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Abstract: Inspired by the very recent work by Noor and Noor [9] and giverdosed convex set-valued mappifig we propose a
split algorithm for solving the problem of finding an elemehtwhich is a zero of a given maximal monotone operdtesuch that

its image, Ax*, under a linear operatod, is in a closed convex s€t(x*). Then, we present two strong convergence results and state
some examples as applications. The ideas and techniques of this pgpaothate the readers to discover some novel and innovative
applications of the implicit split feasibility problems in various branches oé@und applied sciences.
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1 Introduction and preliminaries problem considered ir9] involves the projection operator
over convex sets and that the techniques are strongly

ThroughoutH is a Hilbert space(-,-) denotes the inner Pased on its properties which do not depend on any
product and| - || stands for the corresponding norm. The Parameter in contrast to the resolvent and proximal
split feasibility problem (SFP) has received much Mappings. In this paper, we introduce and consider a new
attention due to its applications in image denoising, digna/MPplicit feasibility null-point problems. We suggest and
processing and image reconstruction, with particulardnalyze some split algorithms for solving this new
progress in intensity-modulated therapy. For a completd€asibility problem. Strong convergence of the proposed
and exhaustive study on algorithms for solving convexalgorithm is dlscussed under some suitable condlltlons.
feasibility problem, including comments about their S°0Me applications of this new problem are given.
applications and an excellent bibliography see, forComparison of the proposed methods with other
example ] and for split convex feasibility problem see, techniques is an interesting problem for future research.
for instance, the excellent papes] [and the references To begin with, let us recall that the split feasibility
therein. Inspired by the idea developed &, four interest ~ problem (SFP) is to find a point

in this paper is on the study of the convergence of a

algorithm for solving a Implicit Feasibility Null-point ke Csuch thatix< Q, (1)
Problem, i.e., the case where the constrained set, insteaslhereC is a closed convex subset of a Hilbert spihe

of being fixed, is a set-valued mapping. Besides being & is a closed convex subset of a Hilbert sp&te and
more general case, it also has many applications, see fok: Hy — Hy is a bounded linear operator.

example P]). Note that by takingA = I, the identity = Assuming that the (SFP) has a solution, it is no hard to see
mapping andT = dg, the subdifferential of a strongly thatx € C solves(1) if and only if it solves to fixed-point
convex proper lower semi-continuous functiomp, equation

problem (4) reduces to finding a common element in_ X

argming and the implicit convex se€(x). To be in a =R (I —yA (I =Po)A)x, x € C, )
position to apply the fixed-point Banach principle and by where Rc and Py are the (orthogonal) projection on@®
observing that the fixed-point reformulation of the andQ, respectivelyy > 0 is any positive constant arnf
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denotes the adjoint @i
To solve the (2), Byrne4] proposed the CQ algorithm
which generates a sequer(eg) by

X1 = Pe(I — yA" (I — Po)A)x, ke N, 3)

wherey € (0,2/A) with A being the spectral radius of the
operatorA*A.

2 Main Results

In the sequel, we will focus our attention on the following
implicit feasibility null-point problem

find x* € T~1(0) such thatAx* € C(x*), (4)

whereA: H; — Hy is a bounded linear operatdr,: H; —
H; a maximal monotone operator ad H; — 212 is a
set-valed map with closed convex values.

Fact 1. If T is strongly monotone with constant, then
(see for examplel]0])

135 () = Iy ()| < [x=yll, vxy.

1+aA

Fact 2.1t is well-known, see for examplé.]l], that if Cis a
closed convex set, thekf' (I — Rz)A is an inverse strongly
monotone operator, namely

(A (1 — Po)Ax— A"(1 — Ro) Ayx—y)
> ||A1||2”A*<' —R)AX— A" (1 - Ro) Ay

and thusA*(I — Pc)Ais Lipschitz with constanfA||2.

Fact 3.1t is easy to see that ¥ solves (4), thex* verifies
the following fixed-point problem

X" =33, (X" = YA* (I = Rojxe) JAX).

Fact 4. x* solves (4) if, and only if,x* verifies the
following fixed-point formulation

X" = 33, (X" = YA* (I = Rojxe) JAX).

It is easy to see that if* solves (4), then it also satisfies
the fixed-point problem. Conversely, assume thxat
verifies the fixed-point problem. We then get the
following, by using the definition of the resolvent
operator

X — YA (I = Poe) )AX € X+ AT X
= —V//\kA*(| — Pc(x*)))A)(k eTX.
By virtue of the monotonicity off, we can write
Y+ V/AA" (I =P JAX, X" —X) <0VXeD(T),Vye Tx
On the other hand, by Fact 3, we have
y/)\k<A)€< — PC(X*)A)é,V— PC(X*)Af> <0We C(X*)

Adding up the last two inequalities, we get
<ya X" _X>
—|—V//\k<AX* — Pc<X*)Af,Af — l:)c(X*)A)(k +V— AX> <0
Yv e C(x"),vx e D(T).
It turns out that
|AX" — Pexe) AX||?
< (AX = Ppe) AX, AX = V) + Ak / (Y, X = X7).
Thus substitutingx® for x and Ax* for v in the last
inequality, we obtain
|AX — Pex)AX'[|2 = 0, henceAx" = P AX" € C(X").

The fixed-point formulation reduces 16 = JATk(x*), thus

x* € T~10).

To solve (4), we suggest the use of the following
algorithm:
Algorithm  (IFNA):
Xo € H1 be arbitrary.
Iterative step

Xep1 = I3, (X — VA" (1 = P JAX), ke N,

Initialization: Let Ag > 0 and

(®)

wherevy and will be defined in the sequel.

We are now in a position to prove our convergence
result.

Theorem1. Given a bounded linear operator
A: H; — Ha, Hy, Hy two Hilbert spaces, THy — 22 is

a a-strongly monotone set-valued operator and
C: H; — 22 is a set-valued mapping with closed convex
values. If

IPeyz— P Zll < BlIx—yll,¥x.y.z, (6)

where B > 0 is a constant, then any sequencg)
generated by the algorithm (5) strongly converges to the
unique solution of (4) provided that

1

Beloland 0< Ay < ———————. @
0.4 ya[AT(AT+B)
Proof. Set vy := %QKM and letx* be the solution to (4),

then by Fact 3, we have = JJ (X' — yA*(I —Rox))AX').
By Facts 1 and 2, we know thdjk is a contraction with

constantvx andA* (I — R-)A is Lipschitz continuous with
constant|A||2. Therefore, we successively have

(X1 — x|

197, 0% — VA" (I = R ) A%)

—J (X = YA (I = Pege) JAX )|

Vi — X" — V(A" (I — Rey) ) A% — A" (I — Re ey )AX) ||
Vic([ X — X7
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FYIA (= Pe ) A% — A" (I = Repg ) ) AX|| < VR(L+ 2y AlIB) X — x|
+ [JAT(1 = R JAX = A (1 = Regx) )AX)) 1) —Y(2/IAIZ = VA (I = Peg) ) A%
< k(I3 =X+ VLA 3= X[+ [AYB I =X )1) —A (1 = Pepe) JAX 2,

< (1 A All|Ix — x*

< w3 y(IAL+B)TIATI I Ak was chosen judiciously such that
A« was chosen judiciously such th@t= v (1+ y(||A||+ 6 :=VZ(1+2yB||Al|) €]0,1][. The latter assures the strong
B)) €]0,1]. The latter assures the strong convergence ofonvergence of(x) to x* the unique solution of (4).

(x¢) to x* the unique solution of (2.4).0 Moreover, we have
Now, we propose a second convergence resullt. kIIm VKIA™ (I = Pe) ) A% — A" (I = Pepe) )JAX || = 0.
— oo

Theorem 2. Given a bounded linear operator prom which we infer, if in addition we assume that

. ; - Hy i
A:Hy — Hz,I H1,Hz two Hilbert spacl:es(,j'[ Hy — 272 is . infi A > 0, that the sequendé” (I — R, )AX() strongly
a a-strongly monotone set-valued operator an converges taV (I — Rse)JAX. D

C: H; — 22 is a set-valued mapping with closed convex

values. If It is worth mentioning that we can develop the same
analysis for the following implicit feasibility fixed-poin

HPC(X)Z_ PC(y)Z” < BHX_ y”?VXy Y,Z, prob|em

then any sequencexc) generated by the algorithm (5) find x* € FixP such thatAx" € C(x"), 9)
strongly converges to the unique solution of (4), provided

that whereP : H, — Hy is ak-contraction, by considering the

following algorithm

1
B0 0< A< —1+ /14 2yB[A]) (®) Algorithm:
Initialization: Let X € H1 be arbitrary.
and 0 2/||A||2 Iterative step
<y< )
) X1 = P(Xic — YA (I — Po(x ) JAX), K€ N. (10)
. a * H
Proof. Setvy 1= 55 and seix” be the solution to (4),  Eojiowing the same lines of the proof of the above

thend; (x*—yA*(I —Re(e))AX =x". By Facts Land 2,we  Theorem, we obtain
T . . i
know that‘])\k Is a contraction with constam andA*(l Proposition 1. Given a bounded linear operator

Pc)Als inverse strongly monotone with constanmf|A|®. A H, s Hy, Hi,H, are two Hilbert spaces, PH, — 2H2
Therefore, we successively have a k-contraction and C H; — 2™ a set-valued mapping
with closed convex values. If

_wF 12
e =1 IPegz—Pe2l < BIx—yl, 7.2
(|93, (% — YA (I — Pe(x) ) A%)
— 38 (¢ = YA (1 = R JAX)

then any sequencey) generated by the algorithm (10)
strongly converges to the unique solution of (9), provided

< VE|Ix— X' = VA" (1 = Py A% — A (1 = R JAX) |2 that 1K)
2 * 12 - J
= villx x| OV < KTAITAI + B)
—2(A* (I = Py ) ) A% — A% (1 — Prge) JAX, X — X
y<* ( txo) . ( toc) ) Following the same lines of the proof of the above
+ VIIA (1 = Peg ) A% — A" (I = P JAX'[|2) Theorem, we obtain

_ _ 2_ (O
= Vil =X7I1° = 2¢(A"(1 = R A% Proposition 2. Given a bounded linear operator

—A(I = Py JAX , % — X*) A: Hi — Hy, Hi,H, are two Hilbert spaces, PH, — 212
—2y(A"(I — PC(XK))A)(k —A (I — qun)A)(k,Xk —x") a k-contraction and C H; — 2™ a set-valued mapping
. . 2 with closed convex values. If

FVP{|AT (1 = P ) A% — A" (1 = Roper) )AX %)

< V2(IIx— X 17 = 2/ IIAPIIA" (1 = P ) A% IPeyz—Feyzll < Blx=yIl.¥x.,2
—A (1 = Poge))AX|2 then any sequence) generated by the algorithm (10)
L2y1|A Bl % —X*HZ n VZHA*(' — R A% strongly converge)s to the unique solution of (9), provided
A P )AX ) that0 < < sarays-
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Remark We would like to emphasize that our results can
be extended to the case= Ty + T, whereT; is a-strongly
monotone andy is 8-Lipschitz continuous. Note that in
the case the main operafbris not necessarily monotone.
In this setting, we introduce the following algorithm

X1 = I3 (4 — YA (1 = P JA% — AcTaxe), k€ N.(11)

By replacing, for example in Theorem 2, the assumption
T strongly monotone by the hypothese$; is an
a-strongly monotone andT, is an 6-Lipschitz
continuous, and the condition on the parametgrdy

0 < M < “AAIEIAN+/TPTRPEANE g

0
obtain, by adapting the proof of Theorem 1, the strong

convergence of the sequence generated by (11) to the

unique solution of (4). Indeed in this case we have
X2 =X < Vie((2+ VA B) Al 4 AkB) [|36 — X7

Remark.It is also worth mentioning, as the resolvent
cannot be computed in general in a closed-form, that we
can consider an approximate version of the initial
algorithm to take into account errors computation, more
precisely we can consider the following algorithm

Xier1 = I3, (X — VA" (I = Pogy ) )JAX) + &, k€ N.

Itis easily seen, under the same assumption as in Theorem

2.1 with the condition or{Ax) replaced byAx > A, that
(x¢) still strongly converges to the solution of (2.4) as long

as
aA

Iim g=0and < y < ————.
“ (Al +B)IIA]

k400

Indeed, in this case, we have
X1 =X < Oklxi— X | + &,

with

o = W1+ V(A +B)IIAID

<o: L+ y(IAl+B)IIAI-

T 1+Aa

It turns out that

n .
i1 =X [ < 0™ Hxo—x'[[ + 3 0™ e,
=1

and the result follows thanks to the well-known Hardy-
Cesaro Theorem on the convolution of real sequences.

3 Applications

Now, we consider the following special cases:

1.Implicit feasibility minimization problem.
Let ¢ : HL — R be a lower semicontinuous convex
function by settingT = d¢ in (4), we obtain the

following Quasi Split Minimization Problem
(QSMP):
find xX* = argmimp such thatAx" € C(x") (12)

and (5) reduces to
X1 = Proxy, o (X — YA" (I — Poix ) )JA%), k€ N, (13)

where prox), (x) := argmin{@(y) + %Hx— y|I?} is
the proximal mapping of. The assumption of strong
monotonicity of d¢ is equivalent to the strong
convexity of .

2 Implicit feasibility Saddle-point problem.

Let X,Y be two Hilbert spaces, a function
L: X xY — RU{—,+o} is convex-concave if it is
convex in the variable and concave in the variabje

To such a function, Rockafellar associated the
operatorT,, defined by

T|_ = 01L X 02(7L),

whered; (resp.d») stands for the subdifferential af
with respect to the first (resp. the second) variable.
T. is a maximal monotone operator if and onlyLif
is closed and proper in Rockafellar sense (s&€)) [
Moreover, it is well known thatx*,y*) is a saddle-
point of L, namely

LO¢,Y) S LOC,Y) € LY, V(xY) €X XY

if and only if the following monotone variational
inclusion holds trué€0,0) e T, (X*,y*).

Now, if in the (4) we seH; = X1 x Y1, Hy = Xo x Yo,

T = T with L be a proper closed convex-concave
function, then we obtain the following Quasi Split
Minimax Problem (QSMMP):

Find

(X", y") = argminmai(x,y)eHlL(K y);

AX,Y") € CIXL YY), (14)
and (5) reduces to
(X1 Yier1) = Proxy, (X Yio) (X, Yio)
—YA" (I = Ry AN Vi), KE N, (15)

where proxy, L (x,y)
argminmay {L(u,v)) + 2 [x— uf2 — 2 |y —v|?}.
The assumption of strong monotonicity & is
equivalent to the strong convexity bfwith respect to
the first variable and its strong concavity with respect
to the second one.

3.Implicit feasibility equilibrium problem.
Having in mind the connection between monotone
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operators and equilibrium functions, we may consider4 Conclusion

the following problem
Ar(X) 20,
with A defined as follows

(16)

veAs(X) & F(xy) +(,x—Yy) >0, Vye D,

D is a closed convex set aridl: D x D — R belongs
in the class of bifunction§ verifying the following
usual conditions:

(A1) F(x,x) =0forallx,y € D;

(A2) Fismonotone,ie., F(xy) + F(y,x) <
0 for allx,y € D;

(A3) limsupcF(tz + (1 — txy <
F(x,y) for anyx,y,z€ D;

(A4) for eachx S D,y —

F(x,y) is convex and lower-semicontinuous.

It is well-known see [7] thafg is maximal monotone
and that the associated resolvent operdjorH — D
is defined by

1
T (x) = {zeD: F(zy)+5(y-22-x >0, vyeD}.

If in the (4) we takeT = A a monotone bifunction,

then we obtain the following Quasi Split Equilibrium

Problem (QSEP):
Find

X" € D;F(X",x) > 0Vx" € D such thalAx" € C(x"),(17)
and (5) is nothing but

Xiep1 = Th (% — YA"(I = Rop )A%), k€ N. (18)

It is well known that in this case, the strong

monotonicity ofAg is equivalent to

F(xy)+F(y,x) < afx—y|?forallx.y e D.

4 A special form of the implicit set.
In many applications (see for exampl@])[ the
set-valued mapping has the for@(x) = K + /(x),
where K is a fixed closed subset iH, and

Y : Hy — Hy is a single-valued mapping. In this case,

assumption o€ is satisfied provided the mapping

is Lipschitz continuous. Indeed, it is not hard (using [9]

the relation below) to show that, iy is k-Lipschitz
then assumption (6) satisfies with= 2k. Using the
well known relation
X = Ppy(U) X —v =P (u—V),
Algorithm can be rewritten in the simpler form
Xer1 = I (X — VA" (A% — (%)

P (A% — (X)), ke N. (19)

Only the existence of solutions to a implicit split
feasibility problem has been considered % [Also, only
some algorithms are mentioned! To the best of our
knowledge, nothing has been done concerning the
construction of solutions in this case. Inspired by this
work and to overcome the difficulties that arise in
applying the Banach principle, we proposed an implicit
feasibility null-point problem and study the convergence
of a related algorithm. Applications to some applied
nonlinear analysis problems are also provided. The
techniques used in solving our problem are strongly based
on the resolvent mapping which depends on a parameter.
The latter allows more flexibility and an appropriate
choice amounts to assume mild assumptions on the data.
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