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Abstract: In this research article, we give analytic approximate solution to the SharmaTasso Olver (STO) equation and exact solutions
to both the Schrodinger equation and the Telegraph equation. Also, the approximate analytical and exact solutions we present in this
paper are calculated in the form of power series with easily computable components. The obtained results are in a good agreement with
the exact solutions. We present an algorithm called the Reduced Differential Transform Method (RDTM) to find approximate solution
and we compare the results with the exact solutions. This method reduces significantly the numerical computations compare with the
existing methods such as the perturbation technique, differential transform method (DTM) and the Adomian decomposition method
(ADM).

Keywords: Reduced Differential Transform Method (RDTM), Sharma Tasso Olver (STO) equation, Schrodinger equation, Telegraph
equation, Approximate solutions, Analytical solutions.

1 Introduction

There are many wave equations which are quite useful in
physics and engineering. These equations are represented
usually by linear and nonlinear PDEs and solving such
equations is very important and sometime it is difficult to
handle the nonlinear part of these PDEs. Many authors
applied numerical methods to find solutions of these
equations and to name few of these methods: The
Differential Transform Method (DTM) [7,12], the
Adomian Decomposition Method (ADM) [5,6], the
Variational Iteration Method (VIM) [8,11] and the
sine–cosine method [9]. The RDTM was first introduced
by Y. Keskin in his Ph.D. [4]. This method based on the
use of the traditional DTM techniques. Usually, a few
numbers of iteration needed of the series solution for
numerical purposes with high accuracy.

The RDTM has been used by many authors to obtain
analytical approximate and in some cases exact solutions
to nonlinear wave equations. Keskin and Oturanc [1,2,3]
used the RDTM to solve linear and nonlinear wave
equations and they showed the effectiveness, and the
accuracy of the proposed method. Moreover, they showed
that it takes only few iterations to get an approximate

solutions with high accuracy. In addition, M. Rawashdeh
[14] used the RDTM to find exact and approximate
solution for Gardner equation, Variant Nonlinear Water
Wave equation (VNWW), and the Fifth-Order
Korteweg-de Vries (FKdV) equation. Finally, Abazari. R,
Soltanalizadeh [16] used the RDTM to find approximate
solutions for the Kawahara Equations.

In this paper, we apply the RDTM to the Sharma Tasso
Olver (STO) equation which is a good example to show
fission and fusion of the soliton solutions. The SOT was
studied by many authors using different methods such as
Hirota’s direct method [17] and extended tanh method
[10]. Also, A. M. Wazwaz [10] found solitons and kinks
solutions to the Sharma Tasso Olver equation.
The standard form of the Sharma Tasso Olver equation
[10,17] is given by

ut +α
(

u3)

x +
3
2

α(u2)xx +αuxxx = 0, (1)

whereα is a constant.

In this paper, we present analytic approximate solution to
Eq.(1) and exact solutions for both Eq.(4) and Eq.(6).
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First, the Sharma Tasso Olver equation of the form:

ut +α
(

u3)

x +
3
2

α(u2)xx +αuxxx = 0, (2)

subject to the initial condition

u(x,0) =

√

1
α

tanh

(

√

1
α

x

)

. (3)

Second, the Schrodinger equation of the form:

ut = iuxx, (4)

subject to the initial condition

u(x,0) = sinh(x), (5)

Third, the homogeneous Telegraph equation of the form:

uxx = utt −2ut −u, (6)

subject to the initial condition

u(x,0) = cosh(x)−1; ut(x,0) = 1. (7)

The rest of this paper is organized as follows: In Section
2, the reduced differential transform method is
introduced. Section 3 is devoted to apply the RDTM to
three test problems to show the effectiveness of the
RDTM. In section 4, we present a table to show the
comparison between the approximate and exact solutions
using the RDTM. Section 5 discussion and conclusion of
this paper.

2 Analysis of the Method

In this section, we will give the methodology of the
RDTM. So let’s start with a function of two variables
u(x, t) which is analytic andk−times continuously
differentiable with respect to timet and spacex in the
domain of our interest. Assume we can represent this
function as a product of two single-variable functions
u(x, t) = f (x).g(t). From the definitions of the DTM, the
function can be represented as follows:

u(x, t) =

(

∞

∑
i=0

F(i)xi

)(

∞

∑
j=0

G( j)t j

)

=
∞

∑
k=0

Uk(x)t
k (8)

whereUk(x) is the transformed function ofu(x, t) which
can be defined as:

Uk(x) =
1
k!

[

∂ k

∂ tk u(x, t)

]

t=0
. (9)

From equations (8) and (9) one can deduce

u(x, t) =
∞

∑
k=0

1
k!

[

∂ k

∂ tk u(x, t)

]

t=0
tk =

∞

∑
k=0

Uk(x) tk
. (10)

In this work, the lowercaseu(x, t) represent the original
function while the uppercaseUk(x) stand for the
transformed function. Note that from the above
discussion, one can realize that the RDTM is derived
from the power series expansion.
Some basic operations of the reduced differential
transformation obtained from equations (8) and (9) are
given in the table below:

Table 1. Basic operations of the RDTM [1, 2, 3, 4]

Functional Form Transformed form

u(x, t) Uk (x) =
1
k!

[

∂k

∂ tk
u(x, t)

]

t=0
w(x, t)=αu(x, t)±βv(x, t) Wk (x) = αUk (x)±βVk(x), α andβ are constants.

w(x, t) = u(x, t)v(x, t) Wk (x) = ∑k
i=0Ui(x)Vk−i(x)

f (x, t)=u(x, t)v(x, t)w(x, t) Fk(x) = ∑k
i=0 ∑i

j=0U j (x)Vi− j (x)Wk−i(x)

w(x, t) = ∂n
∂ tn

u(x, t) Wk (x) =
(k+n)!

K! Uk+n(x)

w(x, t) = ∂n
∂xn u(x, t) Wk (x) =

∂n
∂xn Uk (x)

w(x, t) = xmtnu(x, t) Wk (x) = xmUk−n (x)

w(x, t) = xmtn Wk (x)=xmδ (k−n), whereδ (k-n)=

{

1, n=k
0, n6=k

w(x, t)= ∂n+m
∂xn∂ tm

u(x, t) Wk (x)=
∂n
∂xn

[

(k+m)!
k! Uk+m(x)

]

Remark. It is worth mentioning here that table 1 was
derived by Y. Keskin in his Ph.D [4]. The proofs of theses
theorems are also available in [4].

Now, we illustrate the RDTM by using Eq.(1) in standard
form

L(u(x, t))+R(u(x, t))+N (u(x, t)) = 0 (11)

with initial conditions

u(x,0) = f (x); ut(x,0) = g(x), (12)

where L = ∂
∂ t is a linear operator,

N (u(x, t)) = α
(

u3
)

x +
3
2α(u2)xx is the nonlinear term and

R(u(x, t)) is the remaining linear term.

Using the RDTM formulas in Table 1, we can derive the
following recursive relation:

(k+1)Uk(x) = R(Uk(x))−N (Uk(x))+Uk(x) (13)

where, R(Uk(x)), Uk(x) and N (Uk(x)) are the
transformations of R(u(x, t)), u(x, t) and N (u(x, t))
respectively.
Now from equation (12), we can write the initial
condition as:

U0(x) = f (x); U1(x) = g(x) (14)

To find all other iterations, we first substitute equation (14)
into equation (13) and then we find the values ofUk(x).
Finally, we apply the inverse transformation to all values
{Uk(x)}

n
k=0 to obtain the approximate solution:

⌢
u (x, t) =

n

∑
k=0

Uk(x) tk
. (15)
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wheren is the number of iterations we need to find the
intended approximate solution.
Hence, the exact solution of our problem is given by
u(x, t) = lim

n→∞

⌢
u (x, t).

3 Numerical Examples

In this section, we apply the RDTM to three numerical
examples and then compare our approximate solutions to
the exact solutions to show the efficiency of the RDTM.

3.1 Sharma Tasso Olver (STO) equation

First, consider the Sharma Tasso Olver (STO) equation:

ut +α
(

u3)

x +
3
2

α(u2)xx +αuxxx = 0, (16)

whereα is a constant.

In the case whenα = 4, the STO becomes

ut +4
(

u3)

x +6(u2)xx +4uxxx = 0, (17)

subject to the initial conditions

u(x,0) =
1
2

tanh
( x

2

)

; ut(x,0) =
−1
4

sech2
( x

2

)

, (18)

where the exact solution is

u(x, t) =
1
2

tanh

(

x− t
2

)

. (19)

Applying the RDTM to (18) and (17), we obtain the
recursive relation

Uk+1(x) =
−1

k+1



4
∂3Uk(x)

∂x3
+4

∂
∂x





k
∑

i=0

i
∑
j=0

Ui− j (x)U j (x)Uk−i(x)









+
−6

k+1

(

∂2

∂x2

(

k
∑

i=0
Ui(x)Uk−i(x)

))

. (20)

where the Uk(x), is the transform function of the
t−dimensional spectrum. Note that

U0(x) =
1
2

tanh
( x

2

)

; U1(x) =
−1
4

sech2
( x

2

)

. (21)

Now, substitute Eq. (21) into Eq. (20) to obtain the
following:

U2(x) =
sinh(x)

4(1+cosh(x))2

U3(x) =− 1
48(cosh(x)−2)sech4

(

x
2

)

U4(x) =−
(cosh(x)−5)tanh( x

2)
48(1+cosh(x))2

.

We continue in this manner and after a few iterations, the
differential inverse transform of{Uk(x)}

∞
k=0 will provide

us with the following approximate solution:

⌢
u (x, t) =

∞

∑
k=0

Uk(x) tk

= U0(x)+U1(x) t +U2(x) t2+U3(x) t3+ ....

=
1
2

tanh
( x

2

)

−
1
4

sech2
( x

2

)

t −
sinh(x)

4(1+ cosh(x))2
t2

−
1
48

(cosh(x)−2)sech4
( x

2

)

t3+ . . . .

Hence, the approximate solution converges rapidly to the
exact solution and the exact solution of the problem is
given byu(x, t) = lim

n→0

⌢
u n (x, t).

From figure 1 below one can observe that the values of
the approximate solution at different grid points obtained
by RDTM are very close to the values of the exact
solution with high accuracy with only five iterations and
the accuracy increases as the order of approximation
increases.
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Fig. 1: The approximate, exact solutions and absolute error, respectively for example 3.1 when−5< x < 5
and 0< t < 0.01

Also figure 2 below shows the exact solution,
approximate solution ofu(x, t) for the values of
x =−5,−3,3,5 andt = 0.02,0.04,0.06,08,0.1.
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0.2
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-4 -2 2 4
x

-0.4

-0.2

0.2
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Fig. 2: The approximate and exact solutions for example 3.1 when−5< x < 5 and 0< t < 0.1

3.2 Schrodinger equation

Consider the Schrodinger equation of the form:

ut = iuxx, (22)
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subject to the initial condition

u(x,0) = sinh(x), (23)

where the exact solution is

u(x, t) = eit sinh(x). (24)

Applying the RDTM to (22) and (23), we obtain the
recursive relation

Uk+1(x) =

(

i
k+1

)(

∂ 2

∂x2 (Uk(x))

)

, (25)

where theUk(x), is the transform function of the
t−dimensional spectrum.

U0(x) = sinh(x). (26)

Now, substitute Eq. (26) into Eq. (25) to obtain the
following:

U1(x) = isinh(x)

U2(x) = 1
2sinh(x)

U3(x) = −i
6 sinh(x).

We continue in this manner and after a few iterations, the
differential inverse transform of{Uk(x)}

∞
k=0 will provide

us with the following approximate solution:

⌢
u (x, t) =

∞

∑
k=0

Uk(x) tk

= U0(x)+U1(x) t +U2(x) t2+ ....

= sinh(x)+ it sinh(x)−
t2

2
sinh(x)−

it3

6
sinh(x)+ ...

=

(

1+ it −
t2

2
−

it3

6
+ ...

)

sinh(x)

= eit sinh(x).

This is the exact solution of Eq. (22).

3.3 Telegraph equation

We consider the homogeneous Telegraph equation of the
form:

uxx = utt −2ut −u, (27)

subject to the initial condition

u(x,0) = cosh(x)−1;ut(x,0) = 1, (28)

where the exact solution

u(x, t) = cosh(x)− e−t
. (29)

Now, we apply the RDTM to Eq. (27) and Eq. (28) we get

Uk+2(x) =
1

(k+2)(k+1)

(

∂2Uk (x)

∂x2
−2(k+1)Uk+1(x)−Uk(x)

)

(30)

where theUk(x), is the transform function of the
t−dimensional spectrum. Note that

U0(x) = cosh(x)−1; U1(x) = 1. (31)

Now, substitute Eq. (30) into Eq. (31) to obtain the
following:

U2(x) =
−1
2

, U3(x) =
1
6
, ... (32)

So after a few iterations, the differential inverse transform
of {Uk(x)}

∞
k=0 will give the following approximate

solution:

⌢
u (x, t) =

∞

∑
k=0

Uk(x) tk

= U0(x)+U1(x) t +U2(x) t2+U3(x) t3+ ...

= cosh(x)−1+ t −
t2

2
+

t3

6
−

t4

12
+ ...

= cosh(x)−

(

1− t +
t2

2
−

t3

6
+

t4

24
+ ...

)

= cosh(x)− e−t
.

This is an exact solution of Eq. (27).

4 Tables of Numerical Calculations

In this section, we shall illustrate the accuracy and
efficiency of the RDTM. For this purpose, we can
evaluate the approximate solution using the 5th-order
approximation. Table 2 shows the exact solution, the
approximate solution and the absolute error obtained by
the RDTM. We must emphasize here only five iterations
was used for different values ofx and t, specifically,
x =−5,−3,3,5 andt = 0.002,0.004,0.006,0.01.

Table 2: Comparison of the absolute error of the solutions of the STO equation by
RDTM

x t Exact Solution RDTM Solution Abs-error-RDTM, n=5

−5 .002 −0.4933204320 −0.4933204320 5.55111512E−17

.004 −0.4933336888 −0.4933336888 0

.006 −0.4933469195 −0.4933469195 0

.01 −0.4933733027 −0.4933733027 5.55111512E−17

−3 .002 −0.4526643984 −0.4526643984 0

.004 −0.4527545066 −0.4527545066 5.55111512E−17

.006 −0.4528444519 −0.4528444519 5.55111512E−17

.01 −0.4530238543 −0.4530238543 5.55111512E−17

3 .002 0.4524836916 0.4524836916 5.55111512E−17

.004 0.4523930926 0.4523930926 0

.006 0.4523023296 0.4523023296 5.55111512E−17

.01 0.4521203101 0.4521203101 5.55111512E−17

5 .002 0.4932938398 0.4932938398 0
.004 0.4932805043 0.4932805043 0
.006 0.4932671424 0.4932671424 0

.01 0.49324033948 0.49324033948 5.55111512E−17

5 Conclusion

In this paper, we applied the Reduced Differential
Transform Method (RDTM) to all three physical models,
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namely, the Sharma Tasso Olver (STO) equation, the
Schrodinger equation and the Telegraph equation. We
successfully found approximate solution for the STO and
the results we obtained in example (3.1) were in excellent
agreement with the exact solution. Also, we found exact
solutions to the Schrodinger equation and the Telegraph
equation. The RDTM introduces a significant
improvement in the fields over existing techniques
because it takes less calculations and the number of
iteration is less compared by other methods. My goal in
the future is to apply the RDTM to fractional nonlinear
PDEs that arises in other areas of science such as Biology,
Medicine and Engineering. There is no existing method in
the literature that can give exact solution to fractional
PDEs, so finding approximate solutions is very important.
Computations of this paper have been carried out using
the computer package of Mathematica 7.
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