Appl. Math. Inf. Sci.8, No. 5, 2129-2140 (2014) =) 2129

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080506

Optimum Design of Parallelogram Five-bar Manipulator
for Dexterous Workspace by using ELEMAEF in
Differential Evolution

Miguel G. Villarreal-Cervantes Daniel De la Cruz-Mudio and Edgar A. Portilla-Flores

Postgraduate Department, Instituto Raitico Nacional, Centro de Innovaoiy Desarrollo Tecndlgico en @mputo, 07700, Mexico

Received: 9 Aug. 2013, Revised: 6 Nov. 2013, Accepted: 7 Nal320
Published online: 1 Sep. 2014

Abstract: The kinematic design of mechanism is an important stage in the design raktgpdA dexterous workspace for a
manipulator is an outstanding characteristic that must be considered imiteHa mono-objective constraint optimization problem
(MOCOP) for the kinematic design of a manipulator with three revolute joiriRsr@®ot), that fulfils a defined dexterous workspace,
is formulated. The MOCOP is solved by proposing a mechanism in theefitiet evolution (DE) algorithm called exhaustive local
exploitation mechanism with adaptive scale factor (ELEMAEF). This m@isha exhaustively exploits a local region in the search
space with the information of the base and the difference vectors oftgabdector, in an attempt to generate better individuals in the
same direction. In addition, the ELEMAEF guides the evolution of the populatiward a better zone without sacrificing the search
capabilities of the DE algorithm. A comparison of the DE algorithm with and wittieet ELEMAEF for this particular design problem
is presented. The use of the ELEMAEF gives a superior performartbe DE algorithm.

Keywords: Evolutionary algorithm, differential evolution, dexterous manipulatorekiatic design, parallelogram manipulator

1 Introduction point on the end-effector with any orientation, i.e., it is
the volume or area which its end-effector can reach in the

: . . Cartesian space with different orientatidr8], [14].
Analysis and synthesis of mechanisni$ re the most P 1114

important stages in the design methodology of parallel  The design of a manipulator that meets one or several
manipulators. The dimensional synthesis and workspac@erformance criteria such as trajectory accuracy,
are two main characteristics which define a mechanismworkspace, stiffness, singularity, dexterity, accuraty,,
They are the most studied issues in the fidld[B]. The is a challenge because most of the performance criteria
dimensional synthesis of a mechanism can be developepresents tradeoff among them and there is not just one
with graphical, analytical and numerical methodk [5]. solution that meets the aforementioned requirements.
On the other hand, the current methods for determiningHence, the manipulator design have been stated as an
the manipulator's workspace and its boundary areoptimization problem where optimization techniques such
classified as €]: geometrical methods 7] [8], as, heuristic algorithmslp], [16], [17], [18], [19],[20]
discretization methods9] and numerical methodsl(], and gradient based algorithm®1], have been used.
[11]. Several robotic manipulators have a mechanismNevertheless, if the optimization problem is nonlinear or
(closed kinematic chain) in their structure in order to discontinuous one, gradient based algorithms are not
improve the design performance. Those manipulators arsuitable to solve the problem because they converge to
called parallel one and present some advantages ovéocal minima near the initial condition (sensitive to iaiti
serial manipulators, such as rigidity, dexterity, premisi  condition) R2], [23], then the design solution will
velocity and acceleration 1P]. One important perform poorly. So, it is important to have an algorithm
characteristic that must be considered in the design ofhat efficiently search in the design space to obtain a
manipulators is the dexterous workspace. The dexteroufeasible solution, i.e., to obtain a set of parameters that
workspace represents the region that can be reached bydescribe the system and meet the design requirements.
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Heuristic  optimization techniques such as vectors that form the mutant vector and an adaptive scale
evolutionary algorithms (EAs), genetic algorithms (GAs) factor, in an attempt to guide the evolution of the DE
or particle swarm optimization (PSO) have beenalgorithm to better zones. Hence, this mechanism is
developed to solve complex engineering optimizationcalled Exhaustive Local Exploitation Mechanism with
problems. Some advantages of these approaches)are: Adaptive Scale Factor (ELEMAEF). The DE algorithm
These are population-based methods, therefore they camith ELEMAEF is compared with the traditional
produce several possible solutioi$.They do not require  DE/Rand/1/Bin algorithm (latter named it, DE algorithm
additional information to start the search, i.e. the without ELEMAEF) in order to show its performance in a
information of the gradient, the Hessian matrix, the ihitia particular optimization problem.
search points, etdii) They do not require the objective The main motivations of this work are) the formal
functions and constraints to be continuous and/orformulation, as an optimization problem, of the optimum
differentiable. Finally,iv) They can be used and/or design of the link lengths of a 3R manipulator which
adapted to a large set of problems, because they do ndulfills a defined dexterous workspace andi2e proposal
need special mathematical formulation (problemof the exhaustive local exploitation mechanism with

transformation) in order to obtain a set of solutions. adaptive scale factor in the DE/Rand/1/Bin which
Since Storn and Price proposed the algorithm ofimproves the DE performance for this particular problem.
Differential Evolution (DE) in the middle of 90’s2H4], it The rest of the paper is organized as follows: The

has proven to be a powerful computational tool to solvekinematic design of a 3R manipulator with a
optimization problems. The advantages of the DE is theparallelogram five-bar mechanism is stated in section
easy computational implementation, the great adaptabilit In sectionlll the ELEMAEF in the differential evolution

to different kinds of optimization problems and the is explained. The experiments are detailed and discussed
reasonable computing time, among others. However, thisn sectionlV. Finally, the conclusions are commented in
algorithm does not guarantee the convergence to theectionV.

global optimum.

Studies R5], [26] have established that the mutation
factor and the crossover probability influence in the DE
performance. The mutation factor controls the rate at2
which the population evolves and the crossover ) ) ,
probability controls the probability for a component to be The R manipulator with a parallelogram five-bar
selected from the mutant vector. Hence, several researciiéchanism presents three degree of freedom in the joint
works improve the mutation operator since it plays a keySPace which provide the ability to move the tip of the
role in the DE performance. Efforts to improve the end-effector (point X j,z jx of the link 4 which is
mutation operator were addressed considering thdepresented by an asterisk in Fib).in the planeX —Z
tradeoff between convergence speed and robusta@ss [ With an orientationg j  with respect to the< axis of the
Adaptive parameter control schemé§][were introduced  inertial coordinate systenX — Z. The parallelogram
in the mutation strategy. Other researches combindive-bar mechanism, included into th&8obot, achieves
different mutation strategies2g], [29]. Finally, some & higher precision and a higher stiffness tharRarGbot
other researchers deals with the implementation ofWithout the parallelogram five-bar mechanist?][The
mechanisms and its effects to ensure better exploratiodR manipulator is shown in Fidl, wherel; Vi=1,2,....4
and exploitation capabilities in the solution space suchiS thei—th link length, (X ik, k) and @ jx are the
that the convergence to the global optimum may be foundcartesian coordinate of the manipulator's end-effector
[30],[31], [32]. and the angular position of the manipulator’s end-effector

An efficient exploration mechanism in the search espectively. The desired dexterous workspat® s
space and an effective exploitation mechanism in a regiofépresented by an area with verticesy, ;. ;) v
of the search space, would be desirable into the,] = 1,2, wherek =1,2,3 is thek —th orientation that
optimization algorithm. The exploration can widely must fulfil the end-effector for each vertex. Tle-th
search different regions in it, while the exploitation desired orientation for each vertex is represented by the
accelerates the convergence to the optimum solution ir@ngleg;, as it is shown in Figl.
the region. Several researchers have explained the The reachable workspace of a manipulator is the
relationship between the exploration and exploitationvolume that its end-effector can reach in the Cartesian
[32], [33]. space. The dexterous workspace can be defined as the

In this paper, an optimization problem for the volume or area which its end-effector can reach in the
kinematic design of a three revolute joint manipulator Cartesian space with different orientatiod3], [14].
with a parallelogram five-bar mechanism that fulfils a Several robotic tasks require the manipulation of objects
defined dexterous workspace is stated. A mechanism tavith different orientation (due to obstacles in the
promote the local exploitation of the individuals that workspace or for positioning the end-effector tool). Irsthi
present an appropriate fithess is proposed and included iproblem statement it is considered that the designer (user)
the DE/Rand/1/Bin algorithm. This mechanism uses therequires a B robot with a parallelogram five-bar

Design problem statement
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2.2 Obijective function

The purpose for establishing an optimization problem in
) this paper is to design the robot with a desired dexterous
workspace. It is clear that the objective function is
established as the sum of the square of the Cartesian
¥, % ) (x 7 ) position error between the desired workspace vertex and
P the tip of the end-effector, plus the square of the angular
| position error between the desired orientation and the

Desired end-effector orientation. Hence, the objective function

Dexterous | can be described in2]. The vertex positions of the
. /v(r\ Vorspace desired dexterous workspace are chosen as
Link 2 Linkd™ b | (X100 Z 1) = (0.25m,0.10m),
%) (5.7)  (ueZig) = (0.65m,0.10m),
o v (X110 Zp 1) = (0.25m, 0.40m) and
Fig. 1: Schematic diagram of the R3 manipulator with  (Xd;,Zd,,,) = (0.65m,0.40m). The subscripk indicate
parallelogram five-bar mechanism. three different orientations in each vertex position. They

are selected aspy;, = —5rad, @, = Orad and

(Rij.S = grad V I,J = 1’2

i.j.2

mechanism to handle an object in a specific squared

workspace (desired squared workspace) with different _ _ \2 _ _\2
orientations, i.e. a robot with dexterous workspace is J:/(Xdi.,j,k_xivj-,k) dW+/(Zdi4j,k_Zivjyk) dw
requested. The desired squared workspace is given by its w w

vertexes. Then, the design problem is to find the link 18 — -~ Zd 5
lengths of the B robot such that they fulfils the desired + T (q’di,jk - (nﬁJvk) w (2)
dexterous workspace subject to inherent design w

constraints.

In order to formulate the design problem, the following In eqlflatlon 'B)H tf:je gwst two tﬁrmsh(Cartﬁsmn error) .
assumptions are considered: are equally weighted because they have the same units

_ ) _ (meters). But, the last term a weight value % is
a)The desired workspace is squared shape with fouselected by assuming that one degree is proporcional to
vertices(Xq, ., 24, ) Vi, ] = 1.2. one millimeter (0.001m). This weight value efficiently
b)If the tip of the end-effector of the link 4 reaches the weights the last term with the other two in order to

four vertices of the desired squared workspace withprovide good solutions.
three different orientations (angtg ; vk = 1,2,3 of The direct kinematic3)-(5) of the manipulator is used

the link 4), then the end-effector of the robot can o define the Cartesian position of the end-effecto2)n (
reach any interior points in the desired squared

workspace with at least the proposed three different
orientations. Hence, a dexterous workspace 'Sfi,j,k —1;costy, —|4005(qzi,j,k) _|5cos(q2iAj,k+q3i,j#k>

promoted. 3

In the next subsections, the design variables, objective )
function, constraints and the formal optimization problemz ; x = l1singy, ;, —lasin (qzi‘j‘k) —lIgsin (qzi.j.k + Q3i1j_k>
statement for the design of thdr3obot with a desired ' ' ' @)
dexterous workspace are detailed. -
Pik=02 t03;,—TT ()

2.1 Design variables

: . : 2.3 Constraints
In this paper the design variables of the ®bot are the

link lengths (1, 12,13) and the angular position of the links

(q1i=1i>(k’q2i-i=k’qij.k) to reach_t:]hek v;;ucestof Fhet d;aswed rectangle at links; and|,, presents mobility constraints
workspace (Kg, ;. Z ;) Wit iherent onentalions — petween them. Those constraints must be considered in the
@i ;.- Hence, the design variable vector is shownIip(  manipulator design and they are presented when the links

The parallel structure of the manipulator formed by the

i,j=1,2andk=1,23. 1 and 2 collide each other. The mobility constraints are
stated in 6)-(7), which involves a total of 24 inequality
p= [ll, |3a |4a Q1i,,;ka Q2i.jﬁk7Q3i,j,k]T S R39 (1) constraints.
@© 2014 NSP
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population. Each individualxc contains D design
variables which are limited by their boun@g™", x"#] v

G1-12: TOlae — G2, 4 + Gy, < 0 (6)  j — 12..D. The initial population Xjic—0 V¥
O13-24 102 ) — O, — 7T+ Tolyax <0 @) j=1,...D,i=1. NPis randomly selected considering
' their limits as follows:

In addition, other 39 constraints must be included tox; ; 5_o = ernin +rand; (0, 1) (Xax _ xminy, whererand is
bound the design variable vectpr i.e. limits in the link g uniformly distributed random number in the interval
angle and in the link lengths. I18)-(13), those constraints [0, 1].
are shown, wher&olyaa = 3—’grad andTolyae = %rad
are the minimum security angle that should have the links

to prevent the impact. 3.1.1 Mutation and crossover
In each generatio, the mutation and crossover operator
O25-36:0< 0y, < T— TOlmax (8)  are used in the target populati@y in order to generate
” 3 other population called trial population with trial vecgor
O37-48 TOlMax < Oz, < i Tolvax 9 Ug=|wic Wig, ...,Uj’i7G,...,UD,i,G,]T Vi=12,.NP

) Tol - - Tol 10 as their individuals. There are several variants of the DE
G49-60° —TT+ TOMaa < 0g,, <M= Tolaa  (10)  ggorithm B4 which allow the exploration and

O61 : l1yin <11 <l (11)  exploitation of the search space for the DE algorithm. The
62 - I3y, <13 < 3y (12)  main differences among them are in the mutation and

. crossover operator. The use of the DE variants depends on
963+ layin < 14 < layoy (13) " the problem at hand as it is stated B[ and in [22]. In

this paper the mutation and crossover operator of the
o DE/rand/1/bin, DE/rand/1l/exp, Best/1/bin, Best/1/exp,
2.4 Optimization problem statement Current to rand 1, Current to best 1, Current to rand 1 bin,

o ) . Rand 2 Dir are used. The mutation and crossover variants
The optimization problem for theRBmanipulator consists 56 summarized in Fig.

on finding the optimal design parameter veore R39 _ The scale factorr € (0,1] and K € (0,1) in the
(link lengths and angular positions) such that its yation process, are used to control the influence of the
end-effector (pointx,y) of the link 4) can reach a desired ggjected individuals in order to generate the mutant
workspace with different orientations of the link 4 \octor The indexes, r» andrs are randomly chosen
(dexterous workspace). Hence the optimization problenyqm, the range/1,NP| and the indexbestrepresent the

statement can be generally expressed asl#)-(19), ngividual with the best objective function.
whereJ € R (2) is the objective function to be minimized The uniform crossover generates trial veciars from
and the equatiog € R® (15) is the inequality constraint e mutant vectov; ¢ or the target vectox ¢ depending
vector 6)-(13) . on the crossover probabili@R (higher values mean less
) influence of the target vector, hence higher influence of
Mp'” J (14 the mutant vector). The crossover stage is not required in
: current-to-rand/1, current-to-best/1 and rand/2/dii &s
Subject to: observed in Fig2.
g(p) <0 R (15)
3.1.2 Constrained selection mechanism
3 Optimization algorithms Given that traditional DE 34] does not handle

constrained optimization problem, the technique

The optimization problem1@)-(15) is solved by using Proposed in$7] is used to provide an elitism constrained

eight variants of the differential evolution (DE) algorith ~ Selection mechanism (ECSM) in the DE algorithm (

[34), [35] and by using the proposed exhaustive local [38],[39],[40]). The ECSM determines between the trial

exploitation mechanism in the eight variants of the Vectoruic and the target ong g, which of them pass to

differential evolution (DE) algorithm. the next generatior; g1 and it depends on their fitness.
This decision is based on the following statements:

—Feasible solutions are preferred to any infeasible

3.1 DE algorithm solution

—Between two feasible solutions, the one having better
The differential evolution (DE) algorithm consists NP objective function value is preferred.
individuals X ¢ = [Xl‘i.Ga)(Z,i,Ga~~~>Xj.i,Gy~~aXD,i,G7]T —Between two i_nfea_siblg splutions, the one having
V i=12.NP G =12..GenMax called target smaller constraint violation is preferred.
@© 2014 NSP
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Nomenclature Variant
rand/L/bin i v:J = xj3 +F(x]-1 ijz) if randJI(O, 1) < CRoOr j = jrand
J X otherwise
I ¢ I r — 1
rand/1/exp uij = V:J - Xj3 +F (Xil N X]Z) from rqnq (0,1) <CRor j = jrand
X otherwise
H _ b . . N
best/1/bin u = V:J =X *SLHF (Xrl - erz) if rand; .(O, 1) <CROr j = jrand
X otherwise
i _ b —
best/Lexp u‘j _ v:J =X F (X —x?)  from rgnq (0,1) < CROr j = jrand
X otherwise
current-to-rand/1 u'=vi =X +K(X® —x') +F(x" —x?)
current-to-best/1 u'=vi =X+ K(xXPeST_xT) + F (x't — x"2)
_ Vi =x KX —x) +F(d —x2)  ifrand; (0,1) < CRor j = j
current-to-rand/1/bin | uj =<} X+ KOG =X HROGT =X i(0.1) J'= Jrand
X] otherwise
rand/2/dir u' =V, = w4+ 5 (wh —w?+w? —w?) wheref(w!) < f(w?) andf(w?) < f(w?)
Fig. 2: DE variants.
3.1.3 Exhaustive local exploitation mechanism with
adaptive scale factor
y = randd i, 0.1) (16)
1, if y>1
The exhaustive local exploitation mechanism with 2 = Recompute.y Ife?/sg 0 (17)

adaptive scale factor (ELEMAEF) consist on deeply Y
searching on a previous direction if it presents better
fitness. This mechanism favors the search in theyq

neighborhood of the trial vector promoting efficient (18), where the paramete§, denote the set of all

individual ~(local) - exploitation. The exploration g,ccessfyl mutation factors in the ELEMAEF ané 0.1
capabilities of the DE variants are not substantially s -hosen Themean () is the Lehmer mean stated in
diminishing because the ELEMAEF only enters when the(lg). '

trial vector presents better fitness (considering the
constrained selection operation) than the target vector.

The location parameteur, is initialized as (6 and
n updated at the end of each generation according to

When the ELEMAEF is activated, a new individuilis Hr, = (1) i, +c-mean (S) (18)
generated by using the same mutation and crossover

operation (the same base vectgr, ¢ and the same Z%

difference vector (Xjr, 6 — Xjr56)) considering the meam(&z):g (19)

adaptive scale factoF, proposed in 28]. If the new

individual O is better thanui g 1, the new individual The pseudocode of the DE algorithm with ELEMAEF

passes to the next generation. This is done repeatedl shown in Fig4.

until the maximum number of searchiiy, is fulfilled or

when the new individuali is worse than previous one

Uic1. It is important to note that the proposed DE 4 Experiments and results

algorithm with the exhaustive local exploitation

mechanism requires an additional paramefgrin the _The proposed DE algorithm with ELEMAEF is

mutation process. The pseudocode of the EXha“St'V%rogrammed in Matlab Release.97on a Windows

exploitation mechanism is observed in F&g.In the next  pjatform. The experiments are performed on a PC with a

paragraph, the parameter adaptatiofois introduced. 1.83 GHz Core 2 Duo with 2 GB of RAM. The
Parameter adaptation of /: The mutation factoF, population size NP consists on 36 individuals, the

in the exhaustive local exploitation mechanism is selfalgorithm stops when the number of generations exceed

generated according t@8]. This factor uses a Cauchy Gyax = 6500 generations or when the mean of the

distribution with a location parametes,, specifying the  objective function of the individuals in the current

location of the peak of the distribution and the scalegeneration is smaller tharet 4. In order to analyze the

parameter of (A which specifies the half-width at results, the proposed DE algorithm with ELEMAEF is

half-maximum as it is observed i ). compared with the DE algorithm without ELEMAEF, by

© 2014 NSP
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using constant scaling factd¥ and constant crossover 1 BEGIN
CR 2 G=0;ur, =05

Ten independent runs are carried out for each DE | 3  Create arandom population g Vi = 1,...,NP
variants and for each of the following scale factor |4 — Evaluatedxig),g(xig), vi=1....NP
F = 0.3,06,09 and crossover parameters ° Do
CR = 0.3,06,0.9. When the DE algorithm with m=l NPDo
ELEMAEF is used, the maximum number of local search N

. 8 Select randomlyry #ry # r3} € Xg.
Ny = 10 is chosen for each selected scale fa&oand 9 S .
. jrand =randin{1,D)

crossover paramet&@R. Therefore, different ¢ases$ are 10 Forj = 1toD Do
shown below in Tablel and in Table2 for each DE 11 Mutation and crossover
variants. Eacltasecomprising ten independent runs. 12 End For

In Table 1 and Table2 the experimental results with 13 Evaluate Jui g41), 9(UiG+1)
different DE variants with and without ELEMAEF are 14 If Uj g1 is better than; g (sssesoncs) Then
shown, respectively. The meaning of the abbreviations in | 15 Exhaustive local exploitation mechanism
Tables is explained as followSheanis the mean of the 16 %641 =UiGi1
objective function values for the individuals in the last 17 Else
generation considering the ten runs(J)mean IS mean 18 X.G+1 =X G
from the ten runs, of the standard deviation of the 19 End
objective function values for the last generation. "Time” 20 Ur, = (1—c)- kR, +Cc-mean (Ss,)
is the mean of the convergence time from the ten runs. | 21 G=G+1
MaxGmean iS the mean of the maximum number of 22 While (G < Gmax)
generation for the ten runsF#inJneanis the mean of the 23 END

times that the objective function is evaluated for the ten ) ) )
runs. #mpdneanis the mean of the sum of the times that Fig. 4_: P;eudocode qf the DE algorithm with the exhaustive local
the ELEMAEF improves the individual in each exploitation mechanism.
generation for the ten rung?% is the percentage from
the ten runs, which the optimum objective function value
is reached in the population. It is considered that the
optimum solution is reached when the objective function
is less than&—4 (J* < le—4). (0(J)mean < 0) indicates that most of the runs for each
case converge to a solution (local solution whethgan
is large andr (J)mean< O or global solution whethelyean
DE variants without ELEMAEF is small ando(J)mean < 0). The DE/Current to Rand/1,
DE/Current to Best/1, DE/Current to Rand/1/Bin and
Based on the columo(J)meanand the columnlpeanin DE/Rand/2/Dir converge in general to a local solution far
Table 1, it is observed that the low standard deviation away from the optimal one (see columhnean and
0(J)mean< 0). High standard deviation indicating that the
individuals in the population are spread out over a large
range of values. Then, DE/Rand/l/Exp and

Fggr’j;llt?oN[‘)”gs DE/Best/1/Exp divgrge in.most of the cases (see column

If Uj; o1 == X;;, Then 0 (J)mean> 0). In this particular design problem, the use

0j ’:'xj Gt of exponential crossover implies the large exploration of

Else the search space, such that DE/Rand/1/Exp and

F, = randg (g, 0.1) DE/Best/1/Exp diverge in general.

El#deX”'l’GjLFZ(XJ"rZ’G Xir0) The boldface rows in Tablé indicate the best DE
End For variants without ELEMAEF which solves the particular
If 0 is better than; g 1 (easeaoncs) Then design problem. Those are DE/Best/1/Bin,
U1 =1 ’ DE/Rand/1/Bin and DE/Best/1/Exp because they find the
P S optimum objective function at 44%, 22% and 11% of the
Else cases (see columit%), respectively. This indicates that
Uici1=UiGi1 the use of binomial crossover with the use of random or
Break best individual as the base vector, promotes the search of
End If the optimum solution. As it is previously commented, the

End For use of exponential crossover implies the large exploration

of the search space but only for the cade &hen
Fig. 3: Exhaustive exploitation mechanism added to the DECR= 0.9 andF = 0.6, the DE/Best/1/Exp can find the
algorithm. optimum solution at 90% of the runs.
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Table 1: Experimental results for the DE variants without ELEMAEF.

Algorithm Case CR F ean 0(J)mean Time MaXGhean  #FUNdhean J*%
Rand 1 Bin n 03 03 0361753 83282 1° 26621 6500 234000 0%
Rand 1 Bin 2 03 06 0027353 0900604 26160 6500 234000 0%
Rand 1 Bin A 0.3 09 5007168 1478961 26104 6500 234000 0%
Rand 1 Bin A 0.6 03 1052967 38521 26140 6500 234000 0%
Rand 1 Bin 5A 0.6 0.6 0.002540 58938e > 21246 57945 208602 800
Rand 1 Bin A 0.6 09 17.30592 2518817 26187 6500 234000 0%
Rand 1 Bin A 09 03 2185020 181885 26206 6500 234000 0%
Rand 1 Bin 8A 09 06 0109544 56835e* 16209 4719 169884 %
Rand 1 Bin A 09 09 0159810 0062602 26562 6500 234000 0%
Rand 1 Exp B 03 03 4720137 2833315 18691 6500 234034 0%
Rand 1 Exp B 0.3 0.6 5381129 3031237 18695 6500 234034 0%
Rand 1 Exp B 0.3 09 5417425 2674548 18701 6500 234035 0%
Rand 1 Exp B 06 03 4385806 2944790 18821 6500 234035 0%
Rand 1 Exp B 06 06 5273437 2758388 18828 6500 234036 0%
Rand 1 Exp 8 06 09 5695916 2685908 18825 6500 234035 0%
Rand 1 Exp B 0.9 0.3 5490616 0 19650 6500 234017 0%
Rand 1 Exp 8 0.9 0.6 0.700875 0137024 19607 6500 234035 0%
Rand 1 Exp 8 09 09 5442769 2214091 19628 6500 234036 0%
Best 1 Bin T 03 03 6896785 0 15796 6500 62222 0%
Best 1 Bin 2C 03 06 1565933 6895569 1559 6042 217530 )
Best 1 Bin T 03 09 9096234 7431126 16417 6500 234036 0%
Best 1 Bin < 0.6 0.3 2563211 0 15592 6500 23386 0%
Best 1 Bin 5C 06 0.6 1111960 0000127 1105 4678 168440 07}
Best 1 Bin 6C 06 0.9 6.671277 0158473 1583 6284 226274 I
Best 1 Bin T 09 03 6595621 0 15420 6500 3211 0%
Best 1 Bin &€ 09 06 9299061 0 16317 6500 234036 0%
Best 1 Bin < 0.9 09 5378760 0001746 1589 6270 225759 10%
Best 1 Exp D 03 03 6279030 4561873 18801 6500 234012 0%
Best 1 Exp D 0.3 0.6 5351099 3180737 18806 6500 234010 0%
Best 1 Exp ® 03 09 5466142 2757620 18806 6500 234011 0%
Best 1 Exp D 06 03 5754174 3868449 18937 6500 234025 0%
Best 1 Exp [} 06 06 4517013 3319883 18936 6500 234019 0%
Best 1 Exp ® 06 09 5634715 3045132 18934 6500 234021 0%
Best 1 Exp D 0.9 0.3 9875407 0 19157 6500 64915 0%
Best 1 Exp 8D 09 0.6 2474110 0004745 1076 3548 127768 £}
Best 1 Exp D 09 09 6560564 0157588 1953 6500 234025 0%
Currentto Rand 1 B 03 03 6686528 0 13739 6500 84511 0%
Currentto Rand 1 B 03 06 3414828 0 14292 6500 234036 0%
Currentto Rand 1 B 03 09 1288256 0000285 1455 6500 234036 0%
Current to Rand 1 B 0.6 0.3 7916050 1340574 13570 6500 42207 0%
Current to Rand 1 B 0.6 0.6 2944626 0 14290 6500 234036 0%
Current to Rand 1 B 06 09 1298420 Q005519 14260 6500 234036 0%
Currentto Rand 1 74 09 03 7355543 0 13720 6500 82625 0%
Currentto Rand 1 B 09 06 3093975 8023190 1487 6500 234036 0%
Current to Rand 1 B 0.9 09 1124290 0 14267 6500 234036 0%
Current to best 1 4 0.3 0.3 6594853 0 1294 6500 108142 0%
Current to best 1 R 0.3 0.6 3764453 0 13497 6500 234036 0%
Current to best 1 B 03 09 2573786 0 13470 6500 234036 0%
Current to best 1 B 06 03 6701564 0 12797 6500 49401 0%
Current to best 1 B 06 06 3644155 4042009 13523 6500 234036 0%
Current to best 1 B 0.6 09 3359008 Q000003 1346 6500 234036 0%
Current to best 1 74 0.9 0.3 6670760 0 12869 6500 71767 0%
Current to best 1 B 09 06 3065115 0 13521 6500 234036 0%
Current to best 1 <] 09 09 3191107 0001585 13401 6500 234036 0%
Current to rand 1 Bin ] 0.3 03 1242558 1153473 16310 6500 97103 0%
Current to rand 1 Bin (2} 03 06 0154404 0079587 1607 6500 234036 0%
Current to rand 1 Bin G 03 09 4674536 9792991 16802 6500 234036 0%
Current to rand 1 Bin (] 0.6 0.3 3166224 0 16409 6500 51426 0%
Current to rand 1 Bin 6 06 06 0157648 0000035 17071 6500 234036 0%
Current to rand 1 Bin 6 06 09 1203751 1773152 17097 6500 234036 0%
Current to rand 1 Bin @ 0.9 0.3 6110778 0 16723 6500 72893 0%
Current to rand 1 Bin 8 0.9 0.6 2048629 0014726 17340 6500 234036 0%
Current to rand 1 Bin g 0.9 09 0.627232 0019767 17317 6500 234036 0%
Rand 2 Dir H 0.3 0.3 6060665 0 13787 6500 183369 0%
Rand 2 Dir H 0.3 0.6 3987782 0 13984 6500 234036 0%
Rand 2 Dir H 03 09 2086551 0 13%1 6500 234035 0%
Rand 2 Dir H 06 03 6718683 0 13986 6500 232804 0%
Rand 2 Dir HH 06 06 4508276 0 13988 6500 234036 0%
Rand 2 Dir (] 0.6 09 2201797 0 13970 6500 234036 0%
Rand 2 Dir H 0.9 03 7158456 0 13857 6500 195107 0%
Rand 2 Dir &H 09 06 3920266 0 13998 6500 234036 0%
Rand 2 Dir H 09 09 2100025 0 13973 6500 234036 0%
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DE algorithm with ELEMAEF
Based on the columo (J)mean and the columnlneanin
Table 2, it is observed that the worst DE variants are:
DE/Current to Rand/1, DE/Current to Best/1 and
DE/Rand/2/Dir because they converge to a local solution
at 44%, 55% and 100% of the cases, respectively and the
rest of the cases diverge (see colua(d)mean> 0).

In Table 2 the best DE variants are marked in
boldface. Those are: DE/Rand/1/Bin, DE/Best/1/Bin, ’ - -
DE/Current to Rand/1/Bin, DE/Rand/1/Exp, a) CR=0.6, F=0.6 Rand 1 Bin.
DE/Best/1/Exp. They find the optimum solution at 88%,
77%, 33%, 22%, 22% of the cases, respectively. In
addition, in column #mpJdnean it is observed that larger
improvement of the individual by using the ELEMAEF,
results the convergence to local solutions far away from
the optimum one. X

The number of times that the individuals are improved L e
by the ELEMAEF for one run with different DE variants T
is shown in Fig.5. The results in Figh find the global B
optimum in the last generation. The horizontal line in the
figures represent the mean of the times that the b) CR=0.9, F=0.3 Rand 1 Exp.
ELEMAEF improves the individual in the generation. It
is observed in the first generations, the algorithm explores
the solution space such that the ELEMAEF generates few
improved solutions. Then, after the first generations, the
ELEMAEF exhaustively search in the vicinity of the
individuals with better fithess such that more improved
individuals are found. It is important to note, that the
ELEMAEF and the selection of the parameter adaptation
of F, do not guide the exhaustive search towards local
regions.

#imp3

. 25.5325

#mp)

Comparative results

In Table 3, comparative results between the DE variants
with the use of ELEMAEF and without it are shown. The Bl
results are marked in boldface to indicate Bt variant
with the use of ELEMAEF and in italic to indicateDE
variant without the use of ELEMAERhe column "%
Optimum solution” indicates the percentage of the cases
for each DE variant where the algorithm converge to the
optimum solution. It is observed that the use of d) CR=0.9, F=0.6 Best 1 Exp.
ELEMAEF increases the times that the DE variant
converge to the optimum solution. This fact indicates that
the ELEMAEF promotes the exploitation of the
individuals in the population such that better individuals
are found. On the other hand, the column "Best C. Time”
represents the DE variant that provide less convergence

time. It is clear that the incorporation of the ELEMAEF in

the DE variants requires more computing time due to

more objective function evaluation is required.

It is important to point out that the use of ELEMAEF
occasionally improves the individual in each generation e) CR=0.9, F=0.6 Current to rand 1 Bin.
(see #mplnean in Table 2), but this is sufficient to ) _ o _
improve the DE variant behavior with respect to the DE Fig. 5: N_umber of times thgt the individuals are improved by the
variant without ELEMAEF. This indicates that a trade off EXhaustive Local Mechanism.

" 106.744

200
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Table 2: Experimental results for the DE algorithm with ELEMAEF.

Algorithm Case CR F Hean 0 (J)mean Time MaxGhean #FUNdnean J°%  #Ampnean
Rand 1 Bin 1A 0.3 03 007198 0.000080 16187 4532 297048 6B 16.13
Rand 1 Bin 2A 0.3 0.6 0.012789 0000049 1301 4047 234573 ™ 1514
Rand 1 Bin 3A 0.3 09 7674573 1876054 19105 6500 253746 it} 2.55
Rand 1 Bin 4A 0.6 03 0033166 0000149 24376 6143 388596 ) 1341
Rand 1 Bin 5A 0.6 0.6 0.021057 0000047 7579 2030 116272 I 1540
Rand 1 Bin 6A 0.6 09 0086668 0003166 15312 4718 212453 ) 8.13
Rand 1 Bin A 0.9 0.3 5195243 0006939 3083 6500 449920 0% 193
Rand 1 Bin 8A 0.9 0.6 0471681 0000510 2348 4809 337603 5% 25.78
Rand 1 Bin 9A 0.9 0.9 0.006594 0000026 16576 4174 230469 6 16.90
Rand 1 Exp B 0.3 0.3 5387221 2921712 21585 6500 250933 0% .29
Rand 1 Exp B 0.3 0.6 5499120 2825619 21563 6500 249592 0% .15
Rand 1 Exp B 03 09 5619273 259%416 21574 6500 249834 0% .28
Rand 1 Exp B 06 03 5353635 3439401 21679 6500 249037 0% .18
Rand 1 Exp B 06 06 5443737 2877287 21685 6500 247690 0% .08
Rand 1 Exp (> 0.6 09 5903187 2559502 21682 6500 247460 0% .15
Rand 1 Exp B 09 03 0018500 0000034 18879 4651 343525 1) 26.03
Rand 1 Exp 8 0.9 0.6 0.015631 0000023 2138 5758 304331 5B 10.92
Rand 1 Exp 8 09 09 2420042 8792096 22436 6500 247735 0% 45
Best 1 Bin c 0.3 03 4294217 0009001 25315 6085 569326 ) 4179
Best 1 Bin x 0.3 0.6 0.132729 0203463 20%6 4999 476598 3 4316
Best 1 Bin koj 0.3 09 0622174 1413398 179D6 5438 307992 5 1821
Best 1 Bin € 06 03 1075080 0013497 40%1 6500 816277 0% 720
Best 1 Bin o} 06 06 4175193 0001241 33319 6204 642686 % 4245
Best 1 Bin [:} 06 09 0018921 0097005 1788 4388 302293 247 19
Best 1 Bin T 09 03 1538257 0387008 7301 6500 1230698 0% 1466
Best 1 Bin o} 09 06 8481393 0003082 40747 6435 655529 % 39.66
Best 1 Bin T 09 09 7557373 0000008 46714 6434 777978 % 72.60
Best 1 Exp D 03 03 7442973 1184047 21945 6500 234202 0% 183
Best 1 Exp D 03 06 5875616 3483203 21844 6500 234537 0% 185
Best 1 Exp ® 0.3 09 5831925 2853257 21800 6500 235038 0% 106
Best 1 Exp D 0.6 0.3 5479760 5846983 22110 6500 234236 0% 182
Best 1 Exp (>} 06 06 5491788 3683518 21927 6500 234587 0% 165
Best 1 Exp ® 06 09 6356344 3026703 21861 6500 235061 0% .84
Best 1 Exp D 09 03 8656287 0000000 5561 6500 73758 0% 3187
Best 1 Exp D 09 06 0002355 0000049 14278 2976 107584 £ 94.73
Best 1 Exp D 09 09 1774057 0284646 23216 6475 233948 % 16.75
Currentto Rand 1 B 03 03 6613680 2018004 50497 6500 808565 0% 785
Current to Rand 1 B 0.3 0.6 4719736 0 33263 6500 524796 0% 300
Current to Rand 1 B 0.3 09 2648037 0 30153 6500 479674 0% 292
Current to Rand 1 B 06 03 5907370 1781042 50461 6500 808436 0% 84
Currentto Rand 1 B 06 06 4336297 3845465 32733 6500 516579 0% 302
Currentto Rand 1 B 06 09 2842934 0 30159 6500 479803 0% 29
Currentto Rand 1 =4 0.9 0.3 7404721 9985876 51249 6500 822221 0% 881
Current to Rand 1 B 0.9 0.6 5123504 6872291 3282 6500 517954 0% 306
Current to Rand 1 B 09 09 2666130 0 30158 6500 480051 0% 254
Current to best 1 4 0.3 03 9518423 4079354 126114 6500 57945 0% 3164
Current to best 1 R 03 06 5315249 0 10074 6500 1043266 0% 2235
Current to best 1 B 03 09 4772813 0 27874 6500 436361 0% 289
Current to best 1 B 06 03 9741819 2552972 128655 6500 53482 0% 32a1
Current to best 1 B 0.6 0.6 5787309 3508465 101169 6500 1051785 0% 22850
Current to best 1 B 06 09 4481553 0 27836 6500 435845 0% 286
Current to best 1 7 09 03 9941413 2505349 129563 6500 62168 0% 3263
Current to best 1 B 09 06 4851411 0 101562 6500 1043572 0% 2288
Current to best 1 B 09 09 4965898 0 27851 6500 436788 0% 206
Current to rand 1 Bin [} 03 03 2137612 7321067 47364 6500 572493 0% 1964
Current to rand 1 Bin 2G 0.3 0.6 0.792429 0222792 18674 6254 246512 1% 3.13
Current to rand 1 Bin (<} 03 09 5567300 1618644 18946 6500 236271 0% .01
Current to rand 1 Bin é 0.6 0.3 2755634 6087996 80556 6500 737530 0% 2459
Current to rand 1 Bin 5G 0.6 0.6 0.069026 0000066 1634 4090 251626 6 1477
Current to rand 1 Bin 6 0.6 09 1101626 1645283 19238 6500 235359 0% .03
Current to rand 1 Bin @ 0.9 0.3 5435739 3452629 123117 6500 1067167 0% 2907
Current to rand 1 Bin 8G 0.9 0.6 4.293221 0001469 3602 6454 520077 1% 3411
Current to rand 1 Bin 9G 0.9 0.9 0.029537 0000654 19379 6377 236592 5 .037
Rand 2 Dir H 03 03 1224365 0 140293 6500 196155 0% 3381
Rand 2 Dir H 0.3 0.6 5569629 0 107148 6500 234550 0% 2485
Rand 2 Dir H 0.3 09 3138329 Q000009 6532 6500 234699 0% 1386
Rand 2 Dir H 06 03 1213254 0 135702 6500 216758 0% 3281
Rand 2 Dir H 06 06 6260418 0 107360 6500 234488 0% 2489
Rand 2 Dir 61 06 09 3300208 0000001 6554 6500 234734 0% 1333
Rand 2 Dir H 0.9 0.3 1051223 0 137032 6500 210425 0% 32897
Rand 2 Dir H 09 06 5508342 0 10723 6500 234523 0% 2497
Rand 2 Dir H 09 09 2718728 0000194 6587 6500 234691 0% 1356
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Table 3: Comparative results between the DE algorithm with ELEMAEF and DE algontithout it.

DE variant DE with i?FﬁEE??&iﬂgsig?FMAFp BeSt C Tlme
Rand 1 Bin 88% /22% DE with ELEMAEF
Rand 1 Exp 22% [ 0% DE without ELEMAEF
Best 1 Bin T77% | 44% DE without ELEMAEF
Best 1 Exp 22%/11% DE without ELEMAEF
Currentto Rand 1 0% / 0% DE without ELEMAEF
Current to best 1 0% / 0% DE without ELEMAEF
Current to rand 1 Bin 33% /0% DE without ELEMAEF
Rand 2 Dir 0% / 0% DE without ELEMAEF

AN
/M /BN /I
N o=
AN A A

Fig. 6: Optimum design of the 3R manipulator with dexterous workspace.

between the exploration and exploitation mechanism inwith at least three different orientations. Hence, the
the DE algorithm is an outstanding characteristic to beoptimum design fulfills the objective design, i.e., it has a
considered in order to find the optimum solution in this desired dexterous workspace.

particular design problem.

. 5 Conclusion

Design results

) ) ) _ In this paper an optimization problem to optimal design
The optimal link lengths are provided by using the the |ink length of a & manipulator with a parallelogram
DEE(ERSEgél/B'n with ELEMAEF, | those  are: fiye-bar mechanism is stated. The design involves that the
|7 = 0407 I3 = 0415  manipulator must fulfil a defined dexterous workspace.
|;ELEMAEF — 0.0264. The optimal design meets the An exhaustively local mechanism is incorporated in the
objective function and constraints, such that its differential evolution algorithm to solve the problem. The
end-effector can reach the defined workspace withfinal optimal design results in @R8manipulator which its
different orientation in the intervel-5, &]. Hence, the  end-effector can be moved in the desired workspace with
manipulator designed by this approach presents a definedifferent orientations, fulfilling the design objectivedan
dexterous workspace. In Figg the optimum design constraints.
p*ELEMAEF of the 3R manipulator with a parallelogram According to the empirical results, the ELEMAEF
mechanism is displayed. The optimum design guaranteesan search into the design space such that better solutions
the end-effector can reach the vertices of the workspacean be found. The DE with ELEMAEF improves the
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convergence to the optimal solution compared with the[12] T. Lung-Wen, Robot analysis: The mechanics of serial and
DE algorithm without ELEMAEF. The DE with parallel manipulators, John Wiley & Sons, (1999).
ELEMAEF does not require an additional parameter to bel13] M. W. Spong, M. Vidyasagar, Robot Dynamics and Control,
tuned. The main drawback of the algorithm is that it John Wiley & Sons, (2004). _
requires more functions to be evaluated, such that if14]A- Kumar, K. J. Waldron, The workspaces of a mechanical
requires more computational time. manipulator, Journal of Mechanical Desigh)3 665-672

The strategy of applying a local exploitation (1981

mechanism is a verv important factor to be included in th [15] Miguel G. Villarreal-Cervantes, Carlos A. Cruz-Villar,
echa s. .Sa e y. po .a actorto be include e Jaime Alvarez-Gallegos, Edgar A. Portilla-Flores, Robust
metaheuristic algorithm in order to promote the

- . - Structure-Control Design Approach for Mechatronic
exhaustively search of the optimal solution. Nevertheless Systems. IEEE/ASME Transactions on Mechatronits,

the way that the local exploitation mechanism is working 15951601 (2013).

must be carefully analyzed due to the problem of the[16]S. B. Matekar, G. R. Gogate, Optimum Synthesis Of

premature convergence to a local solution. Path Generating Four-Bar Mechanisms Using Differential
Evolution And A Modified Error Function, Mechanism And
Machine Theory52, 158-179 (2012).
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