
Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014) 2161

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080509

A Switching Approach to Avoid Breakdown in
Lanczos-Type Algorithms

Muhammad Farooq1,∗ and Abdellah Salhi2

1 Department of Mathematics, University of Peshawar, 25120, KhyberPakhtunkhwa, Pakistan
2 Department of Mathematical Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom

Received: 25 Jun. 2012, Revised: 19 Dec. 2012, Accepted: 19 Dec. 2012
Published online: 1 Sep. 2014

Abstract: Lanczos-type algorithms are well known for their inherent instability. They typically breakdown when relevant orthogonal
polynomials do not exist. Current approaches to avoiding breakdown rely on jumping over the non-existent polynomials to
resume computation. This jumping strategy may have to be used many times during the solution process. We suggest an alternative to
jumping which consists in switching between different algorithms that have been generated using different recurrence relations between
orthogonal polynomials. This approach can be implemented as three different strategies: ST1, ST2, and ST3. We shall briefly recall how
Lanczos-type algorithms are derived. Four of the most prominent such algorithms namelyA4, A12, A5/B10 andA5/B8 will be presented
and then deployed in the switching framework. In this paper, only strategyST2 will be investigated. Numerical results will be presented.

2010 Mathematics Subject Classification: 65F10

Keywords: Lanczos algorithm; Systems of Linear Equations (SLE’s); Formal Orthogonal Polynomials (FOP’s); Switching; Restarting;
Breakdown.

1. Introduction

Lanczos-type methods for solving SLE’s are based on the
theory of FOP’s. All such methods are implemented via
some recurrence relationships between polynomialsPk(x)
represented byAi or between two adjacent families of

orthogonal polynomialsPk(x) andP(1)
k (x) represented by

Ai andB j as described in [1,2,3]. The coefficients of the
various recurrence relationships between orthogonal
polynomials are given as ratios of scalar products. When
a scalar product in a denominator vanishes, then a
breakdown occurs in the algorithm and the process
normally has to be stopped. Equivalently, the breakdown
is due to the non-existence of some orthogonal
polynomial or polynomials. So, an important issue is how
to continue the solution process in such a situation and
arrive at a useable result. Several procedures for that
purpose appeared in the literature in the last few decades.
It has been shown, for instance, that it is possible to jump
over non-existing polynomials, [1,4]; breakdown-free
algorithms were thus obtained. The first attempt in this
regard was the look-ahead Lanczos algorithm, [5]. Other

procedures for avoiding breakdown are also proposed in
[1,4,6,7,8,9,10,11,12,13] and the references given there.
However, they all have their limitations including the
possibility of calling the procedure for remedying the
breakdown, more than once. In the following, we suggest
an alternative to jumping over missing polynomials by
switching between different variants of the Lanczos
algorithm.

2. The Lanczos approach

We consider a linear system of equations,

Ax = b, (1)

whereA∈ Rn×n, b ∈ Rn andx ∈ Rn.
Let x0 andy be two arbitrary vectors inRn such that

y 6= 0. The Lanczos method, [14] consists in constructing
a sequence of vectorsxk ∈ Rn defined as follows, [2,15]

xk−x0 ∈ Kk(A, r0) = span(r0,Ar0, . . . ,A
k−1r0), (2)

∗ Corresponding author e-mail:mfarooq@upesh.edu.pk

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080509

2162 M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

rk = (b−Axk)⊥Kk(A
T ,y) = span(y,ATy, . . . ,ATk−1

y),
(3)

whereAT denotes the transpose ofA. Equation(2) leads
to,

xk−x0 =−α1r0−α2Ar0−·· ·−αkA
k−1r0. (4)

Multiplying both sides byA and adding and subtractingb
on the left hand side gives

rk = r0+α1Ar0+α2A2r0+ · · ·+αkA
kr0. (5)

From(3), the orthogonality condition gives

(AT i
y, rk) = 0, for i = 0, . . . ,k−1,

and, by (5), we obtain the following system of linear
equations














α1(y,Ar0)+ · · ·+αk(y,Akr0) =−(y, r0),
...

α1(ATk−1
y,Ar0)+ · · ·+αk(A

Tk−1
y,Akr0) =−(ATk−1

y, r0).

(6)

If the determinant of the above system is different from
zero then its solution exists and allows to obtainxk and
rk. Obviously, in practice, solving the above system
directly for the increasing value ofk is not feasible. We
shall now see how to solve this system for increasing
values ofk recursively. If we set

Pk(x) = 1+α1x+ · · ·+αkx
k, (7)

then we can write from(5)

rk = Pk(A)r0. (8)

The polynomialsPk are commonly known as the residual
polynomials, [4]. Another interpretation of thePk can be
found in [16]. Moreover if we set
ci = (AT i

y, r0) = (y,Air0), i = 0,1, . . . , and if we define
the linear functionalc on the space of polynomials by

c(xi) = ci , i = 0,1, . . . , (9)

c is completely determined by the sequence{ck} andck is
said to be the moment of orderk, [16]. Now, the system
(6) can be written as

c(xiPk(x)) = 0 for i = 0, . . . ,k−1. (10)

These conditions show thatPk is the polynomial of degree
at most k, normalized by the conditionPk(0) = 1,
belonging to a family of FOP’s with respect to the linear
functionalc, [16,17].

Since the constant term ofPk in (7) is 1, it can be
written as

Pk(x) = 1+xRk−1(x)

whereRk−1 = α1+α2x+ ...+αkxk−1. Replacingx by A in
the expression ofPk and multiplying both sides byr0 and

using(8), we get

r k = r0+ARk−1(A)r0,

which can be written as

b−Axk = b−Ax0+ARk−1(A)r0,

−Axk =−Ax0+ARk−1(A)r0,

multiplying both sides by−A−1, we get

xk = x0−Rk−1(A)r0,

which shows thatxk can be computed fromrk without
invertingA.

3. Formal orthogonal polynomials

The orthogonal polynomialsPk defined in the previous
section are given by the determinantal formula, [4,18,19]

Pk(x) =

∣

∣

∣

∣

∣

∣

∣

∣

1 · · · xk

c0 · · · ck
...

...
ck−1 · · · c2k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 · · · ck
...

...
ck · · · c2k−1

∣

∣

∣

∣

∣

∣

∣

, (11)

where the denominator of this polynomial isH(1)
k , [4].

Obviously,Pk exists if and only if the Hankel determinant

H(1)
k 6= 0. Thus,Pk+1 exists if and only ifH(1)

k+1 6= 0. We

assume that∀k, H(1)
k 6= 0. If for somek, H(1)

k = 0, thenPk
does not exist and breakdown occurs in the algorithm (in

practice the breakdown can occur even ifH(1)
k ≈ 0).

Let us now define a linear functionalc(1), [2,4], on the
space of real polynomials asc(1)(xi) = c(xi+1) = ci+1 and

let P(1)
k be a family of orthogonal polynomials with respect

to c(1). These polynomials are called monic polynomials,
[2,4], because their highest degree coefficients are always
1, and are given by the following formula

P(1)
k (x) =

∣

∣

∣

∣

∣

∣

∣

∣

c1 · · · ck+1
...

...
ck · · · c2k

1 · · · xk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c1 · · · ck
...

...
ck · · · c2k−1

∣

∣

∣

∣

∣

∣

∣

. (12)

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014) /www.naturalspublishing.com/Journals.asp 2163

P(1)
k (x) also exists if and only if the Hankel determinant

H(1)
k 6= 0, [2,4], which is also a condition for the existence

of Pk(x). There exist many recurrence relations between

the two adjacent families of polynomialsPk andP(1)
k , [2,

4,6,18,19]. Some of these relations have been reviewed
in [20] and studied in details in [1,19]. More of these
relations have been studied in [3], leading to new
Lanczos-type algorithms.

A Lanczos-type algorithm consists in computingPk
recursively, thenr k and finallyxk such thatrk = b−Axk,
without invertingA. In exact arithmetic, this should give
the solution to the systemAx = b in at mostn steps [6,
14], where n is the dimension of the system. For more
details, see [4,12].

4. Recalling some existing algorithms

In the following we will recall some of the most recent
and efficient Lanczos-type algorithms to be used in the
switching framework. The reader should consult the
relevant literature for more details.

4.1. Algorithm A12

Algorithm A12 is based on relationA12, [3]. For details on
the derivation of the polynomialA12, its coefficients and
the algorithm itself, please refer to [3]. The pseudo-code
of Algorithm A12 can be described as follows.

Algorithm 1 Algorithm A12

1: Choosex0 andy such thaty 6= 0,
2: Chooseε small and positive, as a tolerance,
3: Setr0 = b−Ax0, y0 = y, p=Ar0, p1 =Ap, c0 =(y, r0),

4: c1 = (y, p), c2 = (y, p1), c3 = (y,Ap1), δ = c1c3−c2
2,

5: α = c0c3−c1c2
δ , β =

c0c2−c2
1

δ , r1 = r0−
c0
c1

p, x1 = x0+
c0
c1

r0,
6: r2 = r0−α p+β p1, x2 = x0+αr0−β p,
7: y1 = ATy0, y2 = ATy1, y3 = ATy2.
8: for k = 3, 4,. . . ,n do
9: yk+1 = ATyk, q1 = Ark−1, q2 = Aq1, q3 = Ark−2,

10: a11 = (yk−2, rk−2), a13 = (yk−3, rk−3), a21 =
(yk−1, rk−2), a22 = a11,

11: a23= (yk−2, rk−3), a31= (yk, rk−2),a32= a21, a33=
(yk−1, rk−3),

12: s= (yk+1, rk−2), t = (yk, rk−3),Fk =−a11
a13

,
13: b1 = −a21−a23Fk, b2 = −a31−a33Fk, b3 = −s−

tFk,
14: ∆k = a11(a22a33−a32a23)+a13(a21a32−a31a22),

15: Bk =
b1(a22a33−a32a23)+a13(b2a32−b3a22)

∆k
,

16: Gk =
b1−a11Bk

a13
, Ck =

b2−a21Bk−a23Gk
a22

, Ak =
1

Ck+Gk
,

17: rk = Ak{q2+Bkq1+Ckrk−2+Fkq3+Gkrk−3},
18: xk = Ak{Ckxk−2 + Gkxk−3 − (q1 + Bkrk−2 +

Fkrk−3)},
19: if ||rk|| ≤ ε, then
20: x= xk, Stop.
21: end if
22: end for

4.2. Algorithm A4

Algorithm A4 is based on relationA4. Its pseudo-code is as
follows. For more details see [2,3].

Algorithm 2 Algorithm A4

1: Choosex0 andy such thaty 6= 0,
2: Chooseε small and positive as a tolerance,
3: Setr0 = b−Ax0, y0 = y,
4: for k = 0, 1,. . . ,n do
5: Ek+1 =− (yk,rk)

(yk−1,rk−1)
, for k≥ 1, andE1 = 0,

6: Bk+1 =−
(yk,Ark)−Ek+1(yk,rk−1)

(yk,rk)
,

7: Ak+1 =
1

Bk+1+Ek+1
,

8: xk+1 = Ak+1{Bk+1xk+Ek+1xk−1− rk},
9: rk+1 = Ak+1{Ark+Bk+1rk+Ek+1rk−1}.

10: if ||rk+1|| ≤ ε, then
11: yk+1 = ATyk,
12: end if
13: end for

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2164 M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

4.3. Algorithm A5/B10

Algorithm A5/B10 is based on relationsA5 andB10, first
investigated in [2,3]. Its pseudo-code is as follows.

Algorithm 3 Algorithm A5/B10

1: Choosex0, y and toleranceε ≥ 0;
2: Setr0 = b−Ax0, p0 = r0, y0 = y,
3: A1 =− (y0,r0)

(y0,Ar0)
, C1

0 = 1,
4: r1 = r0+A1Ar0, x1 = x0−A1r0.
5: for k = 1,2,3,. . . ,n do
6: yk = ATyk−1,
7: Dk+1 =− (yk,rk)

C1
k−1(yk,pk−1)

,

8: pk = rk+Dk−1C1
k−1pk−1

9: Ak+1 =− (yk,rk)
(yk,Apk)

,
10: rk+1 = rk+Ak+1Apk,
11: xk+1 = xk−Ak+1pk.
12: if rk+1 6= ε, then ifak 6= ε, then

13: C1
k =

C1
k−1
Ak

.
14: end if
15: end for

4.4. Algorithm A8/B10

The pseudo-code ofA8/B10, [2,3], is as follows.

Algorithm 4 Algorithm A8/B10

1: Choosex0 andy such thaty 6= 0.
2: Setr0 = b−Ax0,
3: z0 = r0,
4: y0 = y,
5: for k= 0,1,2, . . . ,n do
6: Ak+1 =− (yk,rk)

(yk,Azk)
,

7: rk+1 = rk+Ak+1Azk,
8: xk+1 = xk−Ak+1zk.
9: if ||rk+1|| 6= ε, then

10: yk+1 = ATyk,
11: C1

k+1 =
1

Ak+1
,

12: B1
k+1 =−

C1
k+1(yk+1,rk+1)

(yk,Azk)
,

13: zk+1 = B1
k+1zk+C1

k+1rk+1.
14: end if
15: end for

5. Switching between algorithms as a way to
remedy the breakdown problem

When a Lanczos-type algorithm fails, this is due to the
non-existence of some coefficients of the recurrence

relations on which the algorithm is based. The iterate
which causes these coefficients not to exist, does not
cause and should not necessarily cause any problems
when used in another Lanczos-type algorithm, based on
different recurrence relations. It is therefore obvious that
one may consider switching to the other algorithm, when
breakdown occurs. This allows the algorithm to work in a
Krylov space with a different basis. It is therefore also
possible to remedy breakdown by switching.

5.1.Switching strategies

Different strategies can be adopted for switching between
two or more algorithms. These are as follows.

1.ST1: Switching after breakdown: Start a particular
Lanczos algorithm until a breakdown occurs, then
switch to another Lanczos algorithm, initializing the
latter with the last iterate of the failed algorithm. We
call this strategy ST1.

2.ST2: Pre-emptive switching: Run a Lanczos-type
algorithm for a fixed number of iterations, halt it and
then switch to another Lanczos-type algorithm,
initializing it with the last iterate of the first algorithm.
Note that there is no way to guarantee that breakdown
would not occur before the end of the interval. This
strategy is called ST2.

3.ST3: Breakdown monitoring: Provided
monotonicity of reduction in the absolute value of the
denominators in the coefficients of the polynomials
involved can be established, breakdown can be
monitored as follows. Evaluate regularly those
coefficients with denominators that are likely to
become zero. Switch to another algorithm when the
absolute value of any of these denominators drops
below a certain level. This is strategy ST3.

5.2.A generic switching algorithm

Suppose we have a set of Lanczos-type algorithms and we
want to switch from one algorithm to another using one of
the above mentioned strategies ST1, ST2 or ST3.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014) /www.naturalspublishing.com/Journals.asp 2165

Algorithm 5 Generic switching algorithm
1: Start the most stable algorithm, if known.
2: Choose a switching strategy fromST1, ST2 or ST3.
3: if ST1 then
4: Continue with current algorithm until it halts;
5: if solution is obtainedthen
6: Stop.
7: else
8: switch to another algorithm;
9: initialize it with current iterate;

10: Go to 4.
11: end if
12: else if ST2 then
13: Continue with current algorithm for a fixed

number of iterations until it stops;
14: if solution is obtained then
15: Stop.
16: else
17: switch to another algorithm,
18: initialize it with the current iterate,
19: Go to 13.
20: end if
21: else
22: Continue with current algorithm and monitor

certain parameters for breakdown, until it halts
23: if solution is obtained then
24: Stop.
25: else
26: switch to another algorithm,
27: initialize it with current iterate,
28: Go to 22.
29: end if
30: end if

However, it is important to mention that we have
considered onlyST2 in this paper. The convergence
tolerance in all of the tests performed isε = 1.0E−013 and
the number of iterations per cycle is fixed to 20.

5.2.1.Switching between algorithmsA4 and A12

In the following, we start with eitherA4 or A12, run it for
a fixed number of iterations (cycle) chosen arbitrarily,
before switching to the other. The results of this switching
algorithm, are compared to those obtained with
algorithms A4 and A12 run individually. We are not
changing any of the parameters involved in both
algorithms. Details ofA4 can be found in [1].

Algorithm 6 Switching betweenA4 andA12

1: Choosex0 andy such thaty 6= 0,
2: setr0 = b−Ax0, y0 = y,
3: start either algorithm,
4: run current algorithm for a fixed number of iterations

(a cycle) or until it halts;
5: if solution is obtainedthen
6: stop;
7: else
8: switch to the algorithm not yet run;
9: initialize it with the current iterate;

10: go to 4;
11: end if

Remark: Since restarting can be just as effective as
switching, it is easier to implement a random choice
betweenA4 andA12 at the end of every cycle. Let heads
be A4 and tails beA12. At the toss of a coin, if it shows
heads and the algorithm running in the last cycle wasA4,
then the switch is a restart. If the coin shows tails then the
switch is a “proper” switch, andA12 is called upon. In the
numerical results presented below, this is what has been
implemented. For more details about restarting see, [21].

5.2.2.Switching betweenA4 and A5/B10 algorithm

Start withA5/B10, (details ofA5/B10 can be found in [1,
2]) do a few iterations and then switch to eitherA4 or
A5/B10. The procedure is as Algorithm 4 below.

Algorithm 7 Switching betweenA4 andA5/B10

1: Choosex0 andy such thaty 6= 0;
2: setr0 = b−Ax0, y0 = y, p0 = r0;
3: start with eitherA4 or A5/B10;
4: run it for a fixed number of iterations (cycles) or until

it halts
5: if solution is obtainedthen
6: stop;
7: else
8: switch to eitherA4 or A5/B10; initialize it with the

last iterate of the algorithm running in the last cycle;

9: go to 4;
10: end if

5.2.3.Switching betweenA4 and A8/B10

Start with eitherA8/B10 (details ofA8/B10 can be found in
[1,2]) or A4; do a few iterations and then switch to either
of them chosen randomly. If the chosen algorithm happens
to be the same as the one running in the last cycle, then
it is a case of restarting. Otherwise, it is switching. The
algorithm is as follows.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2166 M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

Algorithm 8 Switching betweenA4 andA8/B10

1: Choosex0 andy such thaty 6= 0;
2: setr0 = b−Ax0, y0 = y, p0 = r0;
3: start eitherA4 or A8/B10;
4: run it for a fixed number of iterations (cycle), or until

it halts;
5: if solution is obtainedthen
6: stop;
7: else
8: switch to eitherA4 or A8/B10;
9: initialize it with the iterate of the algorithm run in

the last cycle;
10: go to 4.
11: end if

5.2.4.Switching betweenA5/B10 and A8/B10

Here again, switching and restarting are combined in a
random way. Start with eitherA8/B10 or A5/B10. After a
pre-set number of iterations (cycle), switch to either
A5/B10 or A8/B10, randomly chosen. If the chosen
algorithm to switch to is the same as the one running in
the last cycle then we a have a case of restarting; else it is
switching. The algorithm is as follows.

Algorithm 9 Switching betweenA5/B10 andA8/B10

1: Choosex0 andy such thaty 6= 0;
2: setr0 = b−Ax0, y0 = y, z0 = r0;
3: start eitherA8/B10 or A5/B10;
4: run it for a fixed number of iterations;
5: if solution is not foundthen
6: halt current algorithm;
7: switch to eitherA5/B10 or A8/B10;
8: initialize it with the last iterate of the algorithm

running in the last cycle;
9: go to 4;

10: else
11: solution found; stop;
12: end if

5.2.5.Numerical results

Algorithms 1, 2, 3, 4, [1,2,3] and Algorithms 6, 7, 8 and
9, [3] have been implemented in Matlab and applied to
a number of small to medium size problems for different
values ofδ . The test problems we have used arise in the 5-
point discretisation of the operator− ∂ 2

∂x2 −
∂ 2

∂y2 + γ ∂
∂x on a

rectangular region [1,2]. Comparative results on instances
of the problemAx = b with A andb as follows and with

dimensions ofA andb ranging fromn= 20 ton= 4000.

A=



















B −I · · · · · · 0

−I B −I
...

...
. ..

.. .
.. .

...
... −I B −I
0 · · · · · · −I B



















,

with

B=



















4 α · · · · · · 0

β 4 α
...

...
.. .

. . .
. . .

...
... β 4 α
0 · · · β 4



















,

andα = −1+ δ , β = −1− δ . The parameterδ takes the
values 0.0, 0.2, 5 and 8 respectively. The right hand sideb
is taken to beb = AX, whereX = (1,1, . . . ,1)T , is the
solution of the system. The dimension ofB is 10. When
δ = 0, the coefficient matrixA is symmetric and the
problem is easy to solve because the region is a regular
mesh, [22]. For all other values ofδ , the matrix A is
non-symmetric and the problem is comparatively hard to
solve as the region is not a regular mesh.

5.2.6.Results of Algorithms 1, 2, 3, 4, and Algorithms
6, 7, 8 and 9 for different dimensions of Baheux-type
problems for different values ofδ

The results obtained with algorithms 1, 2, 3, 4, run
individually and those obtained with the switching
algorithms, Algorithms 6, 7, 8 and 9, for different values
of δ on Baheux-type problems, [1,2], are recorded in the
tables 1, 2, 3 and 4 below. The results show that the
switching algorithms are far superior to any one of the
algorithms considered individually.

5.2.7.Comments on numerical evidence

The numerical evidence is strongly in favour of
switching. Individual algorithms have consistently
performed worse except on the very low dimensional
instances withn ≤ 40. We have implementedA4, A12,
A5/B10 andA8/B10 to solve a number of problems of the
type described in Section 5.2.5 with dimensions ranging
from 20 to 4000. The results are compared against those
obtained by the switching algorithms, Algorithms 6, 7, 8
and 9 on the same problems. These results show thatA4,
A12, A5/B10 andA8/B10 are not as robust as the switching
algorithms. In fact, individual algorithms solved very few
of the considered problems if at all and with a very poor
accuracy. The switching algorithms, however, solved
them all with a higher precision.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014) /www.naturalspublishing.com/Journals.asp 2167

Table 1 For δ = 0
Dim of Prob Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 3.8545E−014 0.0038 1.7536E−013 0.0086 2.5256E−014 0.0022 1.7489E−014 0.0052 5.5067E−014 0.0012 3.8545E−014 0.0010 7.4781E−014 0.0040 8.0533E−014 0.0018
40 5.3602E−011 0.0042 NaN NaN NaN 7.5417E−014 0.0041 4.5076E−014 0.0053 8.9208E−014 0.0057 7.2481E−014 0.0040
60 NaN NaN NaN NaN 9.6638E−014 0.0057 2.5330E−014 0.0057 7.5107E−014 0.0085 5.8162E−014 0.0067
80 NaN NaN NaN NaN 9.9082E−014 0.0075 6.0185E−014 0.0071 7.0866E−014 0.0088 5.7266E−014 0.0101
100 NaN NaN NaN NaN 2.1487E−014 0.0095 2.5839E−014 0.0078 8.0262E−014 0.0098 8.1373E−014 0.0100
200 NaN NaN NaN NaN 7.4236E−014 0.0723 9.9667E−014 0.0159 7.9045E−014 0.0337 9.1830E−014 0.0352
400 NaN NaN NaN NaN 7.7419E−014 0.0661 8.5151E−014 0.2156 9.7418E−014 0.2243 9.4697E−014 0.2315
600 NaN NaN NaN NaN 9.0290E−014 0.0794 7.9373E−014 0.4735 9.9269E−014 1.9625 9.4307E−014 0.7457
800 NaN NaN NaN NaN 9.2116E−014 0.5660 9.5227E−014 0.9395 7.7294E−014 3.0326 7.7356E−014 1.4319
1000 NaN NaN NaN NaN 8.8463E−014 0.8509 8.6238E−014 2.0539 9.9181E−14 4.3479 9.4512E−014 2.8984
2000 NaN NaN NaN NaN 9.7242E−014 4.8079 9.1973E−014 8.6364 8.1319E−014 12.8696 9.1193E−014 12.8696
3000 NaN NaN NaN NaN 9.6993E−014 9.8130 7.7507E−014 16.5795 9.7827E−014 22.3386 8.2725E−014 22.3386
4000 NaN NaN NaN NaN 9.2641E−014 17.4673 8.9681E−014 23.7658 9.8438E−014 44.4430 9.7911E−014 44.4567

Table 2 For δ = 0.2
Dim of Prob Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 9.5014E−014 0.0044 NaN 8.9070E−014 0.0030 NaN 6.0041E−014 0.0044 1.5104E−014 0.0029 1.8618E−014 0.0056 8.0533E−014 0.0044
40 NaN NaN NaN NaN 1.9868E−014 0.0064 4.6814E−014 0.0068 3.4094E−014 0.0089 7.3581E−014 0.0100
60 NaN NaN NaN NaN 6.0788E−014 0.0134 6.3548E−014 0.0104 2.9827E−014 0.0113 9.6583E−014 0.0262
80 NaN NaN NaN NaN 8.8550E−014 0.0159 9.5483E−014 0.0108 8.4187E−014 0.0120 7.0744E−014 0.0269
100 NaN NaN NaN NaN 5.8020E−014 0.0144 6.6962E−014 0.0151 7.3889E−014 0.0126 7.5236E−014 0.0273
200 NaN NaN NaN NaN 9.0970E−014 0.0213 9.8054E−014 0.0353 8.6331E−014 0.0313 8.1282E−014 0.0352
400 NaN NaN NaN NaN 6.5593E−014 0.0748 9.3591E−014 0.1054 6.6660E−014 0.1875 8.4316E−014 0.2315
600 NaN NaN NaN NaN 9.6153E−014 0.1802 8.8169E−014 0.6066 6.8135E−014 0.6751 5.9937E−014 0.7457
800 NaN NaN NaN NaN 9.8605E−014 0.5922 8.8399E−014 0.9088 8.2550E−014 1.1436 7.0295E−014 1.4319
1000 NaN NaN NaN NaN 9.7823E−014 0.8222 7.7898E−014 1.3020 7.4540E−014 2.1302 7.7204E−014 2.8984
2000 NaN NaN NaN NaN 7.9753E−014 4.3416 9.4241E−014 4.7668 9.5282E−014 10.5976 9.1570E−014 8.5787
3000 NaN NaN NaN NaN 8.7448E−014 10.0287 9.6831E−014 12.1561 9.9608E−014 25.1173 9.2806E−014 21.7380
4000 NaN NaN NaN NaN 5.8412E−014 12.9390 9.7580E−014 23.3993 9.9270E−014 38.9051 9.7911E−014 39.0164

Table 3 For δ = 5
Dim of Prob Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 3.6838E−013 0.0042 1.5589E−013 0.0090 NaN NaN 2.5092E−014 0.0079 9.1438E−014 0.0060 3.5839E−014 0.0067 8.0533E−014 0.0038
40 NaN NaN NaN NaN 7.4721E−014 0.0202 1.9575E−014 0.0171 8.9026E−014 0.0079 2.9089E−014 0.0078
60 NaN NaN NaN NaN 9.1477E−014 0.0232 5.4122E−014 0.0218 3.2486E−014 0.0207 5.6811E−014 0.0103
80 NaN NaN NaN NaN 2.5165E−014 0.0275 7.9597E−014 0.0277 7.7553E−014 0.0255 5.7266E−014 0.0101
100 NaN NaN NaN NaN 8.9244E−014 0.0315 8.4269E−014 0.0295 3.2898E−014 0.0308 8.1373E−014 0.0100
200 NaN NaN NaN NaN 8.5274E−014 0.0410 8.3743E−014 0.0402 4.5501E−014 0.0499 9.1830E−014 0.0352
400 NaN NaN NaN NaN 9.5005E−014 0.0965 3.3013E−014 0.2662 4.3032E−014 0.1856 9.4697E−014 0.2315
600 NaN NaN NaN NaN 9.3474E−014 0.2318 2.7456E−014 0.7717 8.1621E−014 0.6303 9.4307E−014 0.7457
800 NaN NaN NaN NaN 7.2197E−014 0.6875 9.3718E−014 0.8720 9.2023E−014 1.0426 7.7356E−014 1.4319
1000 NaN NaN NaN NaN 9.4690E−014 1.7006 8.2225E−014 2.4118 6.7618E−014 2.6779 9.4512E−014 4.2678
2000 NaN NaN NaN NaN 7.0752E−014 9.2566 8.8127E−014 6.9938 4.6266E−014 11.2416 9.1193E−014 11.0604
3000 NaN NaN NaN NaN 8.0276E−014 15.5897 8.8194E−014 18.8125 4.3762E−014 25.3675 8.2725E−014 24.6007
4000 NaN NaN NaN NaN 9.7667E−014 29.7400 8.9260E−014 30.4619 8.5908E−014 42.5710 9.7911E−014 41.5276

Table 4 For δ = 8
Dim of Prob Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9

n ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s) ||rk|| T(s)

20 NaN NaN 8.0420E−014 0.0027 9.2836E−014 0.0054 8.1056E−014 0.0069 8.7622E−017 0.0049 3.1380E−014 0.0075 8.0533E−014 0.0048
40 NaN NaN NaN NaN 9.1880E−014 0.0243 8.1258E−014 0.0061 8.2974E−014 0.0216 2.9089E−014 0.0078
60 NaN NaN NaN NaN 7.0558E−014 0.0299 8.3090E−014 0.0220 9.9891E−014 0.0284 5.6811E−014 0.0103
80 NaN NaN NaN NaN 9.8855E−014 0.0346 8.5600E−014 0.0287 9.7330E−014 0.0282 5.7266E−014 0.0120
100 NaN NaN NaN NaN 8.7391E−014 0.0382 8.7752E−014 0.0303 8.5960E−014 0.0363 8.1373E−014 0.0137
200 NaN NaN NaN NaN 9.5793E−014 0.0700 4.3407E−014 0.0457 9.8381E−014 0.0708 9.1830E−014 0.0352
400 NaN NaN NaN NaN 6.0799E−014 0.1292 9.6421E−014 0.2399 9.6706E−014 0.3125 9.4697E−014 0.2315
600 NaN NaN NaN NaN 9.6186E−014 0.3432 8.5386E−014 0.5535 8.9805E−014 0.9279 9.4307E−014 0.7457
800 NaN NaN NaN NaN 8.8932E−014 0.6942 3.1458E−014 1.3329 7.5301E−014 1.0612 7.7356E−014 1.4319
1000 NaN NaN NaN NaN 9.7821E−014 1.7060 4.9703E−014 2.7150 9.6384E−014 2.1978 9.4512E−014 2.8984
2000 NaN NaN NaN NaN 7.3843E−014 11.2436 8.1578E−014 13.0654 8.2557E−014 10.7977 9.1193E−014 13.2915
3000 NaN NaN NaN NaN 9.5905E−014 20.0131 7.1928E−014 20.9822 5.3725E−014 25.3714 8.2725E−014 28.4232
4000 NaN NaN NaN NaN 2.1552E−014 31.2356 9.4300E−014 40.2119 9.3869E−014 40.1782 9.7911E−014 45.1523

Based on the above results, it is clear that switching is
an effective way to deal with the breakdown in
Lanczos-type algorithms. It is also clear that the
switching algorithms are more efficient particularly for
large dimension problems.

6. Conclusion

The switching strategies seem to be more successful than
individual algorithms in that they did not experience any
breakdowns and they solved all problems, most of them in
much shorter CPU time.

The cost of switching, in terms of CPU time, in ST2
at least, is not substantial, compared to that of the
individual algorithms. It is also quite easy to see that it
would not be substantial in ST1 since the cost would be

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2168 M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

similar to that of ST2. Even in the case of monitoring the
coefficients that can vanish, the cost should only be that
of a test of the form:
if |denominator value| ≤ tolerancethen stop.
We have not measured its impact on the overall
computing time, but it should not be excessive. This
means that switching strategies are worthwhile
considering to enhance the efficiency of Lanczos-type
algorithms and not just their robustness.

Having said that, further research and experimentation
are necessary, particularly on the very large scale
instances of SLE’s, to establish the superiority of
switching algorithms against the state-of-the-art
Lanczos-type algorithms with in-built precautions to
avoid breakdown such as MRZ and BSMRZ, [1,6,7,12].
Note that these algorithms are attractive for other reasons
too, namely their simplicity and easy implementation.
This is the subject of on-going research work.

References

[1] C. Baheux.Algorithmes d’implementation de la méthode
de Lanczos, PhD thesis, University of Lille 1, France,
(1994).

[2] C. Baheux. New Implementations of Lanczos Method,
Journal of Computational and Applied Mathematics, 57,
3-15 (1995).

[3] M. Farooq. New Lanczos-type Algorithms and their
Implementation, PhD thesis, University of Essex, UK,
(2011).http://serlib0.essex.ac.uk/record=b1754556.

[4] C. Brezinski and H. Sadok. Lanczos-type algorithms for
solving systems of linear equations,Applied Numerical
Mathematics, 11, 443-473 (1993).

[5] B. N. Parlett, D. R. Taylor and Z. A. Liu. A Look-
Ahead Lanczos Algorithm for Unsymmetric Matrices,
Mathematics of Computation, 44, 105-124 (1985).

[6] C. Brezinski and Zaglia, M. R. Hybird procedures for
solving linear systems,Numerische Mathematik, 67, 1-19
(1994).

[7] C. Brezinski, M. R. Zaglia and H. Sadok. Avoiding
breakdown and nearbreakdown in Lanczos type
algorithms,Numerical Algorithms, 1, 261-284 (1991).

[8] C. Brezinski, M. R. Zaglia and H. Sadok. Addendum to
Avoiding breakdown and near-breakdown in Lanczos type
algorithms,Numerical Algorithms, 2, 133-136 (1992).

[9] M. H. Gutknecht. A completed theory of the unsymmetric
Lanczos process and related algorithms, Part I.SIAM J.
Matrix Anal. Appl., 13, 594-639 (1992).

[10] R. W. Freund, M. H. Gutknecht and N. M. Nachtigal. An
Implementation of the Look-Ahead Lanczos Algorithm for
Non-Hermitian Matrices,SIAM J. Sci. Comput. 14, 137-
158 (1993).

[11] P. R. Graves-Morris. A “Look-around Lanczos” algorithms
for solving a system of linear equations,Numerical
Algorithms, 15, 247-274 (1997).

[12] C. Brezinski, M. R. Zaglia and H. Sadok. New look-ahead
Lanczos-type algorithms for linear systems,Numerische
Mathematik, 83, 53-85 (1999).

[13] B. N. Parlett and D.S. Scott. The Lanczos Algorithm With
Selective Orthogonaliztion,Mathematics of Computation,
33, 217-238 (1979).

[14] C. Lanczos. Solution of systems of linear equations by
minimized iteration,Journal of the National Bureau of
Standards, 49, 33-53 (1952).

[15] C. Brezinski, M. R. Zaglia and H. Sadok. A review of
formal orthogonality in Lanczos-based methods,Journal
of Computational and Applied Mathematics, 140, 81-98
(2002).

[16] G. Cybenko. An explicit formula for Lanczos
polynomials”,Linear Algebra Appl., 88, 99-115 (1987).

[17] C. Brezinski. Pad́e-Type Approximation and General
Orthogonal Polynomials, Internat. Ser. Nuner. Math.50.
Birkhäuser, Basel, (1980).

[18] C. Brezinski, M. R. Zaglia and H. Sadok. A Breakdown-
free Lanczos type algorithm for solving linear systems,
Numerische Mathematik,63, 29-38 (1992).

[19] C. Brezinski and M. R. Zaglia. Breakdowns in the
implementation of Lanczos method for solving linear
systems,Comput. Math. Appl., 33, 31-44 (1997).

[20] C. Brezinski and M. R. Zaglia. Treatment of near-
breakdown in the CGS algorithm,Numerical Algorithms,
7, 33-73 (1994).

[21] M. Farooq and A. Salhi. A Preemptive Restarting
Approach to Beating the Inherent Instability of Lanczos-
type Algorithms,Iranian Journal of Science & Technology,
Transactions A-Science, 37(3.1), 349-358 (2013).
http://ijsts.shirazu.ac.ir/?action=articleInfo&article=1634&vol=142.

[22] G. Meurant.The Lanczos and conjugate gradient
algorithms, From Theory to Finite Precision
Computations.SIAM, Philadelphia, (2006).

Muhammad Farooq
is currently Assistant
Professor of Mathematics
at the University of Peshawar,
Pakistan. He was educated
to degree level at the
University of Peshawar,
in Pakistan. He obtained
his PhD recently on New

Lanczos-type Algorithms and their Implementation under
the supervision of Dr. Abdellah Salhi, from the University
of Essex in Wivenhoe Park, Colchester, UK.

c© 2014 NSP
Natural Sciences Publishing Cor.

http://serlib0.essex. ac.uk/record=b1754556.
http://ijsts.shirazu.ac.ir/?_action=articleInfo&article=1634&vol=142

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014) /www.naturalspublishing.com/Journals.asp 2169

Abdellah Salhi is
an expert in Operational
Research with particular
interests in the numerical
aspects of optimisation
algorithms. He is currently
Senior Lecturer and Head
of the Department of
Mathematical Sciences at the
University of Essex, UK. He

was educated to degree level at the University of
Constantine, in Algeria. He obtained his PhD on
Karmarkars algorithm for Linear Programming from the
University of Aston in Birmingham, UK. He has
published over 60 research articles. He has recently
introduced the Plant Propagation Algorithm for global
optimisation, a heuristic-type algorithm inspired by the
way strawberry plants propagate using runners.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The Lanczos approach
	Formal orthogonal polynomials
	Recalling some existing algorithms
	Switching between algorithms as a way to remedy the breakdown problem
	Conclusion

