Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014) =) 2161

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080509

A Switching Approach to Avoid Breakdown in
Lanczos-Type Algorithms

Muhammad Farooty and Abdellah SalKi

1 Department of Mathematics, University of Peshawar, 25120, Khphkhtunkhwa, Pakistan
2 Department of Mathematical Sciences, University of Essex, Wivetaok, Colchester, CO4 3SQ, United Kingdom

Received: 25 Jun. 2012, Revised: 19 Dec. 2012, Accepted: 192D&2
Published online: 1 Sep. 2014

Abstract: Lanczos-type algorithms are well known for their inherent instability.yTigpically breakdown when relevant orthogonal
polynomials do not exist. Current approaches to avoiding breakdaln an jumping over the non-existent polynomials to
resume computation. This jumping strategy may have to be used many timieg the solution process. We suggest an alternative to
jumping which consists in switching between different algorithms that hege generated using different recurrence relations between
orthogonal polynomials. This approach can be implemented as threeedifstrategies: ST1, ST2, and ST3. We shall briefly recall how
Lanczos-type algorithms are derived. Four of the most prominefitalgorithms namels, A12, As/B1g andAs/Bg will be presented

and then deployed in the switching framework. In this paper, only str&&@gywill be investigated. Numerical results will be presented.

2010 Mathematics Subject Classification: 65F10

Keywords: Lanczos algorithm; Systems of Linear Equations (SLE’s); Formaldgahal Polynomials (FOP's); Switching; Restarting;
Breakdown.

1. Introduction procedures for avoiding breakdown are also proposed in
[1,4,6,7,8,9,10,11,12,13] and the references given there.
Lanczos-type methods for solving SLE’s are based on théHowever, they all have their limitations including the
theory of FOP’s. All such methods are implemented viapossibility of calling the procedure for remedying the
some recurrence relationships between polynonkigls) breakdown, more than once. In the following, we suggest
represented byh or between two adjacent families of an alternative to jumping over missing polynomials by

orthogona| po|ynomia|ﬂ((x) and Plil) (X) represented by SWItChlng between different variants of the Lanczos
A andB; as described in1}2,3]. The coefficients of the ~algorithm.

various recurrence relationships between orthogonal

polynomials are given as ratios of scalar products. When

a scalar product in a denominator vanishes, then @, The Lanczos approach

breakdown occurs in the algorithm and the process

norma"y has to be Stopped. Equivalently, the breakdOWn\/\/e consider a linear System of equationS,

is due to the non-existence of some orthogonal

polynomial or polynomials. So, an important issue is how Ax =D, (1)
to continue the solution process in such a situation and

arrive at a useable result. Several procedures for thatvhereAc R™", b € R" andx € R".

purpose appeared in the literature in the last few decades. Let xg andy be two arbitrary vectors ilR" such that
It has been shown, for instance, that it is possible to jumpy # 0. The Lanczos methodl4] consists in constructing
over non-existing polynomials,1J[4]; breakdown-free a sequence of vectorg € R" defined as follows,Z, 15|
algorithms were thus obtained. The first attempt in this

regard was the look-ahead Lanczos algorithh, Qther Xk — Xo € K(A,ro) = span(ro,Arg,....A o), (2)

* Corresponding author e-maihfaroog@upesh.edu.pk

© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080509

2162 NS 2 M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

) using(8), we get

rk = (b—Ax) LK(AT,y) = sparfy,ATy,...,AT y),

3 rk=ro+AR1(A)ro,
whereAT denotes the transpose &f Equation(2) leads .)
to, which can be written as

Xk — Xo = —alro—azAro—~--—akAkill'o. 4 b—Ax = b_AX0+AR<71(A)r0’
Multiplying both sides byA and adding and subtractir —Ax = —AXo+AR1(A)ro,
on the left hand side gives multiplying both sides by-A~1, we get
2 k
rk =ro-+ aiArg+ a2A“ro+-- -+ agA'ro. (5) Xk:XO_kal(A)r&
From (?)’ the orthogonality condition gives which shows that, can be computed fromy without
(ATy,r) =0, fori=0,...,.k—1, inverting A.

and, by (5), we obtain the following system of linear
equations

a1(y,Aro) + -+ ak(y,Aro) = —(y,ro), _
: ©) 3. Formal orthogonal polynomials
ay(ATy, Arg) + -+ a (AT "y Akrg) = — (AT "y r).

If the determinant of the above system is different from The orthogonal polynomial§ defined in the previous
zero then its solution exists and allows to obtainand section are given by the determinantal formufa1B,19]
re. Obviously, in practice, solving the above system

directly for the increasing value df is not feasible. We 1 - X
shall now see how to solve this system for increasing Co -~ Ck

values ofk recursively. If we set :
Cr_ v Cok_

Re(X) = 1+ 0+ + X, @) A(x) = % (11)
1o Ck
then we can write fron(5) :

rk = R(A)ro. (8) Ck -+ Cok—1

The polynomial$h are commonly known as the residual where the denominator of this polynomial I'ri;f(l), [4].
polynomials, #]. Another interpretation of th& can be Obviously,F exists if and only if the Hankel determinant

founc(i . in) [%6]- i)Moreover if J fwe ; fset HY # 0. Thus, R exists if and only ifH{"; # 0. We

¢ = (A"y,ro) = (y,Arp), i =0,1,..., and if we define (1) (1)

; ; : assume thatk, H,~ # 0. If for somek, H,”" = 0, thenR,

the linear functionat on the space of polynomials by does not exist and breakdown occurs in the algorithm (in
cX)=¢,i=01,..., (9) practice the breakdown can occur evehl&f) ~ 0).

Let us now define a linear functionel, [2,4], on the

cis completely determined by the sequefcg} andcy is space of real polynomials &8 (x') — c(x*+1) — ¢ 1 and

said to be the moment of ord&r [16]. Now, the system

(6) can be written as let Pk<1) be a family of orthogonal polynomials with respect
_ to cY. These polynomials are called monic polynomials,
c(XPR(x)) =0fori=0,...,k—1. (10) [2,4], because their highest degree coefficients are always

N .) 1, and are given by the following formula
These conditions show thgt is the polynomial of degree

at most k, normalized by the conditiorR(0) = 1, C1 -+ Cir1
belonging to a family of FOP’s with respect to the linear .
functionalc, [16,17].

Since the constant term & in (7) is 1, it can be G Cx
written as PY(x) = 1 x1 (12)
R(X) = 1+ XRe1(X) X €1 G
whereRy_1 = a1 + axx+ ...+ a1, Replacing« by Ain : :
the expression df and multiplying both sides bggy and Ck -+ Cok1
@© 2014 NSP

Natural Sciences Publishing Cor.

16

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014)www.naturalspublishing.com/Journals.asp NS 2 2163

Algorithm 1 Algorithm A1»

Pk(l) (x) also exists if and only if the Hankel determinant 7.

Hél) # 0, [2,4], which is also a condition for the existence 2
of R(x). There exist many recurrence relations between 3:

the two adjacent families of polynomialk and Pél), [2, 4
4,6,18,19]. Some of these relations have been reviewed ™
in [20] and studied in details in1[19]. More of these 5:
relations have been studied ir8][leading to new
Lanczos-type algorithms.

6:
7.
A Lanczos-type algorithm consists in computifg 8:
recursively, therry and finallyxyx such thatr, = b — Ax, 9

0

without invertingA. In exact arithmetic, this should give 1

the solution to the systerAx = b in at mostn steps 6,

14], wheren is the dimension of the system. For more 11:

details, see4,12].

12:
13:

14:
15:

16:

17:
18:

4. Recalling some existing algorithms

19:
20:
21:
22:

Choosexg andy such thaty #£ 0,
Chooses small and positive, as a tolerance,

Setro=b—Ax, Yo=Y, p=Aro, pr=Ap, Co = (Y,ro),

c1= (¥, p), 2= (¥, p1), C3= (Y,Ap1), 8 = c1c3— C3,
a=%%0% g 020 = fo— 2P, X1 =X+
%‘jfo,
r2=ro—ap+pBpy, X =X +aro—pBp,
y1=ATyo,¥2 =ATy1, y3 =ATy,.
for k=3, 4,...,ndo
Yr1 = ATy, 01 = Ary_1, 02 = Ads, Gz = Al_2,
a11 = (Y-2,Tk-2), @13 = (Yk-3,Mk-3), @1 =
(Yk—1,Tk—2), @22 = @11,
a3 = (Yk-2,Tk-3), @31 = (Yk, Nk-2),832 = @21, 8gz =
(Yi—1,"k-3),

S= (Yi+1:Mk-2), t = (Vi Mi-3).Fe= — 52,
bI%k: —ap; — a3y, by = —agy — agsFy, b3 = —s—
th,
Ay = ay1(agoags — agzap3) + ars(aziage — ag1azz),
By — b1 (a20833—83083) +a13(Ppa30—b3ao)
Ak '
Gy = by aallalBk Gy = by a21aszz 323Gk’ A= Okin’
e = A{02 4 Bkas + Cilk—2 + R0z + Grk—3},
Xk = A{Cox—2 + GX-3 — (01 + Bilk-2 +
Fdk-3)},
if [Ir|| <€, then
X=X, Stop.
end if
end for

In the following we will recall some of the most recent

and efficient Lanczos-type algorithms to be used in the4 2. Algorithm A

switching framework. The reader should consult the
relevant literature for more details.

Algorithm A4 is based on relatioA,. Its pseudo-code is as
follows. For more details se@,[3].

Algorithm 2 Algorithm A4

1:
2:
4.1. Algorithm A, if
5.
6
7:
8:
9.
Algorithm A;» is based on relatioAs,, [3]. For details on 10
the derivation of the polynomiah; o, its coefficients and 1:
the algorithm itself, please refer t8][The pseudo-code 12

of Algorithm A1, can be described as follows.

Choosexg andy such thaty # 0,

Chooses small and positive as a tolerance,
Setro=b—Ax, Yo=Y,

for k=0, 1,...,ndo

Exi1= 7% fork > 1, andE; = 0,
Byl = — ()’k-,Ark)*(ilfrkl)(ykvrk—l) ,
A1 = Byy1+EBii1’
X1 = A1 {Bro1% + Exp1%—1 — Ik},
Mer1 = A 1{Arc+ By 1k + Exgark-1}-
if |Ireeel] < e, then
Vi1 = ATy,
end if
end for

© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2164 NS P

M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

4.3. Algorithm A/Bi1o

Algorithm As/Bjp is based on relation8s and By, first
investigated in2, 3]. Its pseudo-code is as follows.

Algorithm 3 Algorithm As/Bio
1: Choosexg, y and tolerance > 0;

. _ Yo," 1__
A= ()’o(?Aso) G =1,

2

3

4: rq =rg+ A1Arg, X1 = Xg — A1ro.
5: for k=1,2,3,...ndo

6. V=AY 1,

7 k")

8

D1 = Sl (P’
© p="Tk+DraCl 1 p1
) ek
9 A= Vi AP’
100 reer = e+ AcraAp

110 X1 = Xk — A1 P
12: if rq # €, thenifay # €, then

13 1_ C&*l
14: endif
15: end for

4.4. Algorithm A/Bio

The pseudo-code ®g/Biyg, [2,3], is as follows.

Algorithm 4 Algorithm Ag/Bio

1: Choosexy andy such thaty 0.
2: Setrg=b— Ax,
31 Zp =Ty,
4 Yo=Y,
5. fork=0,1,2,...,ndo
. — (yk!rk)
6 A= Thyomy
70 Tkl = et AaA,
8 M1 =Xk — AxriZ:
9: if ||rksa]| #£ €, then
10: Yier1 = Alek,
10 G =g
. 1 CeaOkenleen)
12: B = +<yk~,Azk) '
13 L1 = B&+1Zk+cﬁ+1rk+1-
14: endif
15: end for

5. Switching between algorithms as a way to

remedy the breakdown problem

relations on which the algorithm is based. The iterate
which causes these coefficients not to exist, does not
cause and should not necessarily cause any problems
when used in another Lanczos-type algorithm, based on
different recurrence relations. It is therefore obvioust th
one may consider switching to the other algorithm, when
breakdown occurs. This allows the algorithm to work in a
Krylov space with a different basis. It is therefore also
possible to remedy breakdown by switching.

5.1.Switching strategies

Different strategies can be adopted for switching between
two or more algorithms. These are as follows.

1.ST1: Switching after breakdown: Start a particular
Lanczos algorithm until a breakdown occurs, then
switch to another Lanczos algorithm, initializing the
latter with the last iterate of the failed algorithm. We
call this strategy ST1.

2.5T2: Pre-emptive switching: Run a Lanczos-type
algorithm for a fixed number of iterations, halt it and
then switch to another Lanczos-type algorithm,
initializing it with the last iterate of the first algorithm.
Note that there is no way to guarantee that breakdown
would not occur before the end of the interval. This
strategy is called ST2.

3.S5T3: Breakdown monitoring: Provided
monotonicity of reduction in the absolute value of the
denominators in the coefficients of the polynomials
involved can be established, breakdown can be
monitored as follows. Evaluate regularly those
coefficients with denominators that are likely to
become zero. Switch to another algorithm when the
absolute value of any of these denominators drops
below a certain level. This is strategy ST3.

5.2. A generic switching algorithm

Suppose we have a set of Lanczos-type algorithms and we

When a Lanczos-type algorithm fails, this is due to thewant to switch from one algorithm to another using one of
non-existence of some coefficients of the recurrencehe above mentioned strategies ST1, ST2 or ST3.

© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014)www.naturalspublishing.com/Journals.asp NS 2 2165

16

Algorithm 5 Generic switching algorithm Algorithm 6 Switching betweer\, andAs»

1: Start the most stable algorithm, if known. 1: Choosexy andy such thaty # 0,

2: Choose a switching strategy froBT1, ST2 or ST3 2: setro=b—Ax, Yo=Y,

3: if ST1 then 3: start either algorithm,

4: Continue with current algorithm until it halts; 4: run current algorithm for a fixed number of iterations

5: if solution is obtainedhen (a cycle) or until it halts;

6: Stop. 5: if solution is obtainedhen

7: else 6: stop;

8: switch to another algorithm; 7: else

9: initialize it with current iterate; 8: switch to the algorithm not yet run;
10: Goto 4. 9: initialize it with the current iterate;
11: endif 10: goto4;

12: else if ST2 then 11: end if
13: Continue with current algorithm for a fixed

number of iterations until it stops;

14: if solution is obtained then Remark: Since restarting can be just as effective as
15: Stop. switching, it is easier to implement a random choice
16: else , betweenA; andAs, at the end of every cycle. Let heads
17 switch to another algorithm, be A4 and tails beA;,. At the toss of a coin, if it shows
18: initialize it with the current iterate, heads and the algorithm running in the last cycle Was
19: G9 to13. then the switch is a restart. If the coin shows tails then the
20: endif switch is a “proper” switch, and» is called upon. In the
21: else , _ _ numerical results presented below, this is what has been
22: Continue with current algorithm and monitor implemented. For more details about restarting 28, [

certain parameters for breakdown, until it halts
23: if solution is obtained then

;g eIsSetop. 5.2.2.Switching betweenA, and As/Bso algorithm

26: switch to another algorithm,)))
27 initialize it with current iterate, Start withAs/Bs, (details ofAs/Bio can be found in1,
28: Goto 22. 2]) do a few iterations and then switch to eith&g or
20: end if As/Bio. The procedure is as Algorithm 4 below.

30: end if

Algorithm 7 Switching betweer\, andAs/B1g

1: Choosexg andy such thaty ~ 0;

2: setrg =b—Ax, Yo=Y, Po = ro;
However, it is important to mention that we have 3: startwith eitherds or As/Bag;
considered onlyST2 in this paper. The convergence 4: run it for a fixed number of iterations (cycles) or until
tolerance in all of the tests performedeis= 1.0E %23 and it halts

the number of iterations per cycle is fixed to 20. 5: if solution is obtainethen
6: stop;
;
8

. else
switch to eitherA4 or As/Bjp; initialize it with the
last iterate of the algorithm running in the last cycle;

9: goto4;

5.2.1. Switching between algorithmsA, and A;» 10- end if

5.2.3.Switching betweenA, and Ag/Bio

In the following, we start with eithef4 or A;2, run it for

a fixed number of iterations (cycle) chosen arbitrarily, Start with eitheAg /B (details ofAg/Bio can be found in
before switching to the other. The results of this switching[1,2]) or A4; do a few iterations and then switch to either
algorithm, are compared to those obtained withofthem chosenrandomly. If the chosen algorithm happens
algorithms A, and A;»> run individually. We are not to be the same as the one running in the last cycle, then
changing any of the parameters involved in bothit is a case of restarting. Otherwise, it is switching. The
algorithms. Details of,4 can be found in1]. algorithm is as follows.

© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2166 M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

Algorithm 8 Switching betweery; andAg/B1g

1. Choosexo andy such thay # 0; dimensions oA andb ranging fromn = 20 ton = 4000.
2: setro=b—Axy, Yo=Y, Po = ro; B _I 0
3: start eitherd; or Ag/Bip; L
4: run it for a fixed number of iterations (cycle), or until 1 B —I
it halts; A
5: if solution is obtainedhen - ’
6. stop; : -1 B —I
7: else O . -1 B
8: switch to eitherA, or Ag/Bio;
9: initialize it with the iterate of the algorithm run in with
the last cycle; 4q - --- 0
10: gotod4.
11: end if B4 a
B = .. " s
: B 4«
0-- B 4

5.2.4.Switching betweenAs/Bio and Ag/Bio
anda = —1+9, f = —1— 9. The parameted takes the
values 00, 0.2, 5 and 8 respectively. The right hand skde
Here again, switching and restarting are combined in ds taken to beb = AX, whereX = (1,1,...,1)T, is the
random way. Start with eithekg/Bio or As/Bio. After a solution of the system. The dimension Bfis 10. When
pre-set number of iterations (cycle), switch to either & = O, the coefficient matrixA is symmetric and the
As/Bip or Ag/Bip, randomly chosen. If the chosen problem is easy to solve because the region is a regular
algorithm to switch to is the same as the one running inmesh, 2. For all other values o, the matrixA is
the last cycle then we a have a case of restarting; else it ison-symmetric and the problem is comparatively hard to

switching. The algorithm is as follows.

Algorithm 9 Switching betweers/B1o andAg/Big
1: Choosexy andy such thaty # 0;

: setro=b—Ax, Yo=Y, 2 =ro;

. start eithelAg/Blo or A5/B]_0;

. run it for a fixed number of iterations;

. if solution is not foundhen

halt current algorithm;

switch to eitherAs /By or Ag/Bio;

initialize it with the last iterate of the algorithm

running in the last cycle;

go to 4,

. else

11: solution found; stop;

12: end if

5.2.5.Numerical results

Algorithms 1, 2, 3, 4,1,2,3] and Algorithms 6, 7, 8 and
9, [3] have been implemented in Matlab and applied to
a number of small to medium size problems for different
values ofd. The test problems we have used arise in the 5
point discretisation of the operate!r(;?—xz2 — g—yzz + V% ona
rectangular region] 2]. Comparative results on instances
of the problemAx = b with A andb as follows and with

solve as the region is not a regular mesh.

5.2.6.Results of Algorithms 1, 2, 3, 4, and Algorithms
6, 7, 8 and 9 for different dimensions of Baheux-type
problems for different values of &

The results obtained with algorithms 1, 2, 3, 4, run
individually and those obtained with the switching
algorithms, Algorithms 6, 7, 8 and 9, for different values
of & on Baheux-type problemsl,]2], are recorded in the
tables 1, 2, 3 and 4 below. The results show that the
switching algorithms are far superior to any one of the
algorithms considered individually.

5.2.7.Comments on numerical evidence

The numerical evidence is strongly in favour of
switching. Individual algorithms have consistently
performed worse except on the very low dimensional
instances withn < 40. We have implementedy, Ao,
As/B1p andAg/Bio to solve a number of problems of the
type described in Sections5 with dimensions ranging
from 20 to 4000. The results are compared against those
obtained by the switching algorithms, Algorithms 6, 7, 8
and 9 on the same problems. These results showAthat
A1z, As/Bi1o andAg/Bjp are not as robust as the switching
algorithms. In fact, individual algorithms solved very few
of the considered problems if at all and with a very poor
accuracy. The switching algorithms, however, solved
them all with a higher precision.

© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014)www.naturalspublishing.com/Journals.asp = 2167
Table 1 For6 =0
Dim of Prob Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9
n I () MMl T(s) Ml T() [Tl T() [Tl T(s) I () [MrilT T(s) Ml T6)
20 3.854%F %[0.0038 | 1.7536 "™ | 0.0086 | 2.5256 ™% | 0.0022 | 1.748%E "™ | 0.0052 | 5.5067E 0% | 0.0012 | 3.854%F 4| 0.0010 | 7.4781E °** | 0.0040 | 8.053F ™| 0.0018
40 5.360E ! | 0.0042 NaN NaN NaN 7.5417E7°* | 0.0041 | 45076 | 0.0053 | 8.920& 4 | 0.0057 | 7.2481E-° | 0.0040
60 NaN NaN NaN NaN 9.663& %1 | 0.0057 | 2.533CE % | 0.0057 | 7.5107E 4 | 0.0085 | 5.816E °* | 0.0067
80 NaN NaN NaN NaN 9.908E 4 | 0.0075 | 6.018% %% | 0.0071 | 7.0866E °* | 0.0088 | 5.7266E %% | 0.0101
100 NaN NaN NaN NaN 21487 | 0.0095 | 2.583E 4 | 0.0078 | 8.026E °* | 0.0098 | 8.137F % | 0.0100
200 NaN NaN NaN NaN 7.423E 0% | 0.0723 | 9.9667E 1 | 0.0159 | 7.904F 014 | 0.0337 | 9.183E O | 0.0352
400 NaN NaN NaN NaN 7.741E %% | 0.0661 | 8.5151E 01 | 0.2156 | 9.741& 01 | 0.2243 | 9.4697E 14 | 0.2315
600 NaN NaN NaN NaN 9.029(E % | 0.0794 | 7.937F 4 | 0.4735 | 9.926F 4 | 1.9625 | 9.4307 | 0.7457
800 NaN NaN NaN NaN 92114 | 0.5660 | 9.5227E % | 0.9395 | 7.729€ 014 | 3.0326 | 7.735€ 1 | 1.4319
1000 NaN NaN NaN NaN 8.846E 014 | 0.8509 | 8.623&E 01 | 2.0539 | 9.9181E 14 | 4.3479 | 9.451FE %14 | 2.8984
2000 NaN NaN NaN NaN 9.724F 0 | 4.8079 | 9.197F 4| 86364 | 8131FE 4| 12.8696| 9.119F 0 | 12.8696
3000 NaN NaN NaN NaN 9.699F 014 | 9.8130 | 7.7507E | 16.5795| 9.7827E 14 | 22.3386| 8.272FE 0 | 22.3386
4000 NaN NaN NaN NaN 9.2641E 91 | 17.4673| 8.9681E 7 | 23.7658| 9.843& %4 | 44.4430| 9.7911E 4 | 44.4567
Table 2 Ford =0.2
Dim of Prob Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9
n [Tl () [l] T6) [Tl T(6s) [l [TG [l T(s) I T(s) [Tl T(s) [Irull T(s)
20 9.5014& % 0.0044 | NaN 8.907E [0.0030| NaN 6.0041E 9| 0.0044 | 1510& %% | 0.0029 | 1.861& O™ | 0.0056 | 8.053F ™ | 0.0044
40 NaN NaN NaN NaN 1.9868 %14 | 0.0064 | 4.6814&°1 | 0.0068 | 3.409£ 4| 0.0089 | 7.3581E°* | 0.0100
60 NaN NaN NaN NaN 6.078& 91 | 0.0134 | 6.354& % | 0.0104 | 2.9827E %% | 0.0113 | 9.658F % | 0.0262
80 NaN NaN NaN NaN 8.855(E 14 | 0.0159 | 9.548F %1 | 0.0108 | 84187 % | 0.0120 | 7.074& ° | 0.0269
100 NaN NaN NaN NaN 5.802(E %1 | 0.0144 | 6.696E 1 | 0.0151 | 7.388E 4 | 0.0126 | 7.523€E 4 | 0.0273
200 NaN NaN NaN NaN 9.097(E %14 | 0.0213 | 9.8054& %14 | 0.0353 | 8.6331E %1 | 0.0313 | 8128 %1 | 0.0352
400 NaN NaN NaN NaN 6.559F 014 | 0.0748 | 9.3591E %1 | 0.1054 | 6.666(E °1 | 0.1875 | 8.4316 % | 0.2315
600 NaN NaN NaN NaN 9.615F %14 | 0.1802 | 8.816E % | 0.6066 | 6.813FE 01| 0.6751 | 5.9937% % | 0.7457
800 NaN NaN NaN NaN 9.860F 014 | 0.5922 | 8.839E 014 | 0.9088 | 8.255(E 01 | 1.1436 | 7.029F 01 | 1.4319
1000 NaN NaN NaN NaN 9.782F 14| 0.8222 | 7.789& 14 | 1.3020 | 7.454(E 01 | 2.1302 | 7.720& 4 | 2.8984
2000 NaN NaN NaN NaN 7.975F 1| 43416 | 9.4241E 1 | 4.7668 | 9.528E 0 | 10.5976| 9.157(E % | 8.5787
3000 NaN NaN NaN NaN 8.744& 014 | 10.0287| 9.6831E 01 | 12.1561| 9.9608 014 | 25.1173| 9.2806E % | 21.7380
4000 NaN NaN NaN NaN 5.841F 014 | 12,9390| 9.758(E %1 | 23.3993| 9.927CE %1 | 38.9051| 9.7911E %1 | 39.0164
Table 3 Foré =5
Dim of Prob Algorithm 1 Algorithm 2 Algorithm 3 | Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9
n IR T(s) [l T(s) [Indl] T()][Il] T(s) [l T(s) [l T(s) [l T(s) I T(s)
20 3.683& %% | 0.0042 | 1.558E % | 0.0090| NaN NaN 2509 70,0079 | 9.143& %% | 0.0060 | 3.583E % | 0.0067 | 8.053F °** | 0.0038
40 NaN NaN NaN NaN 7.4721E91 | 0,0202 | 1957 %1 | 0.0171 | 8.902€E %% | 0.0079 | 2.908E °* | 0.0078
60 NaN NaN NaN NaN 9.1477E %14 | 0.0232 | 5412 %14 | 0.0218 | 3.248E %1 | 0.0207 | 5.6811EE % | 0.0103
80 NaN NaN NaN NaN 2516F 014 | 0.0275 | 7.9597F 014 | 0.0277 | 7.755F 01 | 0.0255 | 5.7266E % | 0.0101
100 NaN NaN NaN NaN 8.9244 %14 | 0,0315 | 8.426E ° | 0.0295 | 3.289& ° | 0.0308 | 8.137F ° | 0.0100
200 NaN NaN NaN NaN 85274 %14 | 0.0410 | 8.374F %1 | 0.0402 | 45501E %1 | 0.0499 | 9.183E % | 0.0352
400 NaN NaN NaN NaN 9.500% %14 | 0.0965 | 3.301F 014 | 0.2662 | 4.303E 01| 0.1856 | 9.4697E 01 | 0.2315
600 NaN NaN NaN NaN 9.3474£ 14| 02318 | 2.745€ 4 | 0.7717 | 8.1621E°* | 0.6303 | 9.4307E 4 | 0.7457
800 NaN NaN NaN NaN 7219791 | 0.6875 | 9.371& %1 | 0.8720 | 9.202F 01 | 1.0426 | 7.7356 0 | 1.4319
1000 NaN NaN NaN NaN 9.469(E~014 | 1.7006 | 8.222F 014 | 2.4118 | 6.761& 01 | 2.6779 | 9.451E 01 | 4.2678
2000 NaN NaN NaN NaN 7.075E %14 | 9.2566 | 8.8127E 014 | 6.9938 | 4.6266E 01 | 11.2416| 9.119F 1 | 11.0604
3000 NaN NaN NaN NaN 8.0276E 01 | 155897 8.8194& 01 | 18.8125| 4.376E 01 | 25.3675| 8.272% 0 | 24.6007
4000 NaN NaN NaN NaN 9.7667E %1 | 29.7400| 8.926(E %1 | 30.4619| 8.5908 %1 | 42.5710| 9.7911FE % | 41.5276
Table 4 For6 =8
Dim of Prob | Algorithm 1 | Algorithm 2 Algorithm 3 Algorithm 4 Algorithm 6 Algorithm 7 Algorithm 8 Algorithm 9
n Ml] T) [TIndl] T6s) [Tl () [Tl T(s) Tl () [Tl () Il () [l T(s)
20 NaN NaN 8.042(E 97 | 0.0027 | 9.2836 ™ | 0.0054| 81056 ™ | 0.0069 | 8.762E % | 0.0049 | 3.138E °** | 0.0075 | 8.053E °* | 0.0048
40 NaN NaN NaN NaN 9.188(E 4| 0.0243 | 8.125& °%* | 0.0061 | 82974 % | 0.0216 | 2.908E °** | 0.0078
60 NaN NaN NaN NaN 7.055& 914 | 0,0299 | 8.309E % | 0.0220 | 9.9891E %% | 0.0284 | 5.6811FE % | 0.0103
80 NaN NaN NaN NaN 9.885% 914 | 0.0346 | 8.560(E %1 | 0.0287 | 9.733E %1 | 0.0282 | 5.7266E % | 0.0120
100 NaN NaN NaN NaN 8.7391E 914 | 0.0382 | 8.775E %4 | 0.0303 | 8.596(E %1 | 0.0363 | 8.137F %1 | 0.0137
200 NaN NaN NaN NaN 9.579F 91 | 0.0700 | 4.3407FE % | 0.0457 | 9.8381E %% | 0.0708 | 9.183CE % | 0.0352
400 NaN NaN NaN NaN 6.079E 914 | 0.1292 | 9.6421E 01 | 0.2399 | 9.6706E 01 | 0.3125 | 9.4697E %M | 0.2315
600 NaN NaN NaN NaN 9.6186E %14 | 0.3432 | 8538 %14 | 0.5535 | 8.980F 01 | 0.9279 | 9.4307%E 0 | 0.7457
800 NaN NaN NaN NaN 8.893E 014 | 0.6942 | 31458 014 | 1.3329 | 7.5301E 01 | 1.0612 | 7.7356E 01 | 1.4319
1000 NaN NaN NaN NaN 9.7821E-91 | 1,7060 | 4.970F 1 | 2.7150 | 9.6384& 01 | 2.1978 | 9.451E % | 2.8984
2000 NaN NaN NaN NaN 7.384F 014 | 11.2436| 8.157& %4 | 13.0654| 8.2557E 14 | 10.7977| 9.119F %4 | 13.2915
3000 NaN NaN NaN NaN 9.590% 014 | 20.0131| 7.1926E 014 | 20.9822| 53725 014 | 25.3714| 8.2725 014 | 28.4232
4000 NaN NaN NaN NaN 2155 %1 | 31.2356| 9.430(E %% | 40.2119| 9.386E % | 40.1782| 9.7911E % | 45.1523

Based on the above results, it is clear that switching is6. Conclusion

an effective way to deal with the breakdown in

Lanczos-type algorithms.

It

is also clear that the

The switching strategies seem to be more successful than
individual algorithms in that they did not experience any
breakdowns and they solved all problems, most of them in
much shorter CPU time.

The cost of switching, in terms of CPU time, in ST2
at least, is not substantial, compared to that of the
individual algorithms. It is also quite easy to see that it
would not be substantial in ST1 since the cost would be

switching algorithms are more efficient particularly for
large dimension problems.

© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2168 NS 2 M. Farooq, A. Salhi: A Switching Approach to Avoid Breakdown in...

similar to that of ST2. Even in the case of monitoring the [13]B. N. Parlett and D.S. Scott. The Lanczos Algorithm With
coefficients that can vanish, the cost should only be that Selective OrthogonaliztioriViathematics of Computation

of a test of the form: 33,217-238 (1979).
if |denominator value< tolerancethen stop. [14] C. Lanczos. Solution of systems of linear equations by
We have not measured its impact on the overall minimized iteration,Journal of the National Bureau of

computing time, but it should not be excessive. This Standards49, 33-53 (1952). .
means that switching strategies are worthwhile [15]C. Brezinski, M. R. Zaglia and H. Sadok. A review of
considering to enhance the efficiency of Lanczos-type formal orthogonality in Lanczos-based methodsurnal
algorithms and not just their robustness. of Computational and Applied Mathematics40, 81-98
Having said that, further research and experimentation (2002). -

. [16] G. Cybenko. An explicit formula for Lanczos
are necessary, particularly on the very large scale polynomials”,Linear Algebra Appl.88, 99-115 (1987)
InS_tan<_:eS of SL.ES’ o est_abllsh the superiority of [17] C. Brezinski. Pace-Type Approximation and General
switching algorithms against the state-of-the-art

. L . . Orthogonal Polynomials, Internat. Ser. Nuner. MagQ.
Lanczos-type algorithms with in-built precautions to Birkhauser, Basel, (1980).

avoid breakdown SUC.h as MRZ and BSMRZ-Q 7,12 [18] C. Brezinski, M. R. Zaglia and H. Sadok. A Breakdown-
Note that these algorithms are attractive for other reasons free Lanczos type algorithm for solving linear systems,
too, namely their simplicity and easy implementation. Numerische Mathematil§3, 29-38 (1992).
This is the subject of on-going research work. [19] C. Brezinski and M. R. Zaglia. Breakdowns in the
implementation of Lanczos method for solving linear
systemsComput. Math. Appl.33, 31-44 (1997).
[20] C. Brezinski and M. R. Zaglia. Treatment of near-
References breakdown in the CGS algorithNumerical Algorithms

[1] C. Baheux.Algorithmes d’implementation de laéthode 7, 3373 (1994). . . .
; X ; . [21] M. Faroog and A. Salhi. A Preemptive Restarting
de LanczosPhD thesis, University of Lille 1, France, . "
(1994). Approach to Beating the Inherent Instability of Lanczos-
type Algorithms Jranian Journal of Science & Technology,

2] C. Baheux. New Implementations of Lanczos Method, 5 .
[2] P Transactions A-Science 37(3.1) 349-358 (2013).

Journal of Computational and Applied Mathemati&sg,

3-15 (1995). http://ijsts.shirazu.ac.ir/action=articleInfo&article=1634&vol=142

[3]M. Farooq. New Lanczos-type Algorithms and their [22] G. M_eurant.The Lanczos and conjugate gra}d_lent
Implementation PhD thesis, University of Essex, UK, algorithms, From Theory to Finite Precision
(2011).http://serlib0.essex.ac.uk/record=b1754556. ComputationsSIAM, Philadelphia, (2006).

[4] C. Brezinski and H. Sadok. Lanczos-type algorithms for
solving systems of linear equation&pplied Numerical
Mathematics11, 443-473 (1993).

[5]1B. N. Parlett, D. R. Taylor and Z. A. Liu. A Look-
Ahead Lanczos Algorithm for Unsymmetric Matrices,
Mathematics of Computatiod4, 105-124 (1985).

[6] C. Brezinski and Zaglia, M. R. Hybird procedures for
solving linear systemd\lumerische Mathematil67, 1-19
(1994).

Muhammad Farooq
is currently Assistant
Professor of Mathematics
at the University of Peshawar,
Pakistan. He was educated
to degree level at the
[71C. Brezinski, M. R. Zaglia and H. Sadok. Avoiding _Un'Ver5|_ty of Peshawar,
breakdown and nearbreakdown in Lanczos type in Pakistan. He obtained
algorithms Numerical Algorithms1, 261-284 (1991). his PhD recently on New
[8] C. Brezinski, M. R. Zaglia and H. Sadok. Addendum to Lanczos-type Algorithms and their Implementation under
Avoiding breakdown and near-breakdown in Lanczos type the supervision of Dr. Abdellah Salhi, from the University
algorithms,Numerical Algorithms2, 133-136 (1992). of Essex in Wivenhoe Park, Colchester, UK.
[9] M. H. Gutknecht. A completed theory of the unsymmetric
Lanczos process and related algorithms, Pa8IAM J.
Matrix Anal. Appl, 13, 594-639 (1992).
[10] R. W. Freund, M. H. Gutknecht and N. M. Nachtigal. An
Implementation of the Look-Ahead Lanczos Algorithm for
Non-Hermitian MatricesSIAM J. Sci. Computl4, 137-
158 (1993).
[11] P. R. Graves-Morris. A “Look-around Lanczos” algorithms
for solving a system of linear equation®umerical
Algorithms 15, 247-274 (1997).
[12] C. Brezinski, M. R. Zaglia and H. Sadok. New look-ahead
Lanczos-type algorithms for linear systendymerische
Mathematik 83, 53-85 (1999).

© 2014 NSP
Natural Sciences Publishing Cor.

http://serlib0.essex. ac.uk/record=b1754556.
http://ijsts.shirazu.ac.ir/?_action=articleInfo&article=1634&vol=142

Appl. Math. Inf. Sci.8, No. 5, 2161-2169 (2014)www.naturalspublishing.com/Journals.asp ~N S =y 2169

Abdellah Salhi is

an expert in Operational
Research with particular
interests in the numerical
aspects of optimisation
algorithms. He is currently
Senior Lecturer and Head
of the Department of
Mathematical Sciences at the
University of Essex, UK. He
was educated to degree level at the University of
Constantine, in Algeria. He obtained his PhD on
Karmarkars algorithm for Linear Programming from the
University of Aston in Birmingham, UK. He has
published over 60 research articles. He has recently
introduced the Plant Propagation Algorithm for global
optimisation, a heuristic-type algorithm inspired by the
way strawberry plants propagate using runners.

© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	The Lanczos approach
	Formal orthogonal polynomials
	Recalling some existing algorithms
	Switching between algorithms as a way to remedy the breakdown problem
	Conclusion

