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Abstract: Using a computerized symbolic computation technique based on improved Jacobi elliptic function method, we find
several solutions for Whitham-Broer-Kaup-Like (WBKL) system. These solutions contain hyperbolic, triangular solutions. When the
parameters are taken as special values the solitary wave solutions can beobtained for other systems. The traveling wave solutions are
also discussed that obtains solitary wave and singular soliton solution.
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1 Introduction

The study of solitons, cnoidal waves, snoidal waves
appear everywhere no matter where we look around. For
example, it shows up in plasma physics, mathematical
biosciences, nuclear physics, theoretical physics,
nonlinear fiber optics, fluid dynamics, mathematical
chemistry and several others. Out of these areas, the
application of solitons is predominantly prominent in the
area of nonlinear fiber optics where loads of data are
transmitted over transoceanic and transcontinental
distances in just a matter of a few femto seconds or rather
atto seconds. Thus, the world of information sciences has
immensely advanced because of the profound progress in
the theory of solitons. Hence it is important and
imperative to dig a little deeper in this area of solitons
since research in this field has made gigantic leaps in the
technology of information sciences. This paper is
therefore going to address the study of solitons, cnoidal
waves and snoidal waves for a particular nonlinear
evolution equation which is the Whitham-Broer-Kaup
equation.

The (1+1) Broer-Kaup (BK) system:

ut +uux + vx = 0,

vt +ux +(uv)x +uxxx = 0,
(1)

is used to model the bi-directional propagation of long
waves in shallow water [1]-[3]. In this paper, we study the
Whitham-Broer-Kaup-Like (WBKL) system given in the
form:

ut +uux + γvx +βuxx = 0,

vt +(uv)x +αuxxx −βvxx = 0.
(2)

We can find special cases of system (2):

1.If γ = 1, System (2) reduce to Whitham-Broer-Kaup
system

ut +uux + vx +βuxx = 0,

vt +(uv)x +αuxxx −βvxx = 0,
(3)

which is a completely integrable model describes the
dispersive long wave in shallow water, whereu(x, t)
is the field of horizontal velocity,v(x, t) is the height
which deviates from the equilibrium position of liquid,
α andβ are constants that represent different diffusion
powers [4]-[7].
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2.If γ = 1 andα = 0, System (2) reduce to the classical
long-wave system [8]-[10]:

ut +uux + vx +βuxx = 0,

vt +(uv)x −βvxx = 0,
(4)

which describe the shallow water wave with diffusion.
3.If γ = α = 1 and β = 0, System (2) reduce to the

variant Boussinesq system [11]-[14]:

ut +uux + vx = 0,

vt +(uv)x +uxxx = 0,
(5)

which is a model for water waves, whereu(x, t) and
v(x, t) are the velocity and the total depth, respectively.

4.If γ = 1, α = 1
3 andβ = 0, System (2) reduce to the

dispersive long wave system:

ut +uux + vx = 0,

vt +(uv)x +
1
3

uxxx = 0,
(6)

wherev(x, t)is the elevation of the water wave,u(x, t)
is the surface velocity of water alongx-direction.
Solutions of (6) is very helpful for coastal and civil
engineers to apply the nonlinear water wave model in
a harbor and coastal design [15]- [17].

5.If γ = 1, α = 1
4ε2 and β = 0, integrable

Kaup-Boussinesq shallow water system may be
obtained [12]. The integrable nonlinear systems are
used extensively as approximate models in
hydrodynamics. They describe in a relatively simple
way the competition between nonlinear and dispersive
effects:

ut +uux + vx = 0,

vt +(uv)x +
1
4

ε2uxxx = 0,
(7)

wherev(x, t) denotes the height of the water surface
above a horizontal bottom andu(x, t) denotes its
velocity averaged over depth, describes motion of
shallow water.

The nonlinear wave phenomena can be observed in
various scientific fields, such as plasma physics, optical
fibers, fluid dynamics, chemical physics, etc. The
nonlinear wave phenomena can obtained in solutions of
nonlinear evolution equations (NEEs). The exact
solutions of these NEEs plays an important role in the
study of nonlinear phenomena. In the past decades, many
methods were developed for finding exact solutions of
NEEs as the inverse scattering method [18]- [19], Hirota’s
bilinear method [20], homogeneous balance method [21],
sine-cosine method [22,23], Extended F-expansion
method [24] optical soliton-like [25], tanh function

methods [26,27], G
′

G expansion method [12,28], Jacobi
and Weierstrass elliptic function method [29,30].

Although Porubov et al. [31] have obtained some
exact periodic solutions to some nonlinear wave
equations, they use the Weierstrass elliptic function and
involve complicated deducing. A Jacobi elliptic function
(JEF) expansion method, which is straightforward and
effective, was proposed for constructing periodic wave
solutions for some nonlinear evolution equations. The
essential idea of this method is similar to the tanh method
by replacing the tanh function with some JEFs such assn,
cn and dn. For example, the Jacobi periodic solution in
terms ofsn may be obtained by applying thesn-function
expansion. Many similarly repetitious calculations have
to be done to search for the Jacobi doubly periodic wave
solutions in terms ofcn anddn [32].

The objectives of this work are two fold. First, we seek
to extend others works to establish new exact solutions of
distinct physical structures for the nonlinear system (2).
The improved Jacobi elliptic function expansion (IJEFE)
method will be used to achieve the first goal. The second
goal is to show that the power of the IJEFE method is its
ease of use to determine shock or solitary type of solutions.

In this paper, we extend the IJEFE method with
symbolic computation to such special equations for
constructing their interesting Jacobi doubly periodic wave
solutions. It is shown that soliton solutions and triangular
periodic solutions can be established as the limits of
Jacobi doubly periodic wave solutions. In addition the
algorithm that we use here is also a computerizable
method, in which generating an algebraic system. Two
key procedures and laborious to do by hand. But they can
be implemented on a computer with the help of
mathematica. The outputs of solving the algebraic system
from a computer comprise a list of constants. In general if
any of the parameters is left unspecified.

2 Improved Jacobi’s elliptic function method

In this section, we introduce a simple description of the
IJEF method, for a given partial differential equation

G(u,ux,ut ,uxt , . . .) = 0. (8)

We like to know whether travelling waves (or stationary
waves) are solutions of Eq. (8). The first step is to unite the
independent variablesx andt into one particular variable
through the new variable

ζ = x+νt, u(x, t) =U(ζ )

wherec is wave speed, and reduce Eq. (8) to an ordinary
differential equation(ODE)

G(U,U
′
,U

′′
,U

′′′
, . . .) = 0. (9)

Our main goal is to derive exact or at least approximate
solutions, if possible, for this ODE. For this purpose, let
us simplyU as the expansion in the form,

u(x,y, t) =U(ζ ) =
N

∑
i=0

aiψ i +
N

∑
i=1

a−iψ−i, (10)
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Table 1: Spectrum of nonlinear waves.
A B C ψ(ζ )
1 -1-m2 m2 sn(ζ ) or

cd(ζ )= cn(ζ )
dn(ζ )

1-m2 2m2-1 -m2 cn(ζ )
m2-1 2-m2 -1 dn(ζ )
m2 -1-m2 1 ns(ζ ) 1

sn(ζ ) or

dc(ζ )=dn(ζ )
cn(ζ )

-m2 2m2-1 1-m2 nc(ζ )= 1
cn(ζ )

-1 2-m2 m2-1 nd (ζ )= 1
dn(ζ )

1 2-m2 1-m2 sc (ζ )= sn(ζ )
cn(ζ )

1 2m2-1 -m2( -1-m2) sd(ζ )= sn(ζ )
dn(ζ )

1-m2 2-m2 1 cs(ζ )= cn(ζ )
sn(ζ )

-m2(1-m2) 2m2-1 1 ds(ζ )=dn(ζ )
sn(ζ )

1
4

1−2m2

2
1
4 ns(ζ )+cs(ζ )

1−m2

4
1+m2

2
1−m2

2 nc(ζ )+sc(ζ )
1
4

m2−2
2

m2

4 ns(ζ )+ds(ζ )
m2

4
m2−2

2
m2

4 sn(ζ )+ics(ζ )

where
ψ

′
=
√

A+Bψ2+Cψ4, (11)

the highest degree ofd pU
dζ p is taken as

O(
dpU
dζ p ) = N + p, p = 1,2,3, · · · , (12)

O(Uq dpU
dζ p )= (q+1)N+ p, q= 0,1,2, · · · , p= 1,2,3, · · · .

(13)
WhereA, B andC are constants, andN in Eq. (9) is a
positive integer that can be determined by balancing the
nonlinear term(s) and the highest order derivatives.
Normally N is a positive integer, so that an analytic
solution in closed form may be obtained. Substituting
Eqs. (10)- (11) into Eq. (9) and comparing the coefficients
of each power of ψ(ζ ) in both sides, to get an
over-determined system of nonlinear algebraic equations
with respect toν , a0, a1, · · · . Solving the over-determined
system of nonlinear algebraic equations by use of
Mathematica. The relations between values ofA, B, C and
corresponding JEF solutionψ(ζ ) of Eq. (10) are given in
Table 1. Substitute the values ofA, B, C and the
corresponding JEF solutionψ(ζ ) chosen from table 1
into the general form of solution, then an ideal periodic
wave solution expressed by JEF can be obtained.

Where cn(ζ ) and dn(ζ ) are the Jacobi elliptic cosine
function and the JEF of the third kind, respectively. And

cn2(ζ ) = 1− sn2(ζ ), dn2(ζ ) = 1−m2sn2(ζ ), (14)

with the modulus m(0< m < 1).
When m−→1, the Jacobi functions degenerate to the

hyperbolic functions, i.e.,

snζ −→ tanhζ , cnζ −→ sechζ , dnζ −→ sechζ ,

when m−→0, the Jacobi functions degenerate to the
triangular functions, i.e.,

snζ −→ sinζ , cnζ −→ cosζ and dn −→ 1.

3 Whitham-Broer-Kaup like system

We first consider the WBKL system (2)

ut +uux + γvx +βuxx = 0,

vt +(uv)x +αuxxx −βvxx = 0,
(15)

if we useζ = x+νt carries system (15) into the system of
ODEs

νU
′
+UU

′
+ γV

′
+βU

′′
= 0,

V
′
+(UV )

′
+αU

′′′
−βV

′′
= 0,

(16)

where by integrating once we obtain, upon setting the
constant of integration to zero,

νU +
U2

2
+ γV +βU

′
= 0,

V +UV +αU
′′
−βV

′
= 0,

(17)

if we use the first equation in (17) into the second one, we
find

(2αγ +β 2)U
′′
−U3−3νU2−2ν2U = 0. (18)

Balancing the termU
′′

with the termU3 we obtainN = 1
then

U(ζ ) = a0+a1ψ +a−1ψ−1, ψ
′
=
√

A+Bψ2+Cψ4.
(19)

Substituting Eq. (19) into Eq. (18) and comparing the
coefficients of each power ofψ in both sides, to get an
over-determined system of nonlinear algebraic equations
with respect to ν , ai, i = 1, −1. Solving the
over-determined system of nonlinear algebraic equations
by use of Mathematica, we obtain three groups of
constants:

1.

a−1 =±
√

2A(β 2+2αγ), ν =±i
√

−B(β 2+2αγ),

a1 = 0 and a0 =±i
√

B(β 2+2αγ),
(20)

2.

a1 =±
√

2C(β 2+2αγ), a−1 =±
√

2A(β 2+2αγ),

ν = a0 =±
√

(β 2+2αγ)(6
√

AC−B),
(21)
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3.

a1 =±
√

2C(β 2+2αγ), a−1 =∓
√

2A(β 2+2αγ),

ν = a0 =±i
√

(β 2+2αγ)(6
√

AC+B),
(22)

for each group of constant, we find sixteen solutions of
(15), for example for group 1 we find:-

u1 =± (
√

(1+m2)γ1+

√
2γ1

sn(x± i
√

(1+m2)γ1t)
),

v1 =±
1
γ

[

± i
√

(1+m2)γ1×

(

−
√

(1+m2)γ1+

√
2γ1

sn(x± i
√

(1+m2)γ1t)

)

±
i
√

(1+m2)γ1

2
×

(

−
√

(1+m2)γ1+

√
2γ1

sn(x± i
√

(1+m2)γ1t)

)2

−
β
√

2γ1cn(x± i
√

(1+m2)γ1t)dn(x± i
√

(1+m2)γ1t)

sn(x± i
√

(1+m2)γ1t)2

]

,

(23)
whereγ1 = (β 2+2αγ)

u2 =±(
√

(1+m2)γ1+

√

2m2γ1

ns(x± i
√

(1+m2)γ1t)
),

v2 =±
1
γ

[

± i
√

(1+m2)γ1×

( −
√

2m2γ1

ns(x± i
√

(1+m2)γ1t)
−
√

(1+m2)γ1

)

±
i
√

(1+m2)γ1

2
×

(

√

2m2γ1

ns(x± i
√

(1+m2)γ1t)
−
√

(1+m2)γ1

)2

−
β
√

2m2γ1cs(x± i
√

(1+m2)γ1t)ds(x± i
√

(1+m2)γ1t))

ns(x± i
√

(1+m2)γ1t)2

]

,

(24)

u3 =± (
√

(1+m2)γ1+

√
2γ1

cd(x± i
√

(1+m2)γ1t)
),

v3 =±
1
γ

[

± i
√

(1+m2)γ1×

(

−
√

(1+m2)γ1+

√
2γ1

cd(x± i
√

(1+m2)γ1t)

)

±
i
√

(1+m2)γ1

2
×

(−
√

(1+m2)γ1+

√
2γ1

cd(x± i
√

(1+m2)γ1t)

)2

+(m−1)β
√

2(m−1)γ1×

nd(x± i
√

(1+m2)γ1t)sd(x± i
√

(1+m2)γ1t)

cd(x± i
√

(1+m2)γ1t)2

]

,

(25)

u4 =± (
√

(1−2m2)γ1+

√

2(1−m2)γ1

dn(x±
√

(2m2−1)γ1t)
),

v4 =±
1
γ

[

√

(2m2−1)γ1×

(

−
√

(1−2m2)γ1+

√

2(1−m2)γ1

dn(x±
√

(2m2−1)γ1t)

)

±
√

(2m2−1)γ1

2
×

(

−
√

(1−2m2)γ1+

√

2(1−m2)γ1

dn(x±
√

(2m2−1)γ1t)

)2

+mβ
√

2(1−m2)γ1×

cn(x±
√

(2m2−1)γ1t)sn(x±
√

(2m2−1)γ1t)

dn(x±
√

(2m2−1)γ1t)2

]

,

(26)

u5 =± (
√

(−2+m2)γ1+

√

2(−1+m2)γ1

dn(x±
√

(2−m2)γ1t)
,

v5 =±
1
γ

[

√

(2−m2)γ1×

(

√

(−2+m2)γ1+

√

2(−1+m2)γ1

dn(x±
√

(2−m2)γ1t)

)

±
√

(2−m2)γ1

2
×

(

√

(−2+m2)γ1+

√

2(−1+m2)γ1

dn(x±
√

(2−m2)γ1t)

)2

+mβ
√

2(−1+m2)γ1×

cn(x±
√

(2−m2)γ1t)sn(x±
√

(2−m2)γ1t)

dn(x±
√

(2−m2)γ1t)2

]

,

(27)
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u6 =± (
√

(1+m2)γ1+

√

2m2γ1

dc(x± i
√

(1+m2)γ1t)
,

v6 =±
1
γ

[

i
√

(1+m2)γ1×

(

√

(1+m2)γ1+

√

2m2γ1

dc(x± i
√

(1+m2)γ1t)

)

+
i
√

(1+m2)γ1

2
×

(

√

(1+m2)γ1+

√

2m2γ1

dc(x± i
√

(1+m2)γ1t)

)2

+βm(1−m)
√

2γ1×

nc(x± i
√

(1+m2)γ1t)sc(x± i
√

(1+m2)γ1t)

dc(x± i
√

(1+m2)γ1t)2

]

,

(28)

uw7 =± (
√

(1−2m2)γ1+

√

2−m2γ1

nc(x±
√

(2m2−1)γ1t)
,

v7 =±
1
γ

[

√

(2m2−1)γ1×

(

√

(1−2m2)γ1+

√

2−m2γ1

nc(x±
√

(2m2−1)γ1t)

)

+

√

(2m2−1)γ1

2
×

(

√

(1−2m2)γ1+

√

2−m2γ1

nc(x±
√

(2m2−1)γ1t)

)2

− imβ
√

2γ1×

dc(x±
√

(2m2−1)γ1t)sc(x±
√

(2m2−1)γ1t)

nc(x±
√

(2m2−1)γ1t)2

]

,

(29)

u8 =± (
√

(−2+m2)γ1+

√

2−β 2−2αγ
nd(x±

√

(2−m2)γ1t)
,

v8 =±
1
γ

[

√

(2−m2)γ1×

(

√

(−2+m2)γ1+

√

2−β 2−2αγ
nd(x±

√

(2−m2)γ1t)

)

+

√

(2−m2)γ1

2
×

(

√

(−2+m2)γ1+

√

2−β 2−2αγ
nd(x±

√

(2−m2)γ1t)

)2

− imβ
√

2γ1×

cd(x±
√

(2−m2)γ1t)sd(x±
√

(2−m2)γ1t)

nd(x±
√

(2−m2)γ1t)2

]

,

(30)

u9 =± (
√

(−2+m2)γ1+

√

2β 2+2αγ
sc(x±

√

(2−m2)γ1t)
,

v9 =
1
γ

[

√

(2−m2)γ1

(

√

(−2+m2)γ1+

√

2β 2+2αγ
sc(x±

√

(2−m2)γ1t)

)

+

√

(2−m2)γ1

2

(

√

(−2+m2)γ1+

√

2β 2+2αγ
sc(x±

√

(2−m2)γ1t)

)2

−
β
√

2γ1dc(x±
√

(2−m2)γ1t)nc(x±
√

(2−m2)γ1t)

sc(x±
√

(2−m2)γ1t)2

]

,

(31)

u10 =± (
√

(1−2m2)γ1+

√

2β 2+2αγ
sd(x±

√

(2m2−1)γ1t)
,

v10 =
1
γ

[

√

(2m2−1)γ1×

(

√

(1−2m2)γ1+

√

2β 2+2αγ
sd(x±

√

(2m2−1)γ1t)

)

+

√

(2m2−1)γ1

2
×

(

√

(1−2m2)γ1+

√

2β 2+2αγ
sd(x±

√

(2m2−1)γ1t)

)2

−β
√

2γ1×

cd(x±
√

(2m2−1)γ1t)nd(x±
√

(2m2−1)γ1t)

sd(x±
√

(2m2−1)γ1t)2

]

,

(32)

u11 =± (
√

(−2+m2)γ1+

√

2(1−m2)γ1

cs(x±
√

(2−m2)γ1t)
,

v11 =
1
γ

[

√

(2−m2)γ1×

(

√

(−2+m2)γ1+

√

2(1−m2)γ1

cs(x±
√

(2−m2)γ1t)

)

+

√

(2−m2)γ1

2
×

(

√

(−2+m2)γ1+

√

2(1−m2)γ1

cs(x±
√

(2−m2)γ1t)

)2

+β
√

2(1−m2)γ1×

ds(x±
√

(2−m2)γ1t)ns(x±
√

(2−m2)γ1t)

cs(x±
√

(2−m2)γ1t)2

]

,

(33)
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u12 =± (
√

(1−2m2)γ1+

√

2−m2(1−m2)γ1

ds(x±
√

(2m2−1)γ1t)
,

v12 =
1
γ

[

√

(2m2−1)γ1×

(

√

(1−2m2)γ1+

√

2−m2(1−m2)γ1

ds(x±
√

(2m2−1)γ1t)

)

+

√

(2m2−1)γ1

2
×

(

√

(1−2m2)γ1+

√

2−m2(1−m2)γ1

ds(x±
√

(2m2−1)γ1t)

)2

+βm
√

2(m2−1)γ1×

cs(x±
√

(2m2−1)γ1t)ns(x±
√

(2m2−1)γ1t)

ds(x±
√

(2m2−1)γ1t)2

]

,

(34)

u13 =± (
√

(−0.5+m2)γ1+
0.707107

√

β 2+2αγ
cs(x+νt)+ns(x+νt)

,

v13 =
1
γ

[

0.707107β
√

β 2+2αγ×

(−cs(x+νt)ds(x+νt)−ds(x+νt)ns(x+νt))
(cs(x+νt)+ns(x+νt))2

+ν
(

√

(−0.5+m2)γ1+
0.707107

√

β 2+2αγ
cs(x+νt)+ns(x+νt)

)

+
ν
2

(

√

(−0.5+m2)γ1+
0.707107

√

β 2+2αγ
cs(x+νt)+ns(x+νt)

)2]

,

ν =±
√

(0.5−m2)γ1,

(35)

u14 =± (
√

(−0.5−0.5m2)γ1+

√

2(0.25−0.25m2)γ1

nc(x+νt)+ sc(x+νt)
,

v14 =±
1
γ

[(

β
√

2(0.25−0.25m2)γ1×

dc(x+νt)nc(x+νt)+dc(x+νt)sc(x+νt)
(nc(x+νt)+ sc(x+νt))2

+ν
(

√

(−0.5−0.5m2)γ1+

√

2(0.25−0.25m2)γ1

(nc(x+νt)+ sc(x+νt))

)

+
ν
2

(

√

2(0.25−0.25m2)γ1

nc(x+νt)+ sc(x+νt)
−
√

(−0.5−0.5m2)γ1

)2]

,

ν =±
√

(0.5+0.5m2)γ1

(36)

u15 =± (
√

(1−0.5m2)γ1+
0.707107

√

β 2+2αγ
ds(x+νt)+ns(x+νt)

,

v15 =±
1
γ

[(

−0.707107β
√

β 2+2αγ×

cs(x+νt)ds(x+νt)+ cs(x+νt)ns(x+νt)
(ds(x+νt)+ns(x+νt))2

)

+ν
(

√

(1−0.5m2)γ1+
0.707107

√

β 2+2αγ
ds(x+νt)+ns(x+νt)

)

+
ν
2

(

√

(1−0.5m2)γ1+
0.707107

√

β 2+2αγ
ds(x+νt)+ns(x+νt)

)2]

,

ν =
√

(0.5m2−1)γ1

(37)

u16 =± (
√

(1−0.5m2)γ1+
0.707107

√

m2γ1

ics(x+νt)+ sn(x+νt)
,

v16 =±
1
γ

[(

0.707107β
√

m2γ1×

cn(x+νt)dn(x+νt)− ids(x+νt)ns(x+νt)
(ics(x+νt)+ sn(x)+νt)2

)

+ν
(

√

(1−0.5m2)γ1+
0.707107

√

m2γ1

ics(x+νt)+ sn(x+νt)

)

+
ν
2

(

√

(1−0.5m2)γ1+
0.707107

√

m2γ1

ics(x+νt)+ sn(x+νt)

)2]

,

ν =±
√

(0.5m2−1)γ1.

(38)

3.1 Triangular periodic solutions

Some trigonometric function solutions can be obtained, if
the modulusm approaches to zero in Eqs. (23)-(52)

u17 =−
√

γ1+
√

2
√

γ1csc(x+νt),

v17 =−
1
γ

[√
2β

√
γ1cot(x+νt)csc(x+νt)

−ν
(

−
√

γ1+
√

2
√

γ1csc(x+νt)
)

−
1
2

ν
(

−
√

γ1+
√

2
√

γ1csc(x+νt)
)2]

,

(39)

u18 =−
√

γ1+
√

2
√

γ1sec(x+νt),

v18 =−
1
γ

[

−ν
(

−
√

γ1+
√

2
√

γ1sec(x+νt)
)

−
1
2

ν
(

−
√

γ1+
√

2
√

γ1sec(x+νt)
)2

−
√

2β
√

γ1sec(x+νt)tan(x+νt)
]

,

(40)
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u19 =−
√

2i
√

γ1+
√

2
√

γ1cot(x+νt),

v19 =
1
γ

(

ν
(

−
√

2i
√

γ1+
√

2
√

γ1cot(x+νt)
)

+
1
2

ν
(

−
√

2i
√

γ1+
√

2
√

γ1cot(x+νt)
)2

+
√

2β
√

γ1csc(x+νt)2
)

,

(41)

u20 =−
√

2i
√

γ1+
√

2
√

γ1tan(x+νt),

v20 =−
1
γ

[

−
√

2β
√

γ1sec(x+νt)2

−ν
(

−
√

2i
√

γ1+
√

2
√

γ1tan(x+νt)
)

−
1
2

ν
(

−
√

2i
√

γ1+
√

2
√

γ1tan(x+νt)
)2]

,

(42)

u21 =0.707107
√

γ1((sin(x+νt)+ tan(x+νt))− i),

v21 =−
1
γ

(

−0.707107β
√

γ1

(

cos(x+νt)+sec(x+νt)2
)

−ν
(

0.707107
√

γ1((sin(x+νt)+ tan(x+νt))− i)
)

−
1
2

ν
(

0.707107
√

γ1((sin(x+νt)

+ tan(x+νt))− i)
)2)

,

(43)

u22 =0.707107
√

γ1((cos(x+νt)+cot(x+νt))− i),

v22 =−
1
γ

(

ν
(

0.707107
√

γ1((cos(x+νt)+cot(x+νt))− i)
)

+
1
2

ν
(

0.707107
√

γ1((cos(x+νt)+cot(x+νt))− i)
)2

+β
(

0.707107
√

γ1

(

−csc(x+νt)2−sin(x+νt)
)))

,

(44)

u23 =−
√

γ1+1.41421
√

γ1sin(x+νt),

v23 =
1
γ

(

β
(

1.41421
√

γ1cos(x+νt)
)

−ν
(√

γ1−1.41421
√

γ1sin(x+νt)
)

+
1
2

ν
(√

γ1−1.41421
√

γ1sin(x+νt)
)2)

.

(45)

3.2 Soliton solutions

Some solitary wave solutions can be obtained, if the
modulusm approaches to 1 in Eqs. (23)-(52)

u24 =−
√

2
√

γ1+
√

2
√

γ1coth(x+νt),

v24 =−
1
γ

(

ν
(√

2
√

γ1−
√

2
√

γ1coth(x+νt)
)

−
1
2

ν
(√

2
√

γ1−
√

2
√

γ1coth(x+νt)
)2

+
√

2β
√

γ1csch(x+νt)2
)

,

(46)

Fig. 1: Three-dimensional of the modulus of solitary wave
solutionu25 (Eq.47) at α = β = ν = γ = 1.

u25 =−
√

2
√

γ1+
√

2
√

γ1tanh(x+νt),

v25 =
1
γ

(√
2β

√
γ1sech(x+νt)2

+ν
(

−
√

2
√

γ1+
√

2
√

γ1tanh(x+νt)
)

+
1
2

ν
(

−
√

2
√

γ1+
√

2
√

γ1tanh(x+νt)
)2)

,

(47)

u26 =−i
√

γ1+
√

2i
√

γ1sech(x+νt),

v26 =−
1
γ

(

−ν
(

− i
√

γ1+
√

2i
√

γ1sech(x+νt)
)

−
1
2

ν
(

− i
√

γ1+
√

2i
√

γ1sech(x+νt)
)2

+
√

2β i
√

γ1sech(x+νt)tanh(x+νt)
)

,

(48)

u27 =−i
√

γ1+
√

2
√

γ1csch(x+νt),

v27 =−
1
γ

(√
2β

√
γ1coth(x+νt)csch(x+νt)

−ν
(

− i
√

γ1+
√

2
√

γ1csch(x+νt)
)

−
1
2

ν
(

− i
√

γ1+
√

2
√

γ1csch(x+νt)
)2)

,

(49)
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Fig. 2: Three-dimensional of the modulus of solitary wave
solutionv25 (Eq.47) at α = β = ν = γ = 1.
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Fig. 3: Graphical representation of of the modulus of solitary
wave solutionu25 (Eq.47) for t = 0, 1 and 2 atα = β = ν = γ =
1.
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Fig. 4: Graphical representation of of the modulus of solitary
wave solutionv25 (Eq.47) for t = 0, 1 and 2 atα = β = ν = γ =
1.

u28 = 0.707107
√

γ1(sinh(x+νt)+ tanh(x+νt)−1),

v28 =
0.707107

√γ1ν
γ

[β
ν

(

cosh(x+νt)+sech(x+νt)2
)

−
(

sinh(x+νt)+ tanh(x+νt))−1
)

−
0.707107

√γ1

2

(

sinh(x+νt)+ tanh(x+νt)−1)
)2]

,

(50)

u29 = 0.707107
√

γ1(sinh(x+νt)+ tanh(x+νt)−1),

v29 =
0.707107

√γ1ν
γ

[β
ν

(

cosh(x+νt)+sech(x+νt)2
)

+
(

sinh(x+νt)+ tanh(x+νt)−1
)

+
0.707107

√γ1

2

(

sinh(x+νt)+ tanh(x+νt)−1
)2]

,

(51)

u30 = 0.707107
√

γ1(coth(x+νt)+ isinh(x+νt)−1),

v30 =
0.707107

√γ1ν
γ

[β
ν
(icosh(x+νt)−csch(x+νt)2)

+
(

coth(x+νt)+ isinh(x+νt)−1
)

+
0.707107

√γ1

2

(

coth(x+νt)+ isinh(x+νt)−1
)2]

.

(52)

For above last two groups of constants (2, 3) we find
another thirty solutions. Three-dimensional of the
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modulus of solitary wave solutionsu25 and v25, are
displayed in Figures1 and2, respectively, with values of
parameters listed in their captions. Moreover, graphical
representation for the same solutions are plotted in figures
3 and4, respectively, with values of parameters listed in
their captions.

4 TRAVELING WAVE SOLUTIONS

This section will focus on obtaining the traveling wave
solutions to (15). The solitary waves as well as the
singular soliton solution will be derived by the aid of
traveling waves [33]. First of all, (15) is now rewritten in
the following pair of coupled equations, after removing
the dissipative terms:

qt +a1qqx +a2rx = 0, (53)

rt +b1 (qr)x +b2qxxx = 0. (54)

The starting point is the traveling wave hypotheses that are

q(x, t) = g(x− vt), (55)

and

r(x, t) = h(x− vt), (56)

whereg andh are the wave profiles andv represents the
velocity of the traveling waves. Introducing the notation

s = x− vt, (57)

equations (53) and (54) transforms to the ordinary
differential equations

2vg−a1g2−2a2h = 0, (58)

and

vh−b1gh−b2g′′ = 0, (59)

respectively, after choosing the integration constant to be
zero, since the focus in on obtaining the soliton solution.
Here in (58) and (59), the notationsg′ = dg/ds andg′′ =
d2g/ds2 are utilized. From (58), it is possible to obtain

h =
1

2a2

(

2vg−a1g2) . (60)

Substituting (60) into (59) and integrating once, leads to

(

g′
)2

=
v2

a2b2
g2−

(a1+2b1)v
3a2b2

g3+
a1b1

4a2b2
g4, (61)

after simplification, where the integration constant is,
once again, taken to be zero. Now from (61), separating
variables and integrating one more time, leads to the
1-soliton solution

g(x− vt) =
A

D+cosh[B(x− vt)]
, (62)

where the amplitudeA of the soliton is given by

A =
6v

√

(a1+2b1)
2−9a1b1

, (63)

and the inverse widthB is

B =
v√

a2b2
, (64)

while the parameterD is given by

D =
a1+2b1

√

(a1+2b1)
2−9a1b1

. (65)

The definitions of the parameter given by (63)-(65) leads
to the constraint conditions

a2b2 > 0, (66)

and

(a1+2b1)
2 > 9a1b1. (67)

Finally, the wave profile forh(x − vt) can be obtained
from (60).

Integration of (61) also leads to the singular 1-soliton
solution that is given by

g(x− vt) =
A

D−sinh[B(x− vt)]
. (68)

In this case, the free parametersA andD are respectively
given by

A =
6v

√

9a1b1− (a1+2b1)
2
. (69)

and

D =
a1+2b1

√

9a1b1− (a1+2b1)
2
. (70)

while the free parameterB, in this case stays the same as
(64). These free parameters from (69) and (70) therefore
introduce the constraint

(a1+2b1)
2 < 9a1b1, (71)

which must hold in order for the singular solitons to exist.
Again the singular soliton profile forh(x − vt) can be
obtained from (60).

5 CONCLUSIONS

IJEF shows that soliton solutions and triangular periodic
solutions can be established as the limits of Jacobi doubly
periodic wave solutions. Whenm−→1, the Jacobi
functions degenerate to the hyperbolic functions and
given the solutions by the extended hyperbolic functions
methods. Whenm −→ 0, the Jacobi functions degenerate
to the triangular functions and given the solutions by
extended triangular functions methods. Additionally, the
direct traveling wave hypothesis also lead to solitray
waves and singular soliton solutions, for the
non-dissipative Broer-Kaup equation. In this case there
are several constraint conditions that fell out in order for
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the solitons to exist.

These results will be discussed further in future where
several other aspects will be addressed. These are the
conservation laws [34], perturbed Broer-Kaup system
including the stochastic perturbation. Additionally, full
numerical simulations will be carried out and these results
will all be declared in future publications.
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