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Abstract: Inspired by the very recent work by Noor and Noor [9] and given a closed convex set-valued mappingC, we propose a
split algorithm for solving the problem of finding an elementx∗ which is a zero of a given maximal monotone operatorT such that
its image,Ax∗, under a linear operator,A, is in a closed convex setC(x∗). Then, we present two strong convergence results and state
some examples as applications. The ideas and techniques of this paper may motivate the readers to discover some novel and innovative
applications of the implicit split feasibility problems in various branches of pure and applied sciences.
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1 Introduction and preliminaries

Throughout,H is a Hilbert space,〈·, ·〉 denotes the inner
product and‖ · ‖ stands for the corresponding norm. The
split feasibility problem (SFP) has received much
attention due to its applications in image denoising, signal
processing and image reconstruction, with particular
progress in intensity-modulated therapy. For a complete
and exhaustive study on algorithms for solving convex
feasibility problem, including comments about their
applications and an excellent bibliography see, for
example [1] and for split convex feasibility problem see,
for instance, the excellent paper [5] and the references
therein. Inspired by the idea developed in [9], our interest
in this paper is on the study of the convergence of an
algorithm for solving a Implicit Feasibility Null-point
Problem, i.e., the case where the constrained set, instead
of being fixed, is a set-valued mapping. Besides being a
more general case, it also has many applications, see for
example [2]). Note that by takingA = I , the identity
mapping andT = ∂φ , the subdifferential of a strongly
convex proper lower semi-continuous functionφ ,
problem (4) reduces to finding a common element in
argminφ and the implicit convex setC(x). To be in a
position to apply the fixed-point Banach principle and by
observing that the fixed-point reformulation of the

problem considered in [9] involves the projection operator
over convex sets and that the techniques are strongly
based on its properties which do not depend on any
parameter in contrast to the resolvent and proximal
mappings. In this paper, we introduce and consider a new
implicit feasibility null-point problems. We suggest and
analyze some split algorithms for solving this new
feasibility problem. Strong convergence of the proposed
algorithm is discussed under some suitable conditions.
Some applications of this new problem are given.
Comparison of the proposed methods with other
techniques is an interesting problem for future research.

To begin with, let us recall that the split feasibility
problem (SFP) is to find a point

x∈C such thatAx∈ Q, (1)

whereC is a closed convex subset of a Hilbert spaceH1,
Q is a closed convex subset of a Hilbert spaceH2, and
A : H1 → H2 is a bounded linear operator.
Assuming that the (SFP) has a solution, it is no hard to see
thatx∈C solves(1) if and only if it solves to fixed-point
equation

x= PC
(

I − γA∗(I −PQ)A
)

x, x∈C, (2)

wherePC and PQ are the (orthogonal) projection ontoC
andQ, respectively,γ > 0 is any positive constant andA∗
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denotes the adjoint ofA.
To solve the (2), Byrne [4] proposed the CQ algorithm
which generates a sequence(xk) by

xk+1 = PC
(

I − γA∗(I −PQ)A
)

xk, k∈ IN, (3)

whereγ ∈ (0,2/λ ) with λ being the spectral radius of the
operatorA∗A.

2 Main Results

In the sequel, we will focus our attention on the following
implicit feasibility null-point problem

find x∗ ∈ T−1(0) such thatAx∗ ∈C(x∗), (4)

whereA : H1 → H2 is a bounded linear operator,T : H1 →
H1 a maximal monotone operator andC : H1 → 2H2 is a
set-valed map with closed convex values.

Fact 1. If T is strongly monotone with constantα, then
(see for example [10])

‖JT
λ (x)−JT

λ (y)‖ ≤
1

1+αλ
‖x−y‖, ∀x,y.

Fact 2.It is well-known, see for example [11], that ifC is a
closed convex set, thenA∗(I −PC)A is an inverse strongly
monotone operator, namely

〈A∗(I −PC)Ax−A∗(I −PC)Ay,x−y〉

≥ 1
‖A‖2‖A∗(I −PC)Ax−A∗(I −PC)Ay‖

and thusA∗(I −PC)A is Lipschitz with constant‖A‖2.

Fact 3.It is easy to see that ifx∗ solves (4), thenx∗ verifies
the following fixed-point problem

x∗ = JT
λk
(x∗− γA∗(I −PC(x∗))Ax∗).

Fact 4. x∗ solves (4) if, and only if,x∗ verifies the

following fixed-point formulation

x∗ = JT
λk
(x∗− γA∗(I −PC(x∗))Ax∗).

It is easy to see that ifx∗ solves (4), then it also satisfies
the fixed-point problem. Conversely, assume thatx∗

verifies the fixed-point problem. We then get the
following, by using the definition of the resolvent
operator

x∗− γA∗(I −PC(x∗))Ax∗ ∈ x∗+λkTx∗

⇔−γ/λkA
∗(I −PC(x∗)))Ax∗ ∈ Tx∗.

By virtue of the monotonicity ofT, we can write

〈y+γ/λkA
∗(I−PC(x∗))Ax∗,x∗−x〉≤ 0∀x∈D(T),∀y∈Tx.

On the other hand, by Fact 3, we have

γ/λk〈Ax∗−PC(x∗)Ax∗,v−PC(x∗)Ax∗〉 ≤ 0 ∀v∈C(x∗).

Adding up the last two inequalities, we get

〈y,x∗−x〉
+γ/λk〈Ax∗−PC(x∗)Ax∗,Ax∗−PC(x∗)Ax∗+v−Ax〉 ≤ 0

∀v∈C(x∗),∀x∈ D(T).

It turns out that

‖Ax∗−PC(x∗)Ax∗‖2

≤ 〈Ax∗−PC(x∗)Ax∗,Ax−v〉+λk/γ〈y,x−x∗〉.
Thus substitutingx∗ for x and Ax∗ for v in the last
inequality, we obtain

‖Ax∗−PC(x∗)Ax∗‖2 = 0, henceAx∗ = PC(x∗)Ax∗ ∈C(x∗).

The fixed-point formulation reduces tox∗ = JT
λk
(x∗), thus

x∗ ∈ T−1(0).

To solve (4), we suggest the use of the following
algorithm:
Algorithm (IFNA): Initialization: Let λ0 > 0 and
x0 ∈ H1 be arbitrary.
Iterative step:

xk+1 = JT
λk
(xk− γA∗(I −PC(xk))Axk), k∈ IN, (5)

whereνk andβ will be defined in the sequel.

We are now in a position to prove our convergence
result.

Theorem 1. Given a bounded linear operator
A : H1 → H2, H1,H2 two Hilbert spaces, T: H2 → 2H2 is
a α-strongly monotone set-valued operator and
C : H1 → 2H2 is a set-valued mapping with closed convex
values. If

‖PC(x)z−PC(y)z‖ ≤ β‖x−y‖,∀x,y,z, (6)

where β > 0 is a constant, then any sequence(xk)
generated by the algorithm (5) strongly converges to the
unique solution of (4) provided that

β ∈]0,1[ and 0< λk <
1

γα‖A‖(‖A‖+β )
. (7)

Proof. Set νk := αλk
1+αλk

and letx∗ be the solution to (4),

then by Fact 3, we havex∗ = JT
λk
(x∗− γA∗(I −PC(x∗))Ax∗).

By Facts 1 and 2, we know thatJT
λk

is a contraction with
constantνk andA∗(I −PC)A is Lipschitz continuous with
constant‖A‖2. Therefore, we successively have

‖xk+1−x∗‖
= ‖JT

λk
(xk− γA∗(I −PC(xk))Axk)

−JT
λk
(x∗− γA∗(I −PC(x∗))Ax∗)‖

≤ νk‖xk−x∗− γ(A∗(I −PC(xk))Axk−A∗(I −PC(x∗))Ax∗)‖
≤ νk(‖xk−x∗‖
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+γ(‖A∗(I −PC(xk)
)Axk−A∗(I −PC(xk)

)Ax∗‖
+ ‖A∗(I −PC(xk))Ax∗−A∗(I −PC(x∗))Ax∗))‖)
≤ νk(‖xk−x∗‖+ γ(‖A‖2‖xk−x∗‖+‖A‖β‖xk−x∗‖))
≤ νk(1+ γ(‖A‖+β ))‖A‖‖xk−x∗‖,

λk was chosen judiciously such thatθ := νk(1+ γ(‖A‖+
β )) ∈]0,1[. The latter assures the strong convergence of
(xk) to x∗ the unique solution of (2.4).⊓⊔

Now, we propose a second convergence result.

Theorem 2. Given a bounded linear operator
A : H1 → H2, H1,H2 two Hilbert spaces, T: H2 → 2H2 is
a α-strongly monotone set-valued operator and
C : H1 → 2H2 is a set-valued mapping with closed convex
values. If

‖PC(x)z−PC(y)z‖ ≤ β‖x−y‖,∀x,y,z,

then any sequence(xk) generated by the algorithm (5)
strongly converges to the unique solution of (4), provided
that

β ∈]0,1[, 0< λk <
1

α(−1+
√

1+2γβ‖A‖)
(8)

and
0< γ < 2/‖A‖2.

Proof. Setνk := αλk
1+αλk

and setx∗ be the solution to (4),

thenJT
λk
(x∗−γA∗(I−PC(x∗))Ax∗ = x∗. By Facts 1 and 2, we

know thatJT
λk

is a contraction with constantνk andA∗(I −
PC)A is inverse strongly monotone with constant 1/‖A‖2.
Therefore, we successively have

‖xk+1−x∗‖2

= ‖JT
λk
(xk− γA∗(I −PC(xk))Axk)

−JT
λk
(x∗− γA∗(I −PC(x∗))Ax∗)‖2

≤ ν2
k‖xk−x∗− γ(A∗(I −PC(xk))Axk−A∗(I −PC(x∗))Ax∗)‖2

= ν2
k (‖xk−x∗‖2

−2γ〈A∗(I −PC(xk)
)Axk−A∗(I −PC(x∗))Ax∗,xk−x∗〉

+ γ2‖A∗(I −PC(xk)
)Axk−A∗(I −PC(x∗))Ax∗‖2)

= ν2
k (‖xk−x∗‖2−2γ〈A∗(I −PC(xk))Axk

−A∗(I −PC(xk)
)Ax∗,xk−x∗〉

−2γ〈A∗(I −PC(xk)
)Ax∗−A∗(I −PC(x∗))Ax∗,xk−x∗〉

+γ2‖A∗(I −PC(xk))Axk−A∗(I −PC(x∗))Ax∗‖2)

≤ ν2
k (‖xk−x∗‖2−2γ/‖A‖2‖A∗(I −PC(xk)

)Axk

−A∗(I −PC(x∗))Ax∗‖2

+2γ‖A‖β‖xk−x∗‖2+ γ2‖A∗(I −PC(xk))Axk

−A∗(I −PC(x∗))Ax∗‖2)

≤ ν2
k (1+2γ‖A‖β )‖xk−x∗‖2

−γ(2/‖A‖2− γ)ν2
k‖A∗(I −PC(xk)

)Axk

−A∗(I −PC(x∗))Ax∗‖2,

λk was chosen judiciously such that
θ := ν2

k (1+2γβ‖A‖) ∈]0,1[. The latter assures the strong
convergence of(xk) to x∗ the unique solution of (4).
Moreover, we have

lim
k→+∞

νk‖A∗(I −PC(xk))Axk−A∗(I −PC(x∗))Ax∗‖= 0.

From which we infer, if in addition we assume that
infk λk > 0, that the sequence(A∗(I −PC(xk)

)Axk) strongly
converges toA∗(I −PC(x∗))Ax∗. ⊓⊔

It is worth mentioning that we can develop the same
analysis for the following implicit feasibility fixed-point
problem

find x∗ ∈ FixP such thatAx∗ ∈C(x∗), (9)

whereP : H2 → H2 is aκ-contraction, by considering the
following algorithm

Algorithm:
Initialization: Let x0 ∈ H1 be arbitrary.
Iterative step:

xk+1 = P(xk− γA∗(I −PC(xk)
)Axk), k∈ IN. (10)

Following the same lines of the proof of the above
Theorem, we obtain

Proposition 1. Given a bounded linear operator
A : H1 → H2, H1,H2 are two Hilbert spaces, P: H2 → 2H2

a κ-contraction and C: H1 → 2H2 a set-valued mapping
with closed convex values. If

‖PC(x)z−PC(y)z‖ ≤ β‖x−y‖,∀x,y,z,

then any sequence(xk) generated by the algorithm (10)
strongly converges to the unique solution of (9), provided
that

0< γ <
(1−κ)

κ‖A‖(‖A‖+β )
.

Following the same lines of the proof of the above
Theorem, we obtain

Proposition 2. Given a bounded linear operator
A : H1 → H2, H1,H2 are two Hilbert spaces, P: H2 → 2H2

a κ-contraction and C: H1 → 2H2 a set-valued mapping
with closed convex values. If

‖PC(x)z−PC(y)z‖ ≤ β‖x−y‖,∀x,y,z,

then any sequence(xk) generated by the algorithm (10)
strongly converges to the unique solution of (9), provided

that0< γ < (1−κ2)
κ2‖A‖β .
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Remark.We would like to emphasize that our results can
be extended to the caseT =T1+T2, whereT1 is α-strongly
monotone andT2 is θ -Lipschitz continuous. Note that in
the case the main operatorT is not necessarily monotone.
In this setting, we introduce the following algorithm

xk+1 = JT1
λk
(xk− γA∗(I −PC(xk)

)Axk−λkT2xk), k∈ IN. (11)

By replacing, for example in Theorem 2, the assumption
T strongly monotone by the hypotheses:T1 is an
α-strongly monotone and T2 is an θ -Lipschitz
continuous, and the condition on the parametersλk by

0 < λk <
−αγ‖A‖(β+‖A‖)+

√
α2γ2‖A‖2(β+‖A‖)2+4θ
2θ , we

obtain, by adapting the proof of Theorem 1, the strong
convergence of the sequence generated by (11) to the
unique solution of (4). Indeed in this case we have

‖xk+1−x∗‖ ≤ νk((1+ γ(‖A‖+β )‖A‖+λkθ)‖xk−x∗‖.

Remark. It is also worth mentioning, as the resolvent
cannot be computed in general in a closed-form, that we
can consider an approximate version of the initial
algorithm to take into account errors computation, more
precisely we can consider the following algorithm

xk+1 = JT
λk
(xk− γA∗(I −PC(xk)

)Axk)+ εk, k∈ IN.

It is easily seen, under the same assumption as in Theorem
2.1 with the condition on(λk) replaced byλk ≥ λ , that
(xk) still strongly converges to the solution of (2.4) as long
as

lim
k→+∞

εk = 0 and 0< γ <
αλ

(‖A‖+β )‖A‖ .

Indeed, in this case, we have

‖xk+1−x∗‖ ≤ σk‖xk−x∗‖+ εk,

with

σk := νk(1+ γ(‖A‖+β )‖A‖)

≤ σ :=
1

1+λα
(1+ γ(‖A‖+β ))‖A‖.

It turns out that

‖xk+1−x∗‖ ≤ σn+1‖x0−x∗‖+
n

∑
j=1

σn− jε j ,

and the result follows thanks to the well-known Hardy-
Cesaro Theorem on the convolution of real sequences.

3 Applications

Now, we consider the following special cases:

1.Implicit feasibility minimization problem.
Let φ : H1 → IR be a lower semicontinuous convex
function by settingT = ∂φ in (4), we obtain the
following Quasi Split Minimization Problem
(QSMP):

find x∗ = argmimφ such thatAx∗ ∈C(x∗) (12)

and (5) reduces to

xk+1 = proxλkφ (xk− γA∗(I −PC(xk))Axk), k∈ IN, (13)

where proxλkφ (x) := argminy{φ(y) + 1
2λ ‖x− y‖2} is

the proximal mapping ofφ . The assumption of strong
monotonicity of ∂φ is equivalent to the strong
convexity ofφ .

2.Implicit feasibility Saddle-point problem.
Let X,Y be two Hilbert spaces, a function
L : X×Y → IR∪{−∞,+∞} is convex-concave if it is
convex in the variablex and concave in the variabley.
To such a function, Rockafellar associated the
operatorTL, defined by

TL = ∂1L×∂2(−L),

where∂1 (resp.∂2) stands for the subdifferential ofL
with respect to the first (resp. the second) variable.
TL is a maximal monotone operator if and only ifL
is closed and proper in Rockafellar sense (see, [10]).
Moreover, it is well known that(x∗,y∗) is a saddle-
point ofL, namely

L(x∗,y)≤ L(x∗,y∗)≤ L(x,y∗), ∀(x,y) ∈ X×Y

if and only if the following monotone variational
inclusion holds true(0,0) ∈ TL(x∗,y∗).
Now, if in the (4) we setH1 = X1×Y1, H2 = X2×Y2,
T = TL with L be a proper closed convex-concave
function, then we obtain the following Quasi Split
Minimax Problem (QSMMP):
Find

(x∗,y∗) = argminmax(x,y)∈H1
L(x,y);

A(x∗,y∗) ∈C(x∗,y∗), (14)

and (5) reduces to

(xk+1,yk+1) = proxλkL(xk,yk)((xk,yk)

−γA∗(I −PC(xk,yk
)A(xk,yk)), k∈ IN, (15)

where proxλkL(x,y) :=
argminmax(u,v){L(u,v))+ 1

2λ ‖x− u‖2 − 1
2λ ‖y− v‖2}.

The assumption of strong monotonicity ofTL is
equivalent to the strong convexity ofL with respect to
the first variable and its strong concavity with respect
to the second one.

3.Implicit feasibility equilibrium problem.
Having in mind the connection between monotone
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operators and equilibrium functions, we may consider
the following problem

AF(x) ∋ 0, (16)

with AF defined as follows

v∈ AF(x)⇔ F(x,y)+ 〈v,x−y〉 ≥ 0, ∀y∈ D,

D is a closed convex set andF : D×D → IR belongs
in the class of bifunctionsF verifying the following
usual conditions:

(A1) F(x,x) = 0 for all x,y∈ D;
(A2) F is monotone, i.e., F(x,y) + F(y,x) ≤
0 for all x,y∈ D;
(A3) limsupt↓0F(tz + (1 − t)x,y) ≤
F(x,y) for anyx,y,z∈ D;
(A4) for eachx ∈ D,y →
F(x,y) is convex and lower-semicontinuous.

It is well-known see [7] thatAF is maximal monotone
and that the associated resolvent operatorTλ : H → D
is defined by

TF
λ (x)= {z∈D : F(z,y)+

1
λ
〈y−z,z−x〉≥ 0, ∀y∈D}.

If in the (4) we takeT = AF a monotone bifunction,
then we obtain the following Quasi Split Equilibrium
Problem (QSEP):
Find

x∗ ∈D;F(x∗,x)≥ 0∀x∗ ∈D such thatAx∗ ∈C(x∗),(17)

and (5) is nothing but

xk+1 = TF
λk
(xk− γA∗(I −PC(xk))Axk), k∈ IN. (18)

It is well known that in this case, the strong
monotonicity ofAF is equivalent to

F(x,y)+F(y,x)≤ α‖x−y‖2 for all x,y∈ D.

4.A special form of the implicit set.
In many applications (see for example [2]) the
set-valued mapping has the formC(x) = K + ψ(x),
where K is a fixed closed subset inH2 and
ψ : H1 → H2 is a single-valued mapping. In this case,
assumption onC is satisfied provided the mappingψ
is Lipschitz continuous. Indeed, it is not hard (using
the relation below) to show that, ifψ is κ-Lipschitz
then assumption (6) satisfies withβ = 2κ . Using the
well known relation

x= PK+v(u)⇔ x−v= PK(u−v),

Algorithm can be rewritten in the simpler form

xk+1 = JT
λk
(xk− γkA

∗(Axk−ψ(xk)

+PK(Axk−ψ(xk))), k∈ IN. (19)

4 Conclusion

Only the existence of solutions to a implicit split
feasibility problem has been considered in [9]. Also, only
some algorithms are mentioned! To the best of our
knowledge, nothing has been done concerning the
construction of solutions in this case. Inspired by this
work and to overcome the difficulties that arise in
applying the Banach principle, we proposed an implicit
feasibility null-point problem and study the convergence
of a related algorithm. Applications to some applied
nonlinear analysis problems are also provided. The
techniques used in solving our problem are strongly based
on the resolvent mapping which depends on a parameter.
The latter allows more flexibility and an appropriate
choice amounts to assume mild assumptions on the data.
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