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Abstract: The kinematic design of mechanism is an important stage in the design methodology. A dexterous workspace for a
manipulator is an outstanding characteristic that must be considered in it. Hence, a mono-objective constraint optimization problem
(MOCOP) for the kinematic design of a manipulator with three revolute joints (3R robot), that fulfils a defined dexterous workspace,
is formulated. The MOCOP is solved by proposing a mechanism in the differential evolution (DE) algorithm called exhaustive local
exploitation mechanism with adaptive scale factor (ELEMAEF). This mechanism exhaustively exploits a local region in the search
space with the information of the base and the difference vectors of goodtrial vector, in an attempt to generate better individuals in the
same direction. In addition, the ELEMAEF guides the evolution of the population toward a better zone without sacrificing the search
capabilities of the DE algorithm. A comparison of the DE algorithm with and without the ELEMAEF for this particular design problem
is presented. The use of the ELEMAEF gives a superior performancein the DE algorithm.
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1 Introduction

Analysis and synthesis of mechanisms [1] are the most
important stages in the design methodology of parallel
manipulators. The dimensional synthesis and workspace
are two main characteristics which define a mechanism.
They are the most studied issues in the field [2] [3]. The
dimensional synthesis of a mechanism can be developed
with graphical, analytical and numerical methods [4], [5].
On the other hand, the current methods for determining
the manipulator’s workspace and its boundary are
classified as [6]: geometrical methods [7] [8],
discretization methods [9] and numerical methods [10],
[11]. Several robotic manipulators have a mechanism
(closed kinematic chain) in their structure in order to
improve the design performance. Those manipulators are
called parallel one and present some advantages over
serial manipulators, such as rigidity, dexterity, precision,
velocity and acceleration [12]. One important
characteristic that must be considered in the design of
manipulators is the dexterous workspace. The dexterous
workspace represents the region that can be reached by a

point on the end-effector with any orientation, i.e., it is
the volume or area which its end-effector can reach in the
Cartesian space with different orientation [13], [14].

The design of a manipulator that meets one or several
performance criteria such as trajectory accuracy,
workspace, stiffness, singularity, dexterity, accuracy,etc.,
is a challenge because most of the performance criteria
presents tradeoff among them and there is not just one
solution that meets the aforementioned requirements.
Hence, the manipulator design have been stated as an
optimization problem where optimization techniques such
as, heuristic algorithms [15], [16], [17], [18], [19],[20]
and gradient based algorithms [21], have been used.
Nevertheless, if the optimization problem is nonlinear or
discontinuous one, gradient based algorithms are not
suitable to solve the problem because they converge to
local minima near the initial condition (sensitive to initial
condition) [22], [23], then the design solution will
perform poorly. So, it is important to have an algorithm
that efficiently search in the design space to obtain a
feasible solution, i.e., to obtain a set of parameters that
describe the system and meet the design requirements.

∗ Corresponding author e-mail:mvillarrealc@ipn.mx

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080506


2130 M. G. Villarreal-Cervantes et. al.: Optimum Design of Parallelogram Five-bar Manipulator...

Heuristic optimization techniques such as
evolutionary algorithms (EAs), genetic algorithms (GAs)
or particle swarm optimization (PSO) have been
developed to solve complex engineering optimization
problems. Some advantages of these approaches are:i)
These are population-based methods, therefore they can
produce several possible solutions.ii) They do not require
additional information to start the search, i.e. the
information of the gradient, the Hessian matrix, the initial
search points, etc.iii ) They do not require the objective
functions and constraints to be continuous and/or
differentiable. Finally, iv) They can be used and/or
adapted to a large set of problems, because they do not
need special mathematical formulation (problem
transformation) in order to obtain a set of solutions.

Since Storn and Price proposed the algorithm of
Differential Evolution (DE) in the middle of 90’s [24], it
has proven to be a powerful computational tool to solve
optimization problems. The advantages of the DE is the
easy computational implementation, the great adaptability
to different kinds of optimization problems and the
reasonable computing time, among others. However, this
algorithm does not guarantee the convergence to the
global optimum.

Studies [25], [26] have established that the mutation
factor and the crossover probability influence in the DE
performance. The mutation factor controls the rate at
which the population evolves and the crossover
probability controls the probability for a component to be
selected from the mutant vector. Hence, several research
works improve the mutation operator since it plays a key
role in the DE performance. Efforts to improve the
mutation operator were addressed considering the
tradeoff between convergence speed and robustness [27].
Adaptive parameter control schemes [28] were introduced
in the mutation strategy. Other researches combine
different mutation strategies [22], [29]. Finally, some
other researchers deals with the implementation of
mechanisms and its effects to ensure better exploration
and exploitation capabilities in the solution space such
that the convergence to the global optimum may be found
[30],[31], [32].

An efficient exploration mechanism in the search
space and an effective exploitation mechanism in a region
of the search space, would be desirable into the
optimization algorithm. The exploration can widely
search different regions in it, while the exploitation
accelerates the convergence to the optimum solution in
the region. Several researchers have explained the
relationship between the exploration and exploitation
[32], [33].

In this paper, an optimization problem for the
kinematic design of a three revolute joint manipulator
with a parallelogram five-bar mechanism that fulfils a
defined dexterous workspace is stated. A mechanism to
promote the local exploitation of the individuals that
present an appropriate fitness is proposed and included in
the DE/Rand/1/Bin algorithm. This mechanism uses the

vectors that form the mutant vector and an adaptive scale
factor, in an attempt to guide the evolution of the DE
algorithm to better zones. Hence, this mechanism is
called Exhaustive Local Exploitation Mechanism with
Adaptive Scale Factor (ELEMAEF). The DE algorithm
with ELEMAEF is compared with the traditional
DE/Rand/1/Bin algorithm (latter named it, DE algorithm
without ELEMAEF) in order to show its performance in a
particular optimization problem.

The main motivations of this work are: 1) the formal
formulation, as an optimization problem, of the optimum
design of the link lengths of a 3R manipulator which
fulfills a defined dexterous workspace and 2) the proposal
of the exhaustive local exploitation mechanism with
adaptive scale factor in the DE/Rand/1/Bin which
improves the DE performance for this particular problem.

The rest of the paper is organized as follows: The
kinematic design of a 3R manipulator with a
parallelogram five-bar mechanism is stated in sectionII .
In sectionIII the ELEMAEF in the differential evolution
is explained. The experiments are detailed and discussed
in sectionIV . Finally, the conclusions are commented in
sectionV.

2 Design problem statement

The 3R manipulator with a parallelogram five-bar
mechanism presents three degree of freedom in the joint
space which provide the ability to move the tip of the
end-effector (point (¯xi, j,k, z̄i, j,k of the link 4 which is
represented by an asterisk in Fig.1) in the planeX − Z
with an orientationφ̄i, j,k with respect to theX axis of the
inertial coordinate systemX − Z. The parallelogram
five-bar mechanism, included into the 3R robot, achieves
a higher precision and a higher stiffness than a 3R robot
without the parallelogram five-bar mechanism [12].The
3Rmanipulator is shown in Fig.1, wherel i ∀ i = 1,2, ...,4
is the i − th link length, (x̄i, j,k, z̄i, j,k) and φ̄i, j,k are the
Cartesian coordinate of the manipulator’s end-effector
and the angular position of the manipulator’s end-effector,
respectively. The desired dexterous workspace [13] is
represented by an area with vertices(x̄di, j,k, z̄di, j,k) ∀
i, j = 1,2, wherek = 1,2,3 is thek− th orientation that
must fulfil the end-effector for each vertex. Thek− th
desired orientation for each vertex is represented by the
angleφ̄di, j,k as it is shown in Fig.1.

The reachable workspace of a manipulator is the
volume that its end-effector can reach in the Cartesian
space. The dexterous workspace can be defined as the
volume or area which its end-effector can reach in the
Cartesian space with different orientation [13], [14].
Several robotic tasks require the manipulation of objects
with different orientation (due to obstacles in the
workspace or for positioning the end-effector tool). In this
problem statement it is considered that the designer (user)
requires a 3R robot with a parallelogram five-bar
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Fig. 1: Schematic diagram of the 3R manipulator with
parallelogram five-bar mechanism.

mechanism to handle an object in a specific squared
workspace (desired squared workspace) with different
orientations, i.e. a robot with dexterous workspace is
requested. The desired squared workspace is given by its
vertexes. Then, the design problem is to find the link
lengths of the 3R robot such that they fulfils the desired
dexterous workspace subject to inherent design
constraints.

In order to formulate the design problem, the following
assumptions are considered:

a)The desired workspace is squared shape with four
vertices(x̄di, j,k, z̄di, j,k) ∀ i, j = 1,2.

b)If the tip of the end-effector of the link 4 reaches the
four vertices of the desired squared workspace with
three different orientations (anglēφi, j,k∀k = 1,2,3 of
the link 4), then the end-effector of the robot can
reach any interior points in the desired squared
workspace with at least the proposed three different
orientations. Hence, a dexterous workspace is
promoted.

In the next subsections, the design variables, objective
function, constraints and the formal optimization problem
statement for the design of the 3R robot with a desired
dexterous workspace are detailed.

2.1 Design variables

In this paper the design variables of the 3R robot are the
link lengths (l1, l2, l3) and the angular position of the links
(q1i, j,k,q2i, j,k,q3i, j,k) to reach the vertices of the desired
workspace ((x̄di, j,k, z̄di, j,k)) with k different orientations
φ̄di, j,k. Hence, the design variable vector is shown in (1) ∀
i, j = 1,2 andk= 1,2,3.

p= [l1, l3, l4,q1i, j,k,q2i, j,k,q3i, j,k]
T ∈ R39 (1)

2.2 Objective function

The purpose for establishing an optimization problem in
this paper is to design the robot with a desired dexterous
workspace. It is clear that the objective function is
established as the sum of the square of the Cartesian
position error between the desired workspace vertex and
the tip of the end-effector, plus the square of the angular
position error between the desired orientation and the
end-effector orientation. Hence, the objective function
can be described in (2). The vertex positions of the
desired dexterous workspace are chosen as
(x̄d1,1,k, z̄d1,1,k) = (0.25m,0.10m),
(x̄d1,2,k, z̄d1,2,k) = (0.65m,0.10m),
(x̄d2,1,k, z̄d2,1,k) = (0.25m,0.40m) and
(x̄d2,2,k, z̄d2,2,k) = (0.65m,0.40m). The subscriptk indicate
three different orientations in each vertex position. They
are selected asφ̄di, j,1 = −π

2 rad, φ̄di, j,2 = 0rad and
φ̄di, j,3 =

π
2 rad ∀ i, j = 1,2.

J =
∫

w

(

x̄di, j,k − x̄i, j,k

)2
dw+

∫

w

(

z̄di, j,k − z̄i, j,k

)2
dw

+
18
π

∫

w

(

φ̄di, j,k − φ̄i, j,k

)2
dw (2)

In equation (2), the first two terms (Cartesian error)
are equally weighted because they have the same units
(meters). But, the last term a weight value of18

π is
selected by assuming that one degree is proporcional to
one millimeter (0.001m). This weight value efficiently
weights the last term with the other two in order to
provide good solutions.

The direct kinematic (3)-(5) of the manipulator is used
to define the Cartesian position of the end-effector in (2).

x̄i, j,k = l1cosq1i, j,k − l4cos
(

q2i, j,k

)

− l5cos
(

q2i, j,k +q3i, j,k

)

(3)

z̄i, j,k = l1sinq1i, j,k − l4sin
(

q2i, j,k

)

− l5sin
(

q2i, j,k +q3i, j,k

)

(4)

φ̄i, j,k = q2i, j,k +q3i, j,k −π (5)

2.3 Constraints

The parallel structure of the manipulator formed by the
rectangle at linksl1 and l2, presents mobility constraints
between them. Those constraints must be considered in the
manipulator design and they are presented when the links
1 and 2 collide each other. The mobility constraints are
stated in (6)-(7), which involves a total of 24 inequality
constraints.
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g1−12 : TolMax2−q2i, j,k +q1i, j,k ≤ 0 (6)

g13−24 : q2i, j,k −q1i, j,k −π +TolMax2 ≤ 0 (7)

In addition, other 39 constraints must be included to
bound the design variable vectorp, i.e. limits in the link
angle and in the link lengths. In (8)-(13), those constraints
are shown, whereTolMax1 =

π
36rad andTolMax2 =

5π
36rad

are the minimum security angle that should have the links
to prevent the impact.

g25−36 : 0≤ q1i, j,k ≤ π −TolMax2 (8)

g37−48 : TolMax2 ≤ q2i, j,k ≤
3
2

π −TolMax2 (9)

g49−60 : −π +TolMax1 ≤ q3i, j,k ≤ π −TolMax1 (10)

g61 : l1Min ≤ l1 ≤ l1Max (11)

g62 : l3Min ≤ l3 ≤ l3Max (12)

g63 : l4Min ≤ l4 ≤ l4Max (13)

2.4 Optimization problem statement

The optimization problem for the 3R manipulator consists
on finding the optimal design parameter vectorp∗ ∈ R39

(link lengths and angular positions) such that its
end-effector (point (¯x, ȳ) of the link 4) can reach a desired
workspace with different orientations of the link 4
(dexterous workspace). Hence the optimization problem
statement can be generally expressed as in (14)-(15),
whereJ ∈ R (2) is the objective function to be minimized
and the equationg ∈ R63 (15) is the inequality constraint
vector (6)-(13) .

Min
p

J (14)

Subject to:

g(p)≤ 0∈ R63 (15)

3 Optimization algorithms

The optimization problem (14)-(15) is solved by using
eight variants of the differential evolution (DE) algorithm
[34], [35] and by using the proposed exhaustive local
exploitation mechanism in the eight variants of the
differential evolution (DE) algorithm.

3.1 DE algorithm

The differential evolution (DE) algorithm consists ofNP
individuals xi,G =

[

x1,i,G,x2,i,G, ...,x j,i,G, ...,xD,i,G,
]T

∀ i = 1,2, ..,NP, G = 1,2, ...,GenMax called target

population. Each individualxi,G contains D design
variables which are limited by their bounds[xmin

j ,xmax
j ] ∀

j = 1,2, ...,D. The initial population x j,i,G=0 ∀
j = 1, ...,D, i = 1, ..,NP is randomly selected considering
their limits as follows:
x j,i,G=0 = xmin

j + randj(0,1)(xmax
j − xmin

j ), whererandj is
a uniformly distributed random number in the interval
[0,1].

3.1.1 Mutation and crossover

In each generationG, the mutation and crossover operator
are used in the target populationxi,G in order to generate
other population called trial population with trial vectors
ui,G =

[

u1,i,G,u2,i,G, ...,u j,i,G, ...,uD,i,G,
]T

∀ i = 1,2, ..,NP
as their individuals. There are several variants of the DE
algorithm [34] which allow the exploration and
exploitation of the search space for the DE algorithm. The
main differences among them are in the mutation and
crossover operator. The use of the DE variants depends on
the problem at hand as it is stated in [36] and in [22]. In
this paper the mutation and crossover operator of the
DE/rand/1/bin, DE/rand/1/exp, Best/1/bin, Best/1/exp,
Current to rand 1, Current to best 1, Current to rand 1 bin,
Rand 2 Dir are used. The mutation and crossover variants
are summarized in Fig.2.

The scale factorF ∈ (0,1] and K ∈ (0,1) in the
mutation process, are used to control the influence of the
selected individuals in order to generate the mutant
vector. The indexesr1, r2 and r3 are randomly chosen
from the range[1,NP] and the indexbest represent the
individual with the best objective function.

The uniform crossover generates trial vectorsui,G from
the mutant vectorvi,G or the target vectorxi,G depending
on the crossover probabilityCR (higher values mean less
influence of the target vector, hence higher influence of
the mutant vector). The crossover stage is not required in
current-to-rand/1, current-to-best/1 and rand/2/dir, asit is
observed in Fig.2.

3.1.2 Constrained selection mechanism

Given that traditional DE [34] does not handle
constrained optimization problem, the technique
proposed in [37] is used to provide an elitism constrained
selection mechanism (ECSM) in the DE algorithm (
[38],[39],[40]). The ECSM determines between the trial
vectorui,G and the target onexi,G, which of them pass to
the next generationxi,G+1 and it depends on their fitness.
This decision is based on the following statements:

–Feasible solutions are preferred to any infeasible
solution

–Between two feasible solutions, the one having better
objective function value is preferred.

–Between two infeasible solutions, the one having
smaller constraint violation is preferred.
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Nomenclature Variant

rand/1/bin ui
j =

{

vi
j = xr3

j +F(xr1
j −xr2

j ) if randj (0,1)<CRor j = jrand

xi
j otherwise

rand/1/exp ui
j =

{

vi
j = xr3

j +F(xr1
j −xr2

j ) from randj (0,1)<CRor j = jrand

xi
j otherwise

best/1/bin ui
j =

{

vi
j = xbest

j +F(xr1
j −xr2

j ) if randj (0,1)<CRor j = jrand

xi
j otherwise

best/1/exp ui
j =

{

vi
j = xbest

j +F(xr1
j −xr2

j ) from randj (0,1)<CRor j = jrand

xi
j otherwise

current-to-rand/1 ui = vi
j = xi +K(xr3 −xi)+F(xr1 −xr2)

current-to-best/1 ui = vi
j = xi +K(xbest−xi)+F(xr1 −xr2)

current-to-rand/1/bin ui
j =

{

vi
j = xi

j +K(xr3
j −xi

j )+F(xr1
j −xr2

j ) if randj (0,1)<CRor j = jrand

xi
j otherwise

rand/2/dir ui = vi
j = w1+ F

2 (w
1−w2+w3−w4) where f (w1)< f (w2) and f (w3)< f (w4)

Fig. 2: DE variants.

3.1.3 Exhaustive local exploitation mechanism with
adaptive scale factor

The exhaustive local exploitation mechanism with
adaptive scale factor (ELEMAEF) consist on deeply
searching on a previous direction if it presents better
fitness. This mechanism favors the search in the
neighborhood of the trial vector promoting efficient
individual (local) exploitation. The exploration
capabilities of the DE variants are not substantially
diminishing because the ELEMAEF only enters when the
trial vector presents better fitness (considering the
constrained selection operation) than the target vector.
When the ELEMAEF is activated, a new individualû is
generated by using the same mutation and crossover
operation (the same base vectorx j,r1,G and the same
difference vector (x j,r2,G − x j,r3,G)) considering the
adaptive scale factorF2 proposed in [28]. If the new
individual û is better thanui,G+1, the new individual
passes to the next generation. This is done repeatedly
until the maximum number of searchingNw is fulfilled or
when the new individual̂u is worse than previous one
ui,G+1. It is important to note that the proposed DE
algorithm with the exhaustive local exploitation
mechanism requires an additional parameterF2 in the
mutation process. The pseudocode of the exhaustive
exploitation mechanism is observed in Fig.3. In the next
paragraph, the parameter adaptation ofF2 is introduced.

Parameter adaptation ofF2: The mutation factorF2
in the exhaustive local exploitation mechanism is self
generated according to [28]. This factor uses a Cauchy
distribution with a location parameterµF2, specifying the
location of the peak of the distribution and the scale
parameter of 0.1 which specifies the half-width at
half-maximum as it is observed in (16).

y = randc(µF2,0.1) (16)

F2 =
1, i f y ≥ 1

Recompute y, i f y ≤ 0
y, else

(17)

The location parameterµF2 is initialized as 0.5 and
then updated at the end of each generation according to
(18), where the parameterSF2 denote the set of all
successful mutation factors in the ELEMAEF andc= 0.1
is chosen. ThemeanL(·) is the Lehmer mean stated in
(19).

µF2 = (1−c) ·µF2 +c·meanL(SF2) (18)

meanL(SF2) =
∑S2

F2

∑SF2

(19)

The pseudocode of the DE algorithm with ELEMAEF
is shown in Fig.4.

4 Experiments and results

The proposed DE algorithm with ELEMAEF is
programmed in Matlab Release 7.9 on a Windows
platform. The experiments are performed on a PC with a
1.83 GHz Core 2 Duo with 2 GB of RAM. The
population size NP consists on 36 individuals, the
algorithm stops when the number of generations exceed
GMax = 6500 generations or when the mean of the
objective function of the individuals in the current
generation is smaller than 1e−4. In order to analyze the
results, the proposed DE algorithm with ELEMAEF is
compared with the DE algorithm without ELEMAEF, by
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using constant scaling factorF and constant crossover
CR.

Ten independent runs are carried out for each DE
variants and for each of the following scale factor
F = 0.3,0.6,0.9 and crossover parameters
CR = 0.3,0.6,0.9. When the DE algorithm with
ELEMAEF is used, the maximum number of local search
Nw = 10 is chosen for each selected scale factorF and
crossover parameterCR. Therefore, different ”cases” are
shown below in Table1 and in Table2 for each DE
variants. Eachcasecomprising ten independent runs.

In Table1 and Table2 the experimental results with
different DE variants with and without ELEMAEF are
shown, respectively. The meaning of the abbreviations in
Tables is explained as follows:Jmean is the mean of the
objective function values for the individuals in the last
generation considering the ten runs.σ(J)mean is mean
from the ten runs, of the standard deviation of the
objective function values for the last generation. ”Time”
is the mean of the convergence time from the ten runs.
MaxGmean is the mean of the maximum number of
generation for the ten runs. #FunJmean is the mean of the
times that the objective function is evaluated for the ten
runs. #ImpJmean is the mean of the sum of the times that
the ELEMAEF improves the individual in each
generation for the ten runs.J∗% is the percentage from
the ten runs, which the optimum objective function value
is reached in the population. It is considered that the
optimum solution is reached when the objective function
is less than 1e−4 (J∗ < 1e−4).

DE variants without ELEMAEF

Based on the columnσ(J)mean and the columnJmean in
Table 1, it is observed that the low standard deviation

For w= 1 to Nw Do
For j = 1 to D Do
If u j,i,G+1 == x j,i,G Then
û j = x j,i,G+1

Else
F2 = randci(µF2,0.1)
û j = x j,r1,G+F2(x j,r2,G−x j,r3,G)

End If
End For
If û is better thanui,G+1 (Based on CSM) Then
ui,G+1 = û
F2 → SF2

Else
ui,G+1 = ui,G+1
Break
End If

End For

Fig. 3: Exhaustive exploitation mechanism added to the DE
algorithm.

1 BEGIN
2 G= 0; µF2 = 0.5
3 Create a random populationxi,G ∀i = 1, ...,NP
4 Evaluate J(xi,G), g(xi,G), ∀i = 1, ...,NP
5 Do
6 SF2 = /0
7 For i = 1 toNPDo
8 Select randomly{r1 6= r2 6= r3} ∈ xG.
9 jrand =randint(1,D)
10 For j = 1 toD Do
11 Mutation and crossover
12 End For
13 Evaluate J(ui,G+1), g(ui,G+1)
14 If u i,G+1 is better thanxi,G (Based on CSM) Then
15 Exhaustive local exploitation mechanism
16 xi,G+1 = ui,G+1
17 Else
18 xi,G+1 = xi,G
19 End
20 µF2 = (1−c) ·µF2 +c·meanL(SF2)
21 G= G+1
22 While (G≤ GMax)
23 END

Fig. 4: Pseudocode of the DE algorithm with the exhaustive local
exploitation mechanism.

(σ(J)mean≤ 0) indicates that most of the runs for each
case converge to a solution (local solution whetherJmean
is large andσ(J)mean≤ 0 or global solution whetherJmean
is small andσ(J)mean≤ 0). The DE/Current to Rand/1,
DE/Current to Best/1, DE/Current to Rand/1/Bin and
DE/Rand/2/Dir converge in general to a local solution far
away from the optimal one (see columnJmean and
σ(J)mean≤ 0). High standard deviation indicating that the
individuals in the population are spread out over a large
range of values. Then, DE/Rand/1/Exp and
DE/Best/1/Exp diverge in most of the cases (see column
σ(J)mean> 0). In this particular design problem, the use
of exponential crossover implies the large exploration of
the search space, such that DE/Rand/1/Exp and
DE/Best/1/Exp diverge in general.

The boldface rows in Table1 indicate the best DE
variants without ELEMAEF which solves the particular
design problem. Those are DE/Best/1/Bin,
DE/Rand/1/Bin and DE/Best/1/Exp because they find the
optimum objective function at 44%, 22% and 11% of the
cases (see columnJ∗%), respectively. This indicates that
the use of binomial crossover with the use of random or
best individual as the base vector, promotes the search of
the optimum solution. As it is previously commented, the
use of exponential crossover implies the large exploration
of the search space but only for the case 8D when
CR= 0.9 andF = 0.6, the DE/Best/1/Exp can find the
optimum solution at 90% of the runs.
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Table 1: Experimental results for the DE variants without ELEMAEF.
Algorithm Case CR F Jmean σ(J)mean Time MaxGmean #FunJmean J∗%
Rand 1 Bin 1A 0.3 0.3 0.361753 8.8282e−10 266.21 6500 234000 0%
Rand 1 Bin 2A 0.3 0.6 0.027353 0.900604 261.60 6500 234000 0%
Rand 1 Bin 3A 0.3 0.9 5.007168 147.8961 261.04 6500 234000 0%
Rand 1 Bin 4A 0.6 0.3 1.052967 3.2852e−11 261.40 6500 234000 0%
Rand 1 Bin 5A 0.6 0.6 0.002540 5.8938e−5 212.46 5794.5 208602 80%
Rand 1 Bin 6A 0.6 0.9 17.30592 251.8817 261.87 6500 234000 0%
Rand 1 Bin 7A 0.9 0.3 21.85020 1.8188e−5 262.06 6500 234000 0%
Rand 1 Bin 8A 0.9 0.6 0.109544 5.6835e−4 162.09 4719 169884 50%
Rand 1 Bin 9A 0.9 0.9 0.159810 0.062602 262.62 6500 234000 0%
Rand 1 Exp 1B 0.3 0.3 472.0137 283.3315 186.91 6500 234034 0%
Rand 1 Exp 2B 0.3 0.6 538.1129 303.1237 186.95 6500 234034 0%
Rand 1 Exp 3B 0.3 0.9 541.7425 267.4548 187.01 6500 234035 0%
Rand 1 Exp 4B 0.6 0.3 438.5806 294.4790 188.21 6500 234035 0%
Rand 1 Exp 5B 0.6 0.6 527.3437 275.8388 188.28 6500 234036 0%
Rand 1 Exp 6B 0.6 0.9 569.5916 268.5908 188.25 6500 234035 0%
Rand 1 Exp 7B 0.9 0.3 54.90616 0 196.60 6500 234017 0%
Rand 1 Exp 8B 0.9 0.6 0.700875 0.137024 196.07 6500 234035 0%
Rand 1 Exp 9B 0.9 0.9 544.2769 221.4091 196.28 6500 234036 0%
Best 1 Bin 1C 0.3 0.3 689.6785 0 157.96 6500 62222 0%
Best 1 Bin 2C 0.3 0.6 15.65933 6.895569 152.59 6042 217530 20%
Best 1 Bin 3C 0.3 0.9 9.096234 7.431126 164.17 6500 234036 0%
Best 1 Bin 4C 0.6 0.3 2563.211 0 155.92 6500 23386 0%
Best 1 Bin 5C 0.6 0.6 1.111960 0.000127 117.95 4678 168440 50%
Best 1 Bin 6C 0.6 0.9 6.671277 0.158473 158.03 6284 226274 30%
Best 1 Bin 7C 0.9 0.3 6595.621 0 154.20 6500 3211 0%
Best 1 Bin 8C 0.9 0.6 929.9061 0 163.17 6500 234036 0%
Best 1 Bin 9C 0.9 0.9 53.78760 0.001746 156.89 6270 225759 10%
Best 1 Exp 1D 0.3 0.3 627.9030 456.1873 188.01 6500 234012 0%
Best 1 Exp 2D 0.3 0.6 535.1099 318.0737 188.06 6500 234010 0%
Best 1 Exp 3D 0.3 0.9 546.6142 275.7620 188.06 6500 234011 0%
Best 1 Exp 4D 0.6 0.3 575.4174 386.8449 189.37 6500 234025 0%
Best 1 Exp 5D 0.6 0.6 451.7013 331.9883 189.36 6500 234019 0%
Best 1 Exp 6D 0.6 0.9 563.4715 304.5132 189.34 6500 234021 0%
Best 1 Exp 7D 0.9 0.3 987.5407 0 191.57 6500 64915 0%
Best 1 Exp 8D 0.9 0.6 2.474110 0.004745 107.96 3548 127768 90%
Best 1 Exp 9D 0.9 0.9 6.560564 0.157588 197.53 6500 234025 0%

Current to Rand 1 1E 0.3 0.3 6686.528 0 137.39 6500 84511 0%
Current to Rand 1 2E 0.3 0.6 3414.828 0 142.92 6500 234036 0%
Current to Rand 1 3E 0.3 0.9 1288.256 0.000285 142.65 6500 234036 0%
Current to Rand 1 4E 0.6 0.3 7916.050 13.40574 135.70 6500 42207 0%
Current to Rand 1 5E 0.6 0.6 2944.626 0 142.90 6500 234036 0%
Current to Rand 1 6E 0.6 0.9 1298.420 0.005519 142.60 6500 234036 0%
Current to Rand 1 7E 0.9 0.3 7355.543 0 137.20 6500 82625 0%
Current to Rand 1 8E 0.9 0.6 3093.975 8.023190 142.87 6500 234036 0%
Current to Rand 1 9E 0.9 0.9 1124.290 0 142.67 6500 234036 0%
Current to best 1 1F 0.3 0.3 6594.853 0 129.94 6500 108142 0%
Current to best 1 2F 0.3 0.6 3764.453 0 134.97 6500 234036 0%
Current to best 1 3F 0.3 0.9 2573.786 0 134.70 6500 234036 0%
Current to best 1 4F 0.6 0.3 6701.564 0 127.97 6500 49401 0%
Current to best 1 5F 0.6 0.6 3644.155 40.42009 135.23 6500 234036 0%
Current to best 1 6F 0.6 0.9 3359.008 0.000003 134.86 6500 234036 0%
Current to best 1 7F 0.9 0.3 6670.760 0 128.69 6500 71767 0%
Current to best 1 8F 0.9 0.6 3065.115 0 135.21 6500 234036 0%
Current to best 1 9F 0.9 0.9 3191.107 0.001585 134.91 6500 234036 0%

Current to rand 1 Bin 1G 0.3 0.3 1242.558 11.53473 163.10 6500 97103 0%
Current to rand 1 Bin 2G 0.3 0.6 0.154404 0.079587 167.97 6500 234036 0%
Current to rand 1 Bin 3G 0.3 0.9 467.4536 97.92991 168.02 6500 234036 0%
Current to rand 1 Bin 4G 0.6 0.3 3166.224 0 164.09 6500 51426 0%
Current to rand 1 Bin 5G 0.6 0.6 0.157648 0.000035 170.71 6500 234036 0%
Current to rand 1 Bin 6G 0.6 0.9 1203.751 177.3152 170.97 6500 234036 0%
Current to rand 1 Bin 7G 0.9 0.3 6110.778 0 167.23 6500 72893 0%
Current to rand 1 Bin 8G 0.9 0.6 20.48629 0.014726 173.40 6500 234036 0%
Current to rand 1 Bin 9G 0.9 0.9 0.627232 0.019767 173.17 6500 234036 0%

Rand 2 Dir 1H 0.3 0.3 6060.665 0 137.87 6500 183369 0%
Rand 2 Dir 2H 0.3 0.6 3987.782 0 139.84 6500 234036 0%
Rand 2 Dir 3H 0.3 0.9 2086.551 0 139.51 6500 234035 0%
Rand 2 Dir 4H 0.6 0.3 6718.683 0 139.86 6500 232804 0%
Rand 2 Dir 5H 0.6 0.6 4508.276 0 139.88 6500 234036 0%
Rand 2 Dir 6H 0.6 0.9 2201.797 0 139.70 6500 234036 0%
Rand 2 Dir 7H 0.9 0.3 7158.456 0 138.57 6500 195107 0%
Rand 2 Dir 8H 0.9 0.6 3920.266 0 139.98 6500 234036 0%
Rand 2 Dir 9H 0.9 0.9 2100.025 0 139.73 6500 234036 0%
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DE algorithm with ELEMAEF

Based on the columnσ(J)mean and the columnJmean in
Table 2, it is observed that the worst DE variants are:
DE/Current to Rand/1, DE/Current to Best/1 and
DE/Rand/2/Dir because they converge to a local solution
at 44%, 55% and 100% of the cases, respectively and the
rest of the cases diverge (see columnσ(J)mean> 0).

In Table 2 the best DE variants are marked in
boldface. Those are: DE/Rand/1/Bin, DE/Best/1/Bin,
DE/Current to Rand/1/Bin, DE/Rand/1/Exp,
DE/Best/1/Exp. They find the optimum solution at 88%,
77%, 33%, 22%, 22% of the cases, respectively. In
addition, in column #ImpJmean, it is observed that larger
improvement of the individual by using the ELEMAEF,
results the convergence to local solutions far away from
the optimum one.

The number of times that the individuals are improved
by the ELEMAEF for one run with different DE variants
is shown in Fig.5. The results in Fig.5 find the global
optimum in the last generation. The horizontal line in the
figures represent the mean of the times that the
ELEMAEF improves the individual in the generation. It
is observed in the first generations, the algorithm explores
the solution space such that the ELEMAEF generates few
improved solutions. Then, after the first generations, the
ELEMAEF exhaustively search in the vicinity of the
individuals with better fitness such that more improved
individuals are found. It is important to note, that the
ELEMAEF and the selection of the parameter adaptation
of F2 do not guide the exhaustive search towards local
regions.

Comparative results

In Table 3, comparative results between the DE variants
with the use of ELEMAEF and without it are shown. The
results are marked in boldface to indicate theDE variant
with the use of ELEMAEF and in italic to indicateDE
variant without the use of ELEMAEF. The column ”%
Optimum solution” indicates the percentage of the cases
for each DE variant where the algorithm converge to the
optimum solution. It is observed that the use of
ELEMAEF increases the times that the DE variant
converge to the optimum solution. This fact indicates that
the ELEMAEF promotes the exploitation of the
individuals in the population such that better individuals
are found. On the other hand, the column ”Best C. Time”
represents the DE variant that provide less convergence
time. It is clear that the incorporation of the ELEMAEF in
the DE variants requires more computing time due to
more objective function evaluation is required.

It is important to point out that the use of ELEMAEF
occasionally improves the individual in each generation
(see #ImpJmean in Table 2), but this is sufficient to
improve the DE variant behavior with respect to the DE
variant without ELEMAEF. This indicates that a trade off
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Fig. 5: Number of times that the individuals are improved by the
Exhaustive Local Mechanism.
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Table 2: Experimental results for the DE algorithm with ELEMAEF.
Algorithm Case CR F Jmean σ(J)mean Time MaxGmean #FunJmean J∗% #ImpJmean

Rand 1 Bin 1Ā 0.3 0.3 0.071963 0.000080 161.87 4532 297048 60% 16.13
Rand 1 Bin 2Ā 0.3 0.6 0.012789 0.000049 137.01 4047 234573 70% 15.14
Rand 1 Bin 3Ā 0.3 0.9 7.674573 1.876054 191.05 6500 253746 10% 2.55
Rand 1 Bin 4Ā 0.6 0.3 0.033166 0.000149 243.76 6143 388596 40% 13.41
Rand 1 Bin 5Ā 0.6 0.6 0.021057 0.000047 75.79 2030 116272 90% 15.40
Rand 1 Bin 6Ā 0.6 0.9 0.086668 0.003166 153.12 4718 212453 70% 8.13
Rand 1 Bin 7̄A 0.9 0.3 51.95243 0.006939 308.83 6500 449920 0% 19.13
Rand 1 Bin 8Ā 0.9 0.6 0.471681 0.000510 230.48 4809 337603 50% 25.78
Rand 1 Bin 9Ā 0.9 0.9 0.006594 0.000026 165.76 4174 230469 60% 16.90
Rand 1 Exp 1̄B 0.3 0.3 538.7221 292.1712 215.85 6500 250933 0% 1.29
Rand 1 Exp 2̄B 0.3 0.6 549.9120 282.5619 215.63 6500 249592 0% 1.15
Rand 1 Exp 3̄B 0.3 0.9 561.9273 259.6416 215.74 6500 249834 0% 1.28
Rand 1 Exp 4̄B 0.6 0.3 535.3635 343.9401 216.79 6500 249037 0% 1.18
Rand 1 Exp 5̄B 0.6 0.6 544.3737 287.7287 216.85 6500 247690 0% 1.08
Rand 1 Exp 6̄B 0.6 0.9 590.3187 255.9502 216.82 6500 247460 0% 1.15
Rand 1 Exp 7B̄ 0.9 0.3 0.018500 0.000034 188.79 4651 343525 70% 26.03
Rand 1 Exp 8B̄ 0.9 0.6 0.015631 0.000023 213.38 5758 304331 50% 10.92
Rand 1 Exp 9̄B 0.9 0.9 242.0042 87.92096 224.36 6500 247735 0% 1.45
Best 1 Bin 1C̄ 0.3 0.3 42.94217 0.009001 253.15 6085 569326 20% 41.79
Best 1 Bin 2C̄ 0.3 0.6 0.132729 0.203463 209.66 4999 476598 30% 43.16
Best 1 Bin 3C̄ 0.3 0.9 0.622174 1.413398 179.06 5438 307992 50% 18.21
Best 1 Bin 4C̄ 0.6 0.3 107.5080 0.013497 409.51 6500 816277 0% 71.20
Best 1 Bin 5C̄ 0.6 0.6 4.175193 0.001241 333.49 6204 642686 10% 42.45
Best 1 Bin 6C̄ 0.6 0.9 0.018921 0.097005 178.08 4388 302293 40% 19
Best 1 Bin 7C̄ 0.9 0.3 1538.257 0.387008 730.11 6500 1230698 0% 140.66
Best 1 Bin 8C̄ 0.9 0.6 84.81393 0.003082 407.47 6435 655529 10% 39.66
Best 1 Bin 9C̄ 0.9 0.9 75.57373 0.000008 467.14 6434 777978 10% 72.60
Best 1 Exp 1̄D 0.3 0.3 744.2973 1184.047 219.45 6500 234202 0% 15.43
Best 1 Exp 2̄D 0.3 0.6 587.5616 348.9203 218.44 6500 234537 0% 12.65
Best 1 Exp 3̄D 0.3 0.9 583.1925 285.3257 218.00 6500 235038 0% 11.06
Best 1 Exp 4̄D 0.6 0.3 547.9760 584.6983 221.10 6500 234236 0% 15.72
Best 1 Exp 5̄D 0.6 0.6 549.1788 368.3518 219.27 6500 234587 0% 10.65
Best 1 Exp 6̄D 0.6 0.9 635.6344 302.6703 218.61 6500 235061 0% 8.74
Best 1 Exp 7̄D 0.9 0.3 865.6287 0.000000 556.31 6500 73758 0% 318.07
Best 1 Exp 8̄D 0.9 0.6 0.002355 0.000049 142.78 2976 107584 90% 94.73
Best 1 Exp 9̄D 0.9 0.9 1.774057 0.284646 232.16 6475 233948 10% 16.75

Current to Rand 1 1̄E 0.3 0.3 6613.680 2018.004 504.97 6500 808565 0% 78.45
Current to Rand 1 2̄E 0.3 0.6 4719.736 0 332.63 6500 524796 0% 30.90
Current to Rand 1 3̄E 0.3 0.9 2648.037 0 301.53 6500 479674 0% 29.52
Current to Rand 1 4̄E 0.6 0.3 5907.370 1781.042 504.61 6500 808436 0% 78.34
Current to Rand 1 5̄E 0.6 0.6 4336.297 3.845465 327.83 6500 516579 0% 30.02
Current to Rand 1 6̄E 0.6 0.9 2842.934 0 301.59 6500 479803 0% 29
Current to Rand 1 7̄E 0.9 0.3 7404.721 998.5876 512.49 6500 822221 0% 80.31
Current to Rand 1 8̄E 0.9 0.6 5123.504 6.872291 328.42 6500 517954 0% 30.16
Current to Rand 1 9̄E 0.9 0.9 2666.130 0 301.58 6500 480051 0% 29.54
Current to best 1 1̄F 0.3 0.3 9518.423 4079.354 1261.14 6500 57945 0% 316.64
Current to best 1 2̄F 0.3 0.6 5315.249 0 1007.94 6500 1043266 0% 224.35
Current to best 1 3̄F 0.3 0.9 4772.813 0 278.74 6500 436361 0% 20.89
Current to best 1 4̄F 0.6 0.3 9741.819 2552.972 1286.55 6500 53482 0% 324.01
Current to best 1 5̄F 0.6 0.6 5787.309 3.508465 1011.69 6500 1051785 0% 225.39
Current to best 1 6̄F 0.6 0.9 4481.553 0 278.36 6500 435845 0% 20.86
Current to best 1 7̄F 0.9 0.3 9941.413 2505.349 1295.63 6500 62168 0% 325.63
Current to best 1 8̄F 0.9 0.6 4851.411 0 1015.62 6500 1043572 0% 226.08
Current to best 1 9̄F 0.9 0.9 4965.898 0 278.51 6500 436788 0% 20.96

Current to rand 1 Bin 1̄G 0.3 0.3 2137.612 7321.067 473.64 6500 572493 0% 196.04
Current to rand 1 Bin 2 Ḡ 0.3 0.6 0.792429 0.222792 186.74 6254 246512 10% 3.13
Current to rand 1 Bin 3̄G 0.3 0.9 556.7300 161.8644 189.46 6500 236271 0% 0.11
Current to rand 1 Bin 4̄G 0.6 0.3 2755.634 6087.996 805.56 6500 737530 0% 245.59

Current to rand 1 Bin 5 Ḡ 0.6 0.6 0.069026 0.000066 163.34 4090 251626 60% 14.77
Current to rand 1 Bin 6̄G 0.6 0.9 1101.626 164.5283 192.38 6500 235359 0% 0.03
Current to rand 1 Bin 7̄G 0.9 0.3 5435.739 3452.629 1231.17 6500 1067167 0% 291.07

Current to rand 1 Bin 8 Ḡ 0.9 0.6 4.293221 0.001469 360.52 6454 520077 10% 34.11
Current to rand 1 Bin 9 Ḡ 0.9 0.9 0.029537 0.000654 193.79 6377 236592 50% .037

Rand 2 Dir 1H̄ 0.3 0.3 12243.65 0 1402.93 6500 196155 0% 338.31
Rand 2 Dir 2H̄ 0.3 0.6 5569.629 0 1071.48 6500 234550 0% 248.05
Rand 2 Dir 3H̄ 0.3 0.9 3138.329 0.000009 653.92 6500 234699 0% 134.86
Rand 2 Dir 4H̄ 0.6 0.3 12132.54 0 1357.02 6500 216758 0% 325.81
Rand 2 Dir 5H̄ 0.6 0.6 6260.418 0 1073.60 6500 234488 0% 248.69
Rand 2 Dir 6H̄ 0.6 0.9 3300.208 0.000001 657.54 6500 234734 0% 135.83
Rand 2 Dir 7H̄ 0.9 0.3 10512.23 0 1370.32 6500 210425 0% 329.57
Rand 2 Dir 8H̄ 0.9 0.6 5508.342 0 1079.23 6500 234523 0% 249.57
Rand 2 Dir 9H̄ 0.9 0.9 2718.728 0.000194 657.87 6500 234691 0% 135.56
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Table 3: Comparative results between the DE algorithm with ELEMAEF and DE algorithmwithout it.

DE variant % Optimum solution
DE with ELEMAEF / DE without ELEMAEF

Best C. Time
Rand 1 Bin 88% / 22% DE with ELEMAEF

Rand 1 Exp 22% / 0% DE without ELEMAEF

Best 1 Bin 77% / 44% DE without ELEMAEF

Best 1 Exp 22% / 11% DE without ELEMAEF

Current to Rand 1 0% / 0% DE without ELEMAEF

Current to best 1 0% / 0% DE without ELEMAEF

Current to rand 1 Bin 33% / 0% DE without ELEMAEF

Rand 2 Dir 0% / 0% DE without ELEMAEF

Fig. 6: Optimum design of the 3R manipulator with dexterous workspace.

between the exploration and exploitation mechanism in
the DE algorithm is an outstanding characteristic to be
considered in order to find the optimum solution in this
particular design problem.

Design results

The optimal link lengths are provided by using the
DE/Rand/1/Bin with ELEMAEF, those are:
l∗ELEMAEF
1 = 0.407 l∗ELEMAEF

3 = 0.415
l∗ELEMAEF
4 = 0.0264. The optimal design meets the

objective function and constraints, such that its
end-effector can reach the defined workspace with
different orientation in the interval[− pi

2 ,
pi
2 ]. Hence, the

manipulator designed by this approach presents a defined
dexterous workspace. In Fig.6 the optimum design
p∗ELEMAEF of the 3R manipulator with a parallelogram
mechanism is displayed. The optimum design guarantees
the end-effector can reach the vertices of the workspace

with at least three different orientations. Hence, the
optimum design fulfills the objective design, i.e., it has a
desired dexterous workspace.

5 Conclusion

In this paper an optimization problem to optimal design
the link length of a 3R manipulator with a parallelogram
five-bar mechanism is stated. The design involves that the
manipulator must fulfil a defined dexterous workspace.
An exhaustively local mechanism is incorporated in the
differential evolution algorithm to solve the problem. The
final optimal design results in a 3R manipulator which its
end-effector can be moved in the desired workspace with
different orientations, fulfilling the design objective and
constraints.

According to the empirical results, the ELEMAEF
can search into the design space such that better solutions
can be found. The DE with ELEMAEF improves the
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convergence to the optimal solution compared with the
DE algorithm without ELEMAEF. The DE with
ELEMAEF does not require an additional parameter to be
tuned. The main drawback of the algorithm is that it
requires more functions to be evaluated, such that it
requires more computational time.

The strategy of applying a local exploitation
mechanism is a very important factor to be included in the
metaheuristic algorithm in order to promote the
exhaustively search of the optimal solution. Nevertheless,
the way that the local exploitation mechanism is working
must be carefully analyzed due to the problem of the
premature convergence to a local solution.
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Ciencia y Tecnoloǵıa (CONACyT) under Grant 182298
and in part by the Operation and Development Committee
of Academic Activities and the Secretariat of Research
and Posgrade of the Instituto Politécnico Nacional under
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