of metals, wound healing, and epidemic  In recent years, there is much attention focused on on
models. the existence of positive solutions of boundary value
In this paper, we are interested in the existence ofproblems on time scales, some authors have found many
countably many positive solutions for singular multipoint results; for details, se€l[5,6,7,8,9,10,13,19,20,21,22,
boundary value problem on time scales, 23,24,25] and the references therein. But for the
existence of countable many positive solutions for
(e ()" +at)f(ut)) =0, te[0,Tlr, (1)  boundary value problem on time scales, few works were
done as far as we knowt4,16].
We would like to mention the results of Ma et &l7],
m—2 Liang and Zhangq5] and Ji et al. 12].
uA(O)zo, uT) = Zbiu(éi), 2 Ma et al. [L7] studied the existence of monotone
i= positive solutions for the BVP

(i) if x<y, theng(x) < @(y),Vxy€R;
it (ii) @is a continuous bijection and its inverse mapping is

subject to following boundary condition

where@ : R — R s an increasing homeomorphism and (¢ (U))' +q(t)f(t,u)=0, te(0,1),

positive homomorphism ang(0) = 0. & < [0, T]t with n n

O0< & <& < -- <&no<T, andb satisfies u'(0) = Zaiu/(fi), u(1) = Zﬁiu(fi%

bi € [0, Ty, 0< y™?2b < Lat): [0,T]y — [0, 4o = =

and has countably many singularitie§@T]r. The usual where & € (0,1) and 0 < o, < 1 satisfy
notation and terminology for time scales as can be found < 5! ; a;, 5" ; B < 1.The main tool is the monotone
in [2,3], will be used here. iterative technique.
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Liang and Zhang 15 considered the existence of (i) xeéP, A >0imply AxeP;

countably many positive solutions for singular BVP (i) xeP, —xePimply x=0.
(pp(U))' +a(t)f(ult))) =0, te(0,1), Every coneP C E induces an ordering iE given by
m-—2 m—2 x<yifandonlyify—xeP.
u(0) = Zaiu(fi)7 $(U(1) = ZB@(U/(&)), Definition 2.2. A map a is said to be a nonnegative
i= i= continuous concave functional on a coReof a real

where ¢ : R — R is a increasing homeomorphism and Banach spack if a : P — [0, ) is continuous, and
positive homomorphism an¢(0) = 0, & < (0,1) with
0 < & < & < v < &no < 1, a(tx+(1-t)y) <ta(x)+(1-t)a(y)
a;,B € [0,4%),0< 3" ?ai < 1,0< 3™ 2B < 1. They ¢
showed that there exist countably many positive solutions
by using the fixed-point index theory and a new L ) ) ) _
fixed-point theorem in cones. Definition 2.3. Given a nonnegative continuous functional
Ji et al. [L2] found the existence of countably many Y On & cone? of E, for eachd > 0 we define the set

positive solutions for a singular multipoint BVP P(y,d) = {x € P: y(x) < d}.

/\\/
(@) +:(_t3f(u(t)) 0 tel® 13]’_2 The following fixed point theorems will play an important

u'(0) — Zl au(&) =0, u(1)+ Zl aiu(n) =0, role in the proofs of our main results.

i= Theorem 2.1.([4]). Let E be a Banach space afdC E

be a cone irE. Forr > 0, defineQ, = {ue P: |jul| <
r}. Assume thal : PN Q; — Pis a completely continuous
operator such thafu = uforu € 0 Qy;

orall x,y € Pandt € [0,1].

wheregy(s) = [s|P %5, p> 1, () ' =@andi+1 =1
They provided sufficient conditions for the existence of
countably many positive solutions by using fixed-point
index theory and the Leggett-Williams’ fixed point (@) If || Tul| < |lul| for ue 0, theni(T,Q;,P) =1,
theorem. (b) If [Tu[| > [Jul[ for u€ dQ, theni(T,2r,P)=0.

However, to the best of our knowledge, no work has
been done for BVPI) and @). The aim of this paper is to
fill the gap in the relevant literature.

Throughout the paper, we will suppose that the
following conditions are satisfied:

Theorem 2.2.([18)]). Let P be a cone in a Banach space
E. Let a,B andy be three increasing, nonnegative and
continuous functionals o®, satisfying for somec > 0
andM > 0 such that

(H1) f : [0,4-0) — [0,400) is continuous; y(u) < B(u) <a(u), [lu] <My(u)
(H2) There exists a sequendg };° ; such that < ti 1 < .
ti <, limieti=to< L, andtoe [0, T]y. limq_y = for all u e P(y,c). Suppose there exists a completely
o, i=12..., and continuous operatdf : P(y,c) - P and O<a<b<c
. such that
0< /o a(s)0s < +oo. (S1) y(Tu) <c, forall uedP(y,c);

(S2) B(Tu) > b, forall ue dP(B,b);
Moreover, a(t) does not vanish identically on any (S3) P(a,a)7#0, and a(Tu) <a, forall ucdP(a,a).

subinterval of [0, T]r. Then T has at least three fixed pointg, up, uz € P(y,c)

The rest of paper is arranged as follows. In Sectionsuch that
2, we state some definitions, notations, lemmas and prov
several preliminary results. Section 3 is devoted to thed = @ (U1) <@<a(uz), B(uz) <b<p(us), y(us) <c.
presentation and proof of our main results. In last section

4, we present an example of a family of functiomg)  Lemma  2.1. If SMPb # 1, then
that satisfy condition (H2). for he Gy[0, Tl and h>0,
e (1))’ +hit)=0,  te0T,

2 Preliminaries m-2
u?(0) =0, u(T) = Zx biu(&)  (4)

In this section, we provide some background materials i=

from theory of cones in Banach spaces.

Definition 2.1. Let E be a real Banach space. A

nonempty, closed, convex $etC E is a cone if it satisfies vt T
the following two conditions: ut) = /0 ¢ [3 h(r)Or +A | As+B, )

has the unique solution
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_1_;”—12@[22“/0& o (/STh(r)DH—A)AS
_/OT(pfl (/STh(r)DH—A)AS .

Proof. Let u be as in §), taking the delta derivative of
(5), we have

P = ( [ hoora).

moreover, we get

o (0)= [

t

h(r)Or +A,

taking the nabla derivative of this expression yields

Routine calculations verify that satisfies the boundary

value conditions in4), so thatu given in 6) is a solution
of (3) and @). It is easy to see that BVRp(u*))" = 0,
uA(0) = 0, u(T) = S™2biu(&) has only the trivial
solution. Thusu in (5) is the unique solution of3) and
(4). The proof is complete.]

Lemma 2.2. The solution of BVP 8) and @) satisfies
u(t) >0, fort € [0, T]r.

Proof. Let
_ gl (/STh(r)Dr—/oTh(r)Dr>.

/ST h(r)Or < /OT h(r)Or

it follows that ¢o(s) < 0. According to Lemma 2.1, we

Since

get
u(0) =B

_ 320 g go(9)As— fg do(s)As

1-3M b
320 (Jg Go(9as— Jf go(s)As) — J7 do(s)As
- 1— zm 2b|
T pRiey if.fi $o(s)As
- Vo olsis+ STET I 20

S 2bi f3' $o(S)As— [g Po(s)As
1-57%b
"do(s)As

T
uT) = [ do(91as+
— 32 fg go(9)As+ ¥ f3

1-3%h
—[ b (fo $o(s)As— [y’ ¢o(S)AS>]
1-3"?b
_ 2:1_12 bi jgl— ¢0(S)AS -0
1-y%h
Ift e (0,T), we have

0= [ b5

I ¢o(s>As]

[ 2b|/ $o(9
+ ; b /0 “gooas [ ¢o<s>As]

> — zm-zb. [/ do(s Asfgb./ do(s)
50 [ pows- || wiaas

— 5120 (g do(9)4s— I do(s)As)
1-3yM2h;
317 [ do(9)as
-3,
Sou(t) >0, te0,T]. The proofis complete.
Lemma 2.3.If u € P, then

5 [mz [ b0t

m—2 bl

Ol te
T )

u(t) >

where

6, T—0],

Julf = sup fu(t)].
te[0,T]r

Proof. Let

T:inf{fe[O,T]: sup u(t):u(E)}.

te [O,T]T

Case (i).T € [0,8]. It follows from the concavity of(t)
that each point on chord betweén u(t)) and (T,u(T))
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is below the graph ofi(t). Thus,

which implies that
ut) > 2 ul.

Case (ii).t € [0, T —0]. If t € [0, 1], similarly, we have

u(t) > u(t) “(T);“(O)(tfr), te o, 1.
Thus,
U(t) Ztg[]eu}] U(T)+ (T):U(O) (t—T)
— )+ 20 =uO

If t € [1,T — 6], similarly,

which yields
6
u(t) > =l te[6.T -6l

This completes the proof.

3 Existence of positive solutions
Let the Banach spade=Ci4([0, T]r,R) with norm||ul| =
supo T}, u(t)[ and define the coné C E by
P = {u€ E: u(t)is a nondecreasing concave
and nonnegative function da, T]r}.

Let 6 < rx < T — 6, we define the nonnegative,
increasing, continuous functiongl, Bx, anday by

u) = max u(t)=u(rg),
(W) = max u(t) = u(r)

Acu) = _ i, u(t) =u(ro),
a(u) = L u(t) = u(T — 6).

It is easy to see that for eache P,

Ye(U) < Bi(u) < ag(u).

Moreover, by Lemma 2.3, for eache P,

(W) =) > X .

u(t) > u(t) + u(T_|2 : lTJ(T) (t—1), te[r.T—6l. Define the otperatoﬁ' :TP —E by
Thus, oo = [ (,,1(_/5 alr) f(u(r))Cr
. u(T) —u(1)
ut) 2 AL A UM —/OT a(r)f(u(r))Dr)As
u(T) —u(r)
=un)+ =5 (T-6-71) 5120y 152 [T () f(u(r))n
__0 u(r)+T797Tu(T)>9u(r) o )
T T-T T-1 T + 1-5m 7
Therefore, we find =t
U(t)ZgHUW te[0,T—8). _Ja(r)f(u(r))[]r)As
Case (jii).7 € [T — 6, T]. Similarly, we have 1-5M b
ut) > un) + Mgy eor -0 A wl(f! a(r) (u(r))Or
Thus, - 1-yM2h;
)=, i e+ 40 ; a<r>f<u<r>>ur)As
— U(T)+U(T)_U(O)(6—T) B 1*2:‘212b|
9 t 0 ltis easy to see that (Tu)(t) > 0, (Tu®(0) =
- ?u(r) +(1- ?)u(O) > ?u(r), 0, (Tu(T) = sM2bi(Tu)(&) and
@© 2014 NSP
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[p(Tu)?(t)]” = —a(t)f(u(t)) < 0. This showsTP C P. Furthermore for each natural numbemwe assume that

One may show thaf : P — P is completely continuous.  satisfies:
Lemma 3.1. Assume condition (H2) holds. Then there
exists a constarfl € max{t € T : 0 <t < T} satisfies

(H3) f(u)

@(mry), forallue [%rk,rk],
@

>
(H4) f(u) < @(MR), forallue [0,Ry],

T-6
0< / a(s)ds< +oo.
6

Furthermore, the function

Alt) = /tTitl ot (/:tl a(r)Or f/optl a(r)Dr> As

L ST @7 (JsanDr — foa(nor) As
1-3M?b
et (fanor - fsar)or) as
1-5™ b

is a positive continuous function dh, T —t;] and has a
minimum on|t;, T —t;], therefore there exidt > 0 such
thatA(t) >0, te [tl,T —tj_].
Proof. At first, it is easily seen thal(t) is continuous on
[tl,T —tl]. Next, let

Ag(t) = /tT_tl ot (/ST_tl a(r)Or —/OT_tl a(r)Dr) As,

_ S2bi ft ot (fsa(r)Or — fpa(r)Or) As
1-57 %
ot (fSarmor— ffa(r)or) As
1-5m b
Then, from condition (H2), we have the functida(t) is
strictly monotone decreasing ort;, T — t;] and

Ai(T —t1) = 0, the functionAx(t) is strictly monotone
increasing ont;, T —t1] and Ax(t1) = 0. BecauseA;(t)

Ax(t)

and Ay(t) are not equal to zero at the same time.

Therefore the functiod\(t) = Ay (t) + Ax(t) is positive on
[t1, T —t1], which impliesL = miny, 1_¢,) A(t) > 0. The
proof is complete. [J

For convenience, we denote by
A1 =1/L,

A = 1/{/(;T ot (/OT a(r)l]r) As
+1—Zi1_12bi lrinzlzbi /: ¢! (/OT a(r)Dr> As
_/OT(p—l (/STa(r)Dr>AS }

Theorem 3.1. Assume that (H1) and (H2) hold. Let

{6}r_1 be such that6 € (txi1,t),(k = 1,2,...). Let
{rdp_, and {R¢}g_; be such that

Rk+1<%rk<rk<mrk<Rk, mrg < MRy, k=1,2,....

whereme (A1,+w), M€ (0,A2). Then BVP () and @)
has infinitely many solutiongux}y_; such that

e <l <Rq, k=1,2,....

Proof. Because X tg <ty 1 < B <ty <T, k=1,2,...,
then for anyk € N, u e P, by Lemma 2.3, we get

Bk

Ut > Ful. te (8T -6k ©)

We consider the sequencQi i}y ; and {Qoy}i ; of
open subsets @& defined by

Qi={ueP:ful|<r}, k=1,2,...,

Qx={ueP:|u| <R}, k=12,....
For a fixedk andu € d Q1 y, by (6) we have

rk = [lul = sup [u(t)]
0<t<T

> sup u(t)zek

=lu
T B<t<T—6 T Il

= %rk, forall te[6,T—-86.

By condition (H3), we have

f(u) > @(mry), forall te[6T— 6.

Since(t;, T —t1) C [6«, T — 6], if (H2) holds, we consider
three possibilities:

(i) If &1 € [ty,T —t1], then forue dQqy, by (H3) and

© 2014 NSP
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&1
Lemma 3.1, we have B 0 a(r)Dr)As
1-3yM2h;
T 1 T
Tul= [ o < | an o I (pl(fs'fla(r)Dr— Ofla(r)ur)As
T B 1_2?;_12bi
7/0 a(r)f(u(r))Dr)As A > M > e [l
$m-2p, 16 g1 (fJ (1) F(u(r)) O (@)1 &6 (T—4.T). then foru 202 by (H3) and
+ e
L-3th 2 fy e (ST alr) futr)on
T ) [Tull > =
o a(r)f(u(r))Or |As 1-y™ b
- 1—Zi:_12bi - OT’tla(r)f(u(r))Dr)As
157D
fo (p—l<fja(r)f(u(r))mr ftT o (fsT_tla(r)f(u(r))Dr
B 1-31b, 1-31b,
Tty
fJa(r)f(u(r))Dr)As g taln fu(n)or)as
- 1-3" %
1-3mh > mr AT —t) > mrl > re = |Jul].
T4 T-t,
> / q)1< / a(r)f(u(r))0r (iii) If & € (0.t), then foru e dQyy, by (H3) and
& s Lemma 3.1, we have
T—tg
- a(r)f(u(r))Dr)As T (7
J Tl = [ o ( | animn)or
m-2p t —1 t .
YiLhiy @ (fsa(r)f(u(r))Dr —/Ta(r)f(u(r))Dr>As
+ m-2 70
1= z bl Tt 1 Tt
.5a<r>f<u<r>>mr>As = e </ a(r)T(u(r)tr
13 = /0 T_tla(r)f(u(r))Dr>As
Iy (P_1<J§a(f)f(u(f))5f -t 4
- zmrk/thv‘1</Tta(r)Dr
1-3™ % b s
T—tg
(éa(r)f(u(r))Dr)As */0 a(r)Dr)As
- 1-5" 7 = mrAty) > mrl > r = ||ul|
Tftl T*tl i i 1 H i
> (M) [/ (pl(/s a(r)0r tThr;L:s, in all cases, an application of Theorem 2.1 implies
Tt I(Ta Ql,k?P) = O (7)
—/ a(r)Dr)As
0 On the other hand, lete dQ;), we haveu(t) < |ul| =
52 ot (e R, by (H4) we have
+ 1-5m2n f(u(t)) < @(MRy), forall te[0,T].
@© 2014 NSP
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Therefore

ul = "”(./; alf(u)or
- /OT a(r)f (u(r))Dr) As

ST fg qo-l(fJ a(r)f (u(r)or
1-3™7b
s a<r>f<u<r>>mr>As
1-3M %
1<JJ a(r)f (u(r)or
1-5M %D

+

Ja(r)f(u(r))Dr)As

1— zm 2b|

< /OT q)—1</OT a(r)f(u(r))Dr)As

S fo! <P1<foT a(f)f(u(f))Df>AS
1-3" b
o §0_1<fsT a(f)f(U(r))Dr>AS

1-3" b

/OT (pl</oT a(r)Dr)As

5™ 2b [ qu(fJ a(r)Dr)As
1— zm Zbl

I (pl(fs a(r)Dr)As
13 ]
< Re= .
Hence Theorem 2.1 implies that
i(T,Qk,P) =1

_|_

< MR

_|_

(8)

Becauseay < R¢ for ke N, (7) and @), it follows from

For notational convenience, we dengteandny by

o=, o (]

S2hi fo! ¢—1<J‘J a(r)Dr)As

Dr> AS

+

1 zm—z
fo <p1<fJ a(r)Dr)As
- -y

nk = /elzk ot </ST9ka(r)Dr /OTeka(r)Dr> As.

Theorem 3.2. Suppose that (H1) and (H2) hold, and let
{6c}r., be such thatf € (txy1,t), (k= 1,2,...). Let
{actie 1, {bk}e, and {c}y ; be such that

Ck+1<ak<%bk<bk<cka

and
prbk < nkek, for k=1,2,....

Furthermore for each natural numbewe assume that
satisfies:

(HE)f(u) < @(5), forall 0 < u(t) < g-o;
(HE)f (u) > (p(%), for all b < u(t) < Thby;
(H7)f(u) < @(59), forall 0 < u(t) < ga.

Then the BVP 1) and @) has three infinite families of
solutions {uw}y_;, {ux}i, and {ux}p, satisfying

0 < ak(uw) < ax < ak(ux),

B (uzk) < by < By(uak),

y(uz) < ¢, for ke N.

Proof. By the definition of the completely continuous
operatorT, it is easy to check thaf : P(y,cx) — P, for
ke N.

We prove that all the conditions of Theorem 2.2 are
satisfied. In order to make use of property (i) of Theorem
2.2, we chose u € JP(W,¢c). Then
W(U) = maxeg, g, U(t) = u(ry) = c, this implies
0O<u () < ¢ for t € [0,rg]r. If we recall that
[lul] < GKM(( )= ck Therefore we get

the additivity of the fixed point index that o<ut) < Ick, te[0,Tr.
i(T,Q20\Q14,P) =1, for ke N. K
Thus, T has a fixed point inQ,\Q1x such that Then assumption (H5) implies
re < [Jukl]| < R¢. Sincek e N was arbitrary, the proof is
completed.O] f(u) <o pk) te[0,T]r.
© 2014 NSP
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So

W(Tu) = max (Tu)(t) = (Tu)(r)

te[Vie,relT

—/Ork(p—1</sTa(r)f(u(r))Dr

f/OT a(r)f(u(r))Dr)As

paiee AN (fs,T a(r)f(u(r))dr
1-31b
Ja(r)f(u(r))Dr)As

1- 31,

+

Jo qu(fJ a(r) f(u(r))0r

1-3" b

Ja(r)f(u(r))l]r)As

1-51%h
T 1 T
g/o 0 (/0 a(r)f(u(r))Dr)As

sbi g et (foT a(r)f (u(r))Dr) As
1-y™ b
fo cpl<.fJ a<r>f<u<r>>mr>As

1-3y™72h

UOT <p1(/OT a(r)Dr)As

S 2b & g1 (fJ a(r)mr)As

+

Ck
Px

' 1-5 2Dy
A cpl(.fl a<r>mr)As
- 1-3Pb ]

= Ck.

Consequently, condition (i) is satisfied.

Secondly, we show that (ii) of Theorem 2.2 is fulled.
For this we choose u € JP(B«bk). Then
Bk(u) = mingy, t_g, U(t) = u(rk) = by, this means
u(t) > by, for t e [rg, T — 6|r. Therefore we have
u| > b, for t e [r,, T — 6Jr. Noticing that

lull < g W (u) < g Be(u) = g bx, we get

T
—by for t € r, T — .
B x [k, T — 6t

By (H6) we get
b
f(u) > (p(r,—), for t € [rg, T — 64]T-
k

So
Bk(Tu)

min
tefr, T—6T

/Ork (pl</: a(r) F(u(r))or

— /OT a(r)f (u(r))Dr) As

(Tu)(t) = (Tu)(rk)

SIPbify ¢t (fJ a(r) f(u(r))or
1-5M %D
0 a<r>f<u<r>>mr>As
- 1-3%b
I <p1<fJ a(r) f(u(r))0r

1- 3%,

+

Ja(r)f(u(r))ﬂr)As

1-3™?b
e T—6¢
> /ek 0 1(/8 a(r) f(u(r))Or
_/OTeka(r)f(u(r))Dr>As
% 4 T—6
> e e, </S a(r)dr

T—6
- / a(r)Dr)As
Jo
= by.

Thus, condition (ii) is satisfied.
Lastly we verify that (iii) of Theorem (2.2) is also
satisfied. We note that(t) = %, 0<t<T isamember

of P(ax,a) and ax(u) = % < a. Therefore
P(ax,ax) # 0. Now let u € JP(agx,ak). Then

ak(u) = maxgg 1-g), Ut) = UW(T — 6&) = a. This
implies that 0< u(t) < a for t e [6,T — 6.
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Together with{[ul| < & %

/\

u) < &ak(u) = %ak Thenwe  Hence condition (i) of Theorem 2.2 is satisfied. Because

have all hypothesses of Theorem 2.2 are satisfied, claim
T
0<ult) < ~a, tel[0,Tlm follows. O
6 If we add the condition of
By (H7) we have a(t)f(t,0,0) 20, te [0,T]r, to Theorem 3.2 we can

get three infinite families of positive solutions

ay
<o), 10T {undiy {Uadiy and {usdi, satisfying

Therefore
ag(Tu) = : [ekaaXek} (Tu)(t) = (Tu)(T — 6k) 0 < a(uik) < ak < ak(ug),
€ IR T
T—6« T
— / o / a(r) f(u(r))0r
0 s Br(uzk) < by < Br(usk),
T
—/ a(r)f(u(r))l]r)As
0
y(usk) < ¢k, for ke N.
ST f5 ot (fsT a(r) f(u(r))0r
+
1-57 2y
Ja(r)f(u(r))Dr)As 4 Example
1-3Mh
T There exists the function(t) satisfying condition (H2).
Jo @77{ Js a(r)f(u(r)Cr LetT=1ands = v2(r?/3-9/4),
- 1— zm 2bI
T 5 n—-1 1
o a(r)f(u(r))Or |As to:l—6, tn:to—i;m, n=12....
- 1-3"Ph
T T We consider the functioa(t) : [0,1] — (0,+) is given
< / <p—1</ a(r)f(u(r))Dr)As bya(t) = 3%, an(t), te 0,1, where
0 0
S0 fp1<foT a(r)f(u(r»mr>As o
n(n+1)t +tn) ? 0<t< n+12 X
- 1-5M%b LT gt oy
Yi=1 Di an(t) = 312" 7 - T ns
- 1 t t< ntih—1
A ¢1<JJ a<r>f<u<r>>Dr)As AR
_ R Ly 2 <tst
1-3" b
a| (T ([T At first, it is easily seen thag = 1/4 < 1/2 th—the1 =
< Px l/o ¢ (/0 a(r)Dr)As ﬁm: 1,2,...and (note thaf >, 5 = g‘g)
12 0§ o (U7 alrycr ) as .
+ m-2 t*:limtnzi_ ;
1-57 bi N—soo 16 & (I+2)4
5 o7t (47 atryor ) s
_ ——
1—Z{ilb| ] _E_(E_]_) 21 7'[4 1
= & T 16 \90 16 90 5

© 2014 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

2186

A. Dogan: Existence of Countably Many Positive Solutions for...

Next, sincey 2 ; -

© 1 ©
b0t g

, n(n+1)

100
+SZ

n=1

tn 1
/(tn+1+tn)/2 (tn - t)l/z

(th+th-1)/2 1
o]

0t

(t—tn)

[(tn - tn+1) 12

+ (th-1— tn)l/z

This implies that condition (H2) holds.
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