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1 Introduction

Gauss quadrature rules represent an efficient numerical
technique to compute definite integrals when the domain
of integration is bounded or not. This justifies the
continued interest to provide packages of efficient
routines implementing the computation of the procedure
to generate the parameters (i.e. weights and nodes) from
which gaussian formulas depend (see [4], [5] and the
references cited therein). In this paper we propose new
quadrature formulas that depend on the same parameters
typical of the classical gaussian formulas, so that the
previous packages mentioned in the literature can be
efficiently used for their computation. These new
formulas consist essentially in a truncation of the classical
gaussian formulas made omitting those nodes of the
original formulas that are larger than a certain threshold.
When the domain of integration is bounded, the proposed
formulas, though converging, seem generally less
accurate than the original gaussian formulas. However,
they are also competitive with the latter ones with respect
to the order of convergence when the integrand has a
particular behavior, as well as being advantageous
requiring a lower computational effort. In addition, the
new formulas may be useful in other circumstances, such

as when the integrand is a function taking significant
values only in a very small part of the integration domain.
In the case where the domain of integration is unbounded,
the truncated formulas have a further advantage. In fact,
we can show an error estimate that has already been
proven for the original gaussian formulas but with more
restrictive assumptions on the integrand [1]. The results in
[1] and [6]–[11] for a related problem are specified and
generalized here and in analogy with them, it turns out
that a proper choice of the truncation point may result in
an algorithm with smaller computational cost but
identical or better error bounds.

Since the truncated formulas converge when the
corresponding gaussian formulas converge, they may be
profitably used as quadrature scheme of the Nyström
method for solving integral equations. In fact, it will be
possible to establish the stability, and thus the
convergence, of the method which is characterized by a
matrix of order less than that one of the matrix
corresponding to the use of the original gaussian
formulas. The investigation of this point has been
extensively treated for truncated versions of the gaussian
formulas which are special cases of those presented in the
present paper (see [6]–[11]).

∗ Corresponding author e-mail:salvatore.cuomo@unina.it

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080502


2096 G. Criscuolo, S. Cuomo : A New Approach to the Quadrature Rules with...

The remaining part of the paper is organized as
follows. In Sections 2 and 3 we propose and discuss some
convergence properties of the truncated gaussian formulas
in the cases of bounded and unbounded domain of
integrations, respectively. Finally, in Section 4, we present
some numerical results and we give some computational
considerations.

2 Computation of integrals on bounded
interval

To compute the integral

I( f wα ,β ) =
∫ 1

−1
f (x)wα ,β (x)dx,

where wα ,β (x) = (1 − x)α(1 + x)β , α,β > −1, we
consider the classical Gauss–Jacobi quadrature rule

I( f wα ,β ) = IGJ
n ( f ;wα ,β )+RGJ

n ( f ;wα ,β ) =
n

∑
k=1

λ α ,β
n,k f (xα ,β

n,k )+RGJ
n ( f ;wα ,β ),

whereλ α ,β
n,k , k= 1, . . . ,n are the Christoffel constants with

respect to the Jacobi weightwα ,β , andxα ,β
n,k , k= 1, . . . ,nare

the zeros of thenth Jacobi orthogonal polynomial which
we assume ordered in increasing order

−1< xα ,β
n,1 < xα ,β

n,2 < · · ·< xα ,β
n,n < 1.

Let {σn}n∈N such thatσn ≤ σn+1 andxα ,β
n,1 ≤ σn ≤ xα ,β

n,n .
We define the integercn = c(n) as

xα ,β
n,cn

≤ σn ≤ xα ,β
n,cn+1, cn ∈ {1,2, . . . ,n−1}. (1)

Consider the quadrature rule with gaussian weights and
nodes

I( f wα ,β ) = ÎGJ
n ( f ;wα ,β )+ R̂GJ

n ( f ;wα ,β ) =
cn

∑
k=1

λ α ,β
n,k f (xα ,β

n,k )+ R̂GJ
n ( f ;wα ,β ).

(2)

This formula has degree of exactness 0, however we
will show that, for particular choices of the sequence
{σn}n∈N and in particular assumptions about the
integrand f , it is convergent like the original
Gauss–Jacobi formula with the same order of
convergence, while having a lower computational cost. In
this regard the following theorem holds.

Theorem 1. Let | f (x)| ≤ K, x∈ [1− ε ,1], ε > 0, K ≥ 0.
Then, for sufficiently large n,

∣∣∣R̂GJ
n ( f ;wα ,β )

∣∣∣≤
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣+

C1(1−σn)
α+1 max

σn≤x≤1
| f (x)|,

where C1 is independent of n and f .

Proof. Sinceσn ∈ [1− ε ,1], for sufficiently largen, we
deduce

n

∑
k=cn+1

λ α ,β
n,k | f (xα ,β

n,k )| ≤ max
σn≤x≤1

| f (x)|
n

∑
k=cn+1

λ α ,β
n,k

≤ max
σn≤x≤1

| f (x)|
∫ 1

cn

(1−x)α(1+x)β dx

≤ max
σn≤x≤1

| f (x)|max{1,2β} (1−xα ,β
n,cn)

α+1

α +1

≤C1 max
σn≤x≤1

| f (x)|(1−σn)
α+1,

where we have used the Markov–Stietjes inequalities and
1−xα ,β

n,cn ∼ 1−σn
1. Then the assertion immediately follows

taking into account that

R̂GJ
n ( f ;wα ,β ) = RGJ

n ( f ;wα ,β )+
n

∑
k=cn+1

λ α ,β
n,k f (xα ,β

n,k ). (3)

⊔⊓
We observe that, excluding the choice of a sequence

{σn}n∈N definitively constant, having to be lim
n→∞

σn = 1, it

follows the convergence of the formula (2) equal to the
convergence of the Gauss–Jacobi formula which has,
however, a greater computational cost. About the order of
convergence, the choice of the sequence{σn}n∈N plays a
fundamental role. For example, iff (x) = (1−x)ν ,ν ∈ R+

then,
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣ ≤ const n−⌊ν⌋, where ⌊ν⌋ denotes

the integer part ofν , i.e. the largest integer less than or
equal to ν . On the other hand,
(1− σn)

α+1 max
σn≤x≤1

| f (x)| = (1− σn)
α+1+ν = n−α−1−ν ,

having chosenσn = 1− n−1. Therefore, formula (2) is
also competitive compared with the convergence order of
the ordinary Gauss–Jacobi formula.
A consequence of the previous theorem is the following

Corollary 1. Let σn = σ , n∈ N, |σ |< 1, and| f (x)| ≤ K,
x∈ [σ ,1], K ≥ 0. Then, for sufficiently large n,
∣∣∣R̂GJ

n ( f ;wα ,β )
∣∣∣≤
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣+C′

1 max
σ≤x≤1

| f (x)|,

where C′1 is independent of n and f .

The previous corollary concerns the choice of a
constant sequenceσn = σ , n∈ N, and it does not provide
a convergence result, i.e. such a choice of the sequence
does not lead to a convergent formula (2). However, when
f is significant with respect to the machine precision or to
the required accuracy only in[−1,σ ], |σ | < 1, such a
formula is of interest from a computational point of view.
The formula (2) can also be interpreted as a formula to
approximate the integral over the interval[−1,σn].
Indeed, the following convergence result holds.

1 If A andB are two expressions depending on some variables,
then we writeA∼ B if and only if |AB−1|±1 ≤ const uniformly
for the variables under consideration.
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Theorem 2. Let | f (x)| ≤ K, x∈ [1− ε ,1], ε > 0, K ≥ 0.
Then, for sufficiently large n,
∣∣∣∣∣

∫ σn

−1
f (x)wα ,β (x)dx−

cn

∑
k=1

λ α ,β
n,k f (xα ,β

n,k )

∣∣∣∣∣≤
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣+

C′′
1(1−σn)

α+1 max
σn≤x≤1

| f (x)|,

where C′′1 is independent of n and f .

Proof. This result follows immediately from
∣∣∣∣∣

∫ σn

−1
f (x)wα ,β (x)dx−

cn

∑
k=1

λ α ,β
n,k f (xα ,β

n,k )

∣∣∣∣∣≤
∣∣∣R̂GJ

n ( f ;wα ,β )
∣∣∣+

∣∣∣∣
∫ 1

σn

f (x)wα ,β (x)dx

∣∣∣∣≤
∣∣∣R̂GJ

n ( f ;wα ,β )
∣∣∣+

max
σn≤x≤1

| f (x)|max{1,2β} (1−σn)
α+1

α +1
,

and using the Theorem1 ⊔⊓
The previous results may be specified if the integrand

enjoys a particular monotony. In this regard, consider
following results.

Theorem 3. Let | f (x)|wα ,β (x) be not increasing in[1−
ε ,1], ε > 0. Then, for sufficiently large n,

∣∣∣R̂GJ
n ( f ;wα ,β )

∣∣∣≤
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣+

C2

{
‖ f wα ,β‖L1[σn,1]+

1
n
| f (σn)|wα+ 1

2 ,β+
1
2 (σn)

}
,

where C2 is independent of n and f .

Proof. Sinceσn ∈ [1−ε ,1], for sufficiently largen, in view
of the assumption onf , we have

n

∑
k=cn+1

λ α ,β
n,k | f (xα ,β

n,k )|= λ α ,β
n,cn+1| f (x

α ,β
n,cn+1)|+

n

∑
k=cn+2

λ α ,β
n,k | f (xα ,β

n,k )| ≤C2

{
1
n
| f (σn)|wα+ 1

2 ,β+
1
2 (σn)

+
n

∑
k=cn+2

(
xα ,β

n,k −xα ,β
n,k−1

)∣∣∣ f (xα ,β
n,k )

∣∣∣wα ,β (xα ,β
n,k )

}
≤

C2

{
1
n
| f (σn)|wα+ 1

2 ,β+
1
2 (σn)+‖ f wα ,β‖L1[σn,1]

}
,

where we have used

λ α ,β
n,k ∼ 1

n
(1−xα ,β

n,k )α+ 1
2 +(1+xα ,β

n,k )β+ 1
2 , k= 1, . . . ,n,

xα ,β
n,k −xα ,β

n,k−1 ∼
1
n
(1−xα ,β

n,k )
1
2 (1+xα ,β

n,k )
1
2 , k= 1, . . . ,n−1

(cfr. [13]), and wα ,β (xα ,β
n,cn+1) ∼ wα ,β (σn). Then the

assertion immediately follows from (3). ⊔⊓

Corollary 2. Let σn = σ , n ∈ N, |σ | < 1, and let
| f (x)|wα ,β (x) be not increasing in[σ ,1]. Then, for
sufficiently large n,

∣∣∣R̂GJ
n ( f ;wα ,β )

∣∣∣≤
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣+

C′
2

{
‖ f wα ,β‖L1[σ ,1]+

1
n
| f (σ)|wα+ 1

2 ,β+
1
2 (σ)

}
,

where C′2 is independent of n and f .

Theorem 4. Let | f (x)|wα ,β (x) be not increasing in[1−
ε ,1], ε > 0. Then, for sufficiently large n,

∣∣∣∣∣

∫ σn

−1
f (x)wα ,β (x)dx−

cn

∑
k=1

λ α ,β
n,k f (xα ,β

n,k )

∣∣∣∣∣≤
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣

+C′′
2

{
‖ f wα ,β‖L1[σn,1]+

1
n
| f (σn)|wα+ 1

2 ,β+
1
2 (σn)

}
,

where C′′2 is independent of n and f .

The previous theorems and corollaries are related to
formulas of the type (2) which consist of a truncation of
the Gauss–Jacobi formula at the nodes closest to the right
extreme of the integration interval. In this case, the use of
the truncation formula is of interest for functions that
have a particular behavior in a neighborhood of this
extreme. Same token can be constructed formulas that are
well suited to the same situations in a neighborhood at the
other extreme. Let{σ ′

n}n∈N such thatσ ′
n ≥ σ ′

n+1 and

xα ,β
n,1 ≤ σ ′

n ≤ xα ,β
n,n . We define the integerc′n = c′(n) as

xα ,β
n,c′n

≤ σ ′
n ≤ xα ,β

n,c′n+1, c′n ∈ {1,2, . . . ,n−1}.

Consider the quadrature rule with gaussian weights and
nodes

I( f wα ,β ) = ĨGJ
n ( f ;wα ,β )+ R̃GJ

n ( f ;wα ,β ) =
cn

∑
k=c′n+1

λ α ,β
n,k f (xα ,β

n,k )+ R̃GJ
n ( f ;wα ,β ),

where the integercn is defined in (1).
Regarding the latter formula may be for example set

the following convergence results of which we omit the
proof being quite similar to that of the Theorems1 and4.

Theorem 5. Let | f (x)| ≤ K, x∈ [−1,−1+ ε ]∪ [1− ε ,1],
ε > 0, K ≥ 0. Then, for sufficiently large n,

∣∣∣R̃GJ
n ( f ;wα ,β )

∣∣∣≤
∣∣∣RGJ

n ( f ;wα ,β )
∣∣∣+

C3

{
(1−σn)

α+1 max
σn≤x≤1

| f (x)|+(1+σ ′
n)

β+1 max
−1≤x≤σ ′

n

| f (x)|
}
,

where C3 is independent of n and f .
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Theorem 6. Let | f (x)|wα ,β (x) be not increasing in[1−
ε ,1] and not decreasing in[−1,−1+ ε ], ε > 0. Then, for
sufficiently large n,
∣∣∣R̃GJ

n ( f ;wα,β )
∣∣∣≤
∣∣∣RGJ

n ( f ;wα,β )
∣∣∣+C4

{
‖ f wα,β ‖L1[−1,σ ′

n]∪[σn,1]

+
1
n
| f (σn)|wα+ 1

2 ,β+
1
2 (σn)+

1
n

∣∣ f (σ ′
n)
∣∣wα+ 1

2 ,β+
1
2 (σ ′

n)

}
,

where C4 is independent of n and f .

3 Computation of integrals on unbounded
interval

The present section is devoted to the investigation of
quadrature rules to compute the integral

I( f wγ) =
∫ ∞

0
f (x)wγ(x)dx,

where wγ(x) = xγe−x, γ > −1, and f satisfies the
smoothness condition ifr ≥ 1

f ∈W1
r (wγ) :=

{
f : f (r−1) ∈ AC, ‖ f (r)wγ+r/2‖1 < ∞

}
,

beingAC the set of all real functions which are absolutely
continuous on any bounded subinterval of(0,∞).
We consider the classical Gauss–Laguerre quadrature rule

I( f wγ) = IGL
n ( f ;wγ)+RGL

n ( f ;wγ) =

n

∑
k=1

λ γ
n,k f (xγ

n,k)+RGL
n ( f ;wγ),

whereλ γ
n,k, k = 1, . . . ,n are the Christoffel constants with

respect to the generalized Laguerre weightwγ , andxγ
n,k,

k = 1, . . . ,n are the zeros of thenth generalized Laguerre
orthogonal polynomial ordered in increasing order.

c1

n
< xγ

n,1 < xγ
n,2 < ... < xγ

n,n < 4n−2γ +2−c2(4n)
1
3 ,

with some constantsc1 andc2 independent ofn ≥ 1 and
k∈ {1,2, ...,n}, (see [3] and [13]).
Let {τn}n∈N such thatτn ≤ τn+1, 0< τn ≤ cn,0 < c < 1,
and lim

n→∞
τn = ∞. We define the integercn = c(n) as

xγ
n,cn

= min
1≤k≤n

{
xγ

n,k : xγ
n,k ≥ 4τn

}
. (4)

Consider the quadrature rule with gaussian weights and
nodes

I( f wγ) = ÎGL
n ( f ;wγ)+ R̂GL

n ( f ;wγ) =
cn

∑
k=1

λ γ
n,k f (xγ

n,k)+ R̂GL
n ( f ;wγ).

(5)

Define

δcn(x) = δ

(
x−xγ

n,cn

xγ
n,cn+1−xγ

n,cn

)
,

whereδ ∈C∞(R), δ (x) = 0 whenx≤ 0 andδ (x) = 1 when
x≥ 1.
We remark that the function

fcn = f −δcn f ,

has the same degree of smoothness off .
The following lemmas are needed to prove the

convergence of the quadrature rule (5).

Lemma 1. Let Nn =
[

1
c+1τn

]
with 0< c< 1 fixed. For any

f ∈W1
1 (wγ), we have

‖( f − fcn)wγ‖1≤ C̄1

[
ENn−1( f ′)wγ+1/2,1√

Nn
+e−C̄2Nn‖ f wγ‖1

]
,

where ENn−1( f ′)wγ+1/2,1 = inf
P∈ΠNn−1

‖( f ′−P)wγ+1/2‖1,
2

andC̄1,C̄2 are independent of n and f .

Proof. The proof is based on the inequality

∫ ∞

2(1+σ)ν
|pν(x)|wγ(x)dx≤ (6)

A e−Cν
∫ ∞

0
|pν(x)|wγ(x)dx, σ > 0,

for any polynomialpν of degreeν > 2(2γ + 1)/σ and
whereA= A(σ) andC = C(σ) are independent ofν and
pν , (see [2]).
By using (3) we have

‖( f − fcn)wγ‖1 ≤ ‖ f wγ‖L1[4τn,∞) ≤ ENn( f )wγ ,1+

C̄e−C̄2Nn‖ f wγ‖1,

where ENn( f )wγ ,1 = inf
P∈ΠNn

‖( f −P)wγ‖1, and C̄,C̄2

independent ofn and f .
Thus, the assertion follows by Favard’s theorem.⊔⊓

Lemma 2. Let Nn =
[

1
c+1τn

]
with 0< c< 1 fixed. For any

f ∈W1
1 (wγ), we have

∣∣RGL
n ( fcnwγ)

∣∣≤ C̃1

[
ENn−1( f ′)wγ+1/2,1√

Nn
+e−C̃2Nn‖ f wγ‖1

]
,

where ENn−1( f ′)wγ+1/2,1 = infP∈ΠNn−1 ‖( f ′−P)wγ+1/2‖1,

andC̃1,C̃2 are independent of n and f .

2 Πn denotes the set of the polynomials of degree≤ n.
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Proof. By using Peano’s theorem [12], we have

RGL
n ( fcn;wγ) =

∫ ∞

0
RGL

n

(
(.− t)0

+ ;wγ

)
f ′cn

(t)dt,

where(x− t)0
+ = 1 if t < x and(x− t)0

+ = 0 if t ≥ x.
For 0≤ t ≤ xγ

n,1,

∣∣∣RGL
n

(
(.− t)0

+ ;wγ

)∣∣∣=
∣∣∣∣
∫ ∞

0
(x− t)0

+wγ(x)dx−

n

∑
k=1

λ γ
n,k

(
xγ

n,k− t
)0

+

∣∣∣∣∣

∣∣∣∣−
∫ t

0
wγ(x)dx

∣∣∣∣≤
C′

n
wγ+ 1

2
(t),

whereC′ is independent ofn.
For t > xγ

n,1, being

∣∣∣RGL
n

(
(.− t)0

+ ;wγ

)∣∣∣≤ λ γ
n (t),

whereλ γ
n (t) is thenth Christoffel function with respect to

the weightwγ , we deduce

∣∣RGL
n

(
fcn;wγ

)∣∣ ≤
∫ xγ

n,cn+1

0

∣∣∣RGL
n

(
(.− t)0

+ ;wγ

)∣∣∣
∣∣ f ′cn

(t)
∣∣dt

≤ C√
n

∫ xγ
n,cn+1

0

∣∣ f ′cn
(x)
∣∣wγ+ 1

2
(x)dx,

having used

λ γ
n (t)≤C

√
n wγ+ 1

2
(t), xγ

n,1 ≤ t ≤ 4cn, n≥ 1, 0< c< 1,
(7)

(see [3] and [13]).
Thus, since δcn(x) = 0 if x ≤ xγ

n,cn, and

δ ′
cn
(x) ≤ ‖δ ′

cn
‖∞/(x

γ
n,cn+1 − xγ

n,cn
) ∼

√
n

xγ
n,cn

for

x ∈ (xγ
n,cn,x

γ
n,cn+1), where we have used

xγ
n,k − xγ

n,k−1 ∼
√

xγ
n,k/(4n−xγ

n,k), k ∈ {2,3, . . . ,n}, (see

[3]), recalling thatfcn = f −δcn f , we can write

∣∣RGL
n ( fcn;wγ)

∣∣≤C′′
[‖ f ′wγ+ 1

2
‖1

√
n

+‖ f wγ‖L1[4τn,∞)

]
,

with some constantC′′ independent ofn and f .
Then, by (3) and Favard’s theorem, the assertion follows
⊔⊓

Theorem 7. For any f∈W1
1 (wγ) we have, for sufficiently

large n,

∣∣∣R̂GL
n ( f ;wγ)

∣∣∣≤ Ĉ1

[
ENn−1( f ′)wγ+1/2,1√

Nn
+e−Ĉ2Nn‖ f wγ‖1

]
,

where ENn−1( f ′)wγ+1/2,1 =

infP∈ΠNn−1 ‖( f ′−P)wγ+1/2‖1, Nn =
[

1
c+1τn

]
, 0 < c < 1,

andĈ1,Ĉ2 are independent of n and f .

Proof. The assertion immediately follows from
Lemmas1 and taking into account that

R̂GL
n ( f ;wγ) = RGL

n ( fcn;wγ)+‖( f − fcn)wγ‖1.

⊔⊓
We observe that, unlike what happens in the case of

the bounded interval, the formula (5) performs better than
the ordinary Gauss–Laguerre rule. Indeed, it was recently
shown the same estimate of Theorem7 for the gaussian
errorRGL

n ( f ;wγ) but only in more restrictive assumptions
on the function f (see Corollary1 in [1]).

Since the Christoffel constantsλ γ
n,k decrease rapidly

with k goes ton, it happens that for sufficiently largek the
quantitiesλ γ

n,k f (xγ
n,k) are not significant with respect to

the machine precision. In this case the following formula
is useful in computations

I( f wγ) = ĪGL
n ( f ;wγ)+ R̄GL

n ( f ;wγ)

= ∑
xγ
n,k≤τ

λ γ
n,k f (xγ

n,k)+ R̄GL
n ( f ;wγ),

whereτ > 0 is fixed in a suitable way. In this regard the
following theorem holds.

Theorem 8. For any f∈W1
1 (wγ) we have, for sufficiently

large n,

∣∣R̄GL
n ( f ;wγ)

∣∣≤ Ĉ1

[
ENn−1( f ′)wγ+1/2,1√

Nn
+e−Ĉ2Nn‖ f wγ‖1

]
+

C̄3 n3/2max
x≥τ

∣∣∣ f (x)wγ+ 1
2
(x)
∣∣∣ ,

where ENn−1( f ′)wγ+1/2,1 = infP∈ΠNn−1 ‖( f ′−P)wγ+1/2‖1,

Nn =
[

1
c+1τn

]
, 0< c< 1, andĈ1,Ĉ2, C̄3 are independent

of n and f .

Proof. The assertion immediately follows from Theorem
7 taking into account that

R̄GL
n ( f ;wγ) = R̂GL

n ( f ;wγ)−
cn

∑
xγ
n,k>τ

λ γ
n,k f (xγ

n,k),

and using (7). ⊔⊓
Finally, it is interesting to truncate the

Gauss–Laguerre formula also with regard nodes close to
0 when the functionf has a particular behavior near this
point. Let {τ ′n}n∈N such that τ ′n ≥ τ ′n+1 and
xγ

n,1 ≤ τ ′n ≤ xγ
n,n. We define the integerυn = υ(n) as

xγ
n,υn ≤ τ ′n ≤ xγ

n,υn+1, υn ∈ {1,2, . . . ,n−1}.

Consider the quadrature rule with gaussian weights and
nodes

I( f wγ) = ĨGJ
n ( f ;wγ)+ R̃GJ

n ( f ;wγ) =
cn

∑
k=υn+1

λ γ
n,k f (xγ

n,k)+ R̃GJ
n ( f ;wγ),
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Table 1: Relative errors for the example
∫ 1

−1
f1(x)dx

n σn = 1− 1
n

σn = 1− 1√
n

σn = 1− 1
4
√

n
4 7.4981e-05 [1] 7.4981e-05 [1] 0.0304 [2]
8 2.6413e-07 [1] 1.6792e-04 [2] 0.0048 [3]

16 4.9695e-07 [2] 1.9670e-04 [4] 0.0012 [5]
32 1.1580e-09 [2] 1.7033e-05 [6] 0.0012 [10]
64 9.1447e-11 [3] 3.3379e-06 [10] 4.9848e-04 [18]

128 1.6519e-11 [5] 7.6378e-07 [17] 1.8150e-04 [32]
256 6.3112e-13 [7] 1.8033e-07 [29] 8.9335e-05 [59]
512 6.6592e-14 [11] 3.2698e-08 [48] 3.8077e-05 [107]

Table 2: Relative errors for the example
∫ 1

−1
f2(x)dx

n σn = 1− 1
n

σn = 1− 1√
n

σn = 1− 1
4
√

n
4 3.7802e-06 [1] 3.7802e-06 [1] 0.0048 [2]
8 3.6473e-10 [1] 2.5034e-06 [2] 3.7565e-04 [3]

16 5.5056e-10 [2] 3.9856e-06 [4] 5.8093e-05 [5]
32 8.7003e-14 [2] 1.2285e-07 [6] 6.0245e-05 [10]
64 3.4444e-15 [3] 1.2048e-08 [10] 1.6884e-05 [18]

128 2.5514e-16 [5] 1.4495e-09 [17] 3.9386e-06 [32]
256 3.8271e-16 [7] 1.8101e-10 [29] 1.4165e-06 [59]
512 7.6542e-16 [11] 1.5391e-11 [48] 4.1346e-07 [107]

Table 3: Relative errors for the example
∫ 1

−1
f3(x)dx

n σn = 1− 1
n

σn = 1− 1√
n

σn = 1− 1
4
√

n
4 0.1235 [1] 0.1235 [1] 0.1235 [2]
8 3.8490e-05 [1] 3.8525e-05 [2] 3.9268e-05 [3]

16 2.8557e-09 [2] 4.0022e-08 [4] 1.8081e-07 [5]
32 5.3603e-10 [2] 9.8657e-09 [6] 1.8190e-07 [10]
64 2.7235e-10 [3] 4.9043e-09 [10] 8.0557e-08 [18]

128 1.7624e-10 [5] 2.8863e-09 [17] 3.7288e-08 [32]
256 8.2728e-11 [7] 1.8274e-09 [29] 2.3537e-08 [59]
512 4.9556e-11 [11] 1.1207e-09 [48] 1.4509e-08 [107]

Table 4: Relative errors for the example
∫ 1

−1
f4(x)dx

n σn = 1− 1
n

σn = 1− 1√
n

σn = 1− 1
4
√

n
4 0.5672 [1] 0.5672 [1] 0.5672 [2]
8 0.0083 [1] 0.0083 [2] 0.0083 [3]

16 8.1887e-10 [2] 8.1887e-10 [4] 8.1889e-10 [5]
32 1.9533e-15 [2] 2.1035e-15 [6] 3.4258e-14 [10]
64 6.3106e-15 [3] 6.3106e-15 [10] 1.2922e-14 [18]

128 1.5025e-15 [5] 1.5025e-15 [17] 1.5025e-15 [32]
256 1.0668e-14 [7] 1.0668e-14 [29] 1.0968e-14 [59]
512 3.0050e-16 [11] 3.0050e-16 [48] 3.0050e-16 [107]
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Table 5: Relative errors for the example
∫ σn

−1
f2(x)dx

n σn = 1− 1
n

σn = 1− 1√
n

σn = 1− 1
4
√

n
4 2.4315e-06 [1] 1.1830e-04 [1] 0.0036 [2]
8 1.4536e-08 [1] 1.0328e-05 [2] 8.6781e-07 [3]

16 3.8593e-10 [2] 2.6369e-06 [4] 6.3985e-05 [5]
32 1.7319e-12 [2] 1.8910e-08 [6] 2.0670e-05 [10]
64 1.6584e-14 [3] 2.8534e-09 [10] 4.0532e-06 [18]

128 3.8271e-16 [5] 1.6778e-10 [17] 2.2132e-07 [32]
256 3.8271e-16 [7] 1.6370e-11 [29] 6.7839e-08 [59]
512 7.6542e-16 [11] 1.9142e-12 [48] 2.3799e-08 [107]

Table 6: Relative errors for the example
∫ σn

−1
f3(x)dx

n σn = 1− 1
n

σn = 1− 1√
n

σn = 1− 1
4
√

n
4 0.1235 [1] 0.1235 [1] 0.1235 [2]
8 3.8485e-05 [1] 3.8456e-05 [2] 3.8482e-05 [3]

16 1.0661e-09 [2] 1.6973e-08 [4] 1.2303e-07 [5]
32 2.2008e-10 [2] 1.4686e-10 [6] 4.5893e-08 [10]
64 7.6228e-11 [3] 2.2868e-10 [10] 1.1893e-08 [18]

128 8.7567e-12 [5] 4.1109e-11 [17] 9.4843e-10 [32]
256 6.2114e-13 [7] 3.7809e-11 [29] 4.8862e-10 [59]
512 8.9031e-12 [11] 2.4744e-11 [48] 2.9971e-10 [107]

Table 7: Relative errors for the example
∫ ∞

0
f5(x)e

−xdx

n τ ′n =
1√
n

τn =
n
2

τ ′n =
1
4
√

n
τn =

n
2

τ ′n =
1√
n

τn = 2
√

n τ ′n =
1
4
√

n
τn = 2

√
n

8 3.0304e-04 [0,1] 3.0304e-04 [1,1] 0.4372 [0,4] 0.4372 [1,4]
16 1.8517e-07 [0,3] 2.3808e-07 [2,3] 0.0546 [0,9] 0.0546 [2,9]
32 6.4162e-16 [1,6] 4.7290e-11 [2,6] 0.0012 [1,20] 0.0012 [2,20]
64 3.2979e-14 [2,12] 2.8329e-10 [3,12] 4.4579e-06 [2,44] 4.4582e-06 [3,44]

128 6.4162e-16 [2,23] 9.9652e-11 [4,23] 1.6115e-10 [2,94] 2.6080e-10 [4,94]
256 1.0266e-15 [2,47] 7.9062e-12 [5,47] 1.0266e-15 [2,135] 7.9062e-12 [5,135]
512 3.8497e-16 [3,93] 2.4433e-13 [6,93] 3.8497e-16 [3,416] 2.4433e-13 [6,416]

where the integercn is defined in (4). Regarding the
latter formula may be set the following convergence result
of which we omit the proof being quite similar to that of
the Theorems1 and7 .

Theorem 9. For any f ∈ W1
1 (wγ) such that| f (x)| ≤ K,

x∈ [0,ε ], ε > 0 and K≥ 0 we have, for sufficiently large
n,

∣∣∣R̃GL
n ( f ;wγ)

∣∣∣≤ Ĉ1

[
ENn−1( f ′)wγ+1/2,1√

Nn
+e−Ĉ2Nn‖ f wγ‖1

]
+

C̄4(τ ′n)γ+1 max
0≤x≤τ ′n

| f (x)|,

where ENn−1( f ′)wγ+1/2,1 = infP∈ΠNn−1 ‖( f ′−P)wγ+1/2‖1,

Nn =
[

1
c+1τn

]
, 0< c< 1, andĈ1,Ĉ2, C̄4 are independent

of n and f .

4 Numerical results

A set of test examples are considered to confirm
numerically the convergence of the formula (2) in
agreement with the main result consisting in the Theorem
1 and in the subsequent remarks. We have computed the
integrals

I( fiw
α ,β ) =

∫ 1

−1
fi(x)w

α ,β (x)dx, i ∈ {1,2,3,4},
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assumingα = β = 0 and fi(x) = (1− x)νi , i ∈ {1,2},
ν1 = 7/2, ν2 = 11/2, fi(x) = exp(2− ai

x+1
2 ), i ∈ {3,4},

a3 = 20, a4 = 40. Obviously, these integrals can be
efficiently computed by the gaussian rule with respect to a
suitable weight, but our choice is merely demonstrative of
the above. We have obtained the results for the relative
errors |R̂GJ

n ( fi ;w0,0)|/|I( fiw0,0)|, i ∈ {1,2,3,4} reported
in Tables 1–4 for different choices of{σn}n∈N, wheren is
the number of the gaussian nodes while the number in
square brackets denotes the number of omitted nodes.
Further, in Tables 5–6 we report the relative errors given
by the approach suggested in the Theorem3 to compute

the integrals
∫ σn

−1
fi(x)dx, i ∈ {2,3}.

Finally, we have used the formula (3) to compute the
integral

I( f5wγ) =
∫ ∞

0
x10e−2xdx,

with γ = 0 and f5(x) = x10e−x. In Table 7 we report the
relative errors for different choices of the sequences
{τ ′n}n∈N and{τn}n∈N. Heren denotes the number of the
gaussian nodes while the numbers in square brackets
denote the numbers of the omitted nodes near 0 and
sufficiently large, respectively.
All the numerical experiments are carried out with
MATLAB/R2011a.
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