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Abstract: To compute integrals on bounded or unbounded intervals we propose aumerical approach by using weights and
nodes of the classical Gauss quadrature rules. An account of treaard the convergence theory is given for the proposed quadrature
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method.

Keywords: Numerical integration, Quadrature rules, Gaussian weights and nodes.
AMS subject classificatiofPrimary 65D30; Secondary 65R20.

1 Introduction as when the integrand is a function taking significant
values only in a very small part of the integration domain.
Gauss quadrature rules represent an efficient numericdh the case where the domain of integration is unbounded,
technique to compute definite integrals when the domairthe truncated formulas have a further advantage. In fact,
of integration is bounded or not. This justifies the we can show an error estimate that has already been
continued interest to provide packages of efficientproven for the original gaussian formulas but with more
routines implementing the computation of the procedurerestrictive assumptions on the integradfl [The results in
to generate the parameters (i.e. weights and nodes) frofil] and [6]-[11] for a related problem are specified and
which gaussian formulas depend (seé, [5] and the generalized here and in analogy with them, it turns out
references cited therein). In this paper we propose nevihat a proper choice of the truncation point may result in
guadrature formulas that depend on the same parametegs algorithm with smaller computational cost but
typical of the classical gaussian formulas, so that theidentical or better error bounds.
previous packages mentioned in the literature can be
efficiently used for their computation. These new  Since the truncated formulas converge when the
formulas consist essentially in a truncation of the cladsic corresponding gaussian formulas converge, they may be
gaussian formulas made omitting those nodes of theprofitably used as quadrature scheme of the Nystr
original formulas that are larger than a certain threshold.method for solving integral equations. In fact, it will be
When the domain of integration is bounded, the proposegossible to establish the stability, and thus the
formulas, though converging, seem generally lessconvergence, of the method which is characterized by a
accurate than the original gaussian formulas. Howevermatrix of order less than that one of the matrix
they are also competitive with the latter ones with respectcorresponding to the use of the original gaussian
to the order of convergence when the integrand has dormulas. The investigation of this point has been
particular behavior, as well as being advantageousxtensively treated for truncated versions of the gaussian
requiring a lower computational effort. In addition, the formulas which are special cases of those presented in the
new formulas may be useful in other circumstances, suctpresent paper (seéJfH11]).
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The remaining part of the paper is organized asProof. Sinceag, € [1— ¢, 1], for sufficiently largen, we
follows. In Sections 2 and 3 we propose and discuss somédeduce

convergence properties of the truncated gaussian formulas n n
in the cases of bounded and unbounded domain of z }\ ’ﬁ )] < max [f(X)] z )\r‘]’;f;
integrations, respectively. Finally, in Section 4, we prés k=Cn+1 On<x<l k=Cotl
some numerical results and we give some computational u 5
considerations. < max [f(x)| (1*X) (1+x)7dx
On<x<1l Cn
o . 0 a1 281 (LX)
2 Computation of integrals on bounded X, [f(9Imax(1, 27—~
interval <Cp max |f(x)|(1—on) Y,
on<x<1l

To compute the integral o »
L where we have used the Markov—Stietjes inequalities and
|(fW0’v/3) :/ f(X)W"vB(x)dx’ 1—x,‘{‘£ ~ 1—0opt. Then the assertion immediately follows
-1 taking into account that
where WA (x) = (1 - x)9(1+x)PB, a,B > -1, we . . n aB
consider the classical Gauss—Jacobi quadrature rule RPI(fwhP) = RE(Fw™P)+ 5 ATS 0 D). ©
k=ch+1

|(fwaﬂ):|GJ(f-M=B)+R§J(f;\AﬂJ3): m _ _
We observe that, excluding the choice of a sequence
z ,\0' Bf )+ REI(f:wB), {0n}nen definitively constant, having to bn(i!jmn =1,it

follows the convergence of the formuld)(equal to the
convergence of the Gauss—Jacobi formula which has,
however, a greater computational cost. About the order of
respect to the Jacobi weighf-#, andxg_’kﬁ, k=1,...,nare  convergence, the choice of the sequefigg}nen plays a

the zeros of theth Jacobi orthogonal polynomial which fundamental role. For example, fifx) = (1—x)¥,v € R"

where/\rfl’(ﬁ ,k=1,... nare the Christoffel constants with

we assume ordered in increasing order then, ‘RT?J(f;WGﬁ)‘ < constn~lV), where |v| denotes
1< an < anﬁ <oe<x8B <1 the integer part ob, i.e. the largest integer less than or
’ equal to V. On the other hand,
Let {0n}nen Such thatoy < onyg andx®f < o, <x&§F. (1— )™ rggi(llf(x)l = (1—0p)? Y =p a1,

We define the intege, = c(n) as having chosero, = 1 — n~*. Therefore, formula2) is

cell2...n-1. (1) also competitive compared with the convergence order of
the ordinary Gauss—Jacobi formula.

Consider the quadrature rule with gaussian weights and\ consequence of the previous theorem is the following

nodes

a,B a.B
XfLCn <On< ch +1»

Corollary 1. Leto,=0,neN,|o| <1, and|f(x)| <K,
L(fw Py = 18(f; WO’B) REI(f;wAF) = x € [0,1], K > 0. Then, for sufficiently large n,

z,\“ﬁf CR(hwep), P ’ﬁnGJ(f;w"vB)‘ < ]R,?J(f;mﬂﬁ)\ml max | f(x)],

o<x<1l
This formula has degree of exactness 0, however wevhere G is independent of n and f.

will show that, for particular choices of the sequence
{On}ren and in particular assumptions about the
integrand f, it is convergent like the original
Gauss—Jacobi formula with the same order
convergence, while having a lower computational cost. In
this regard the following theorem holds.

The previous corollary concerns the choice of a
constant sequena®, = g, n € N, and it does not provide
of@ convergence result, i.e. such a choice of the sequence
does not lead to a convergent formuby. (However, when
f is significant with respect to the machine precision or to
the required accuracy only if-1,0], |o| < 1, such a
Theorem 1. Let|f(x)| <K, xe[1l-¢,1],6>0,K>0. formulais of interest from a computational point of view.

Then, for sufficiently large n, The formula @) can also be interpreted as a formula to
approximate the integral over the interval-1,ay).
BGI £, 0, G/ £\ a0, ,
Ry (f,Wa'B)‘ < |RY(FwP) |+ Indeed, the following convergence result holds.
Ci(1-a )Or+1 rggi(llf( |, 1 If AandB are two expressions depending on some variables,
on= then we writeA ~ B if and only if |[AB~1|*! < const uniformly
where G is independent of n and f. for the variables under consideration.
@© 2014 NSP
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Theorem 2. Let|f(X)| <K, xe[l—¢,1], >0 K>0.
Then, for sufficiently large n,

oo

X)dx— Z)\ oAb g (x@

Cl(1— o)t max |f(x)],

On<x<1l
where ¢ is independent of n and f.
Proof. This result follows immediately from

‘/ (WP (x)dx— Z)\’Bf )| < [R(Fiwe 8|+
/()wﬂﬁ x)dx < [R(Fwe )|+
On
gy (1—0n)"
omax, [0 max 1,27} =277

and using the Theorethin

)| < [RE(Fw )|+

Corollary 2. Let o, = 0, ne N, |o] < 1, and let
|f(x)w?#(x) be not increasing in[c,1]. Then, for
sufficiently large n,

’ﬁnGJ(f;W"’B)‘ < ’REJ(f;W"’B)‘Jr
, 1 1.1
& {11088l + S F(@IwE 84300 .
where G is independent of n and f.

Theorem 4. Let |f(x)|w*#(x) be not increasing i1 —
€,1], € > 0. Then, for sufficiently large n,

‘/ (WP (x)dx— 2)\“31‘ )| < [RE(fwe )|
2

1
T - f<an>|w“+%vﬁ+%<on>}7

The previous results may be specified if the integrandyhere @ is independent of nand f.
enjoys a particular monotony. In this regard, consider

following results.
Theorem 3. Let|f(x)|w*#(x) be not increasing i1 —
€,1], € > 0. Then, for sufficiently large n,
RE(Fsw )| < R+
1
Co{ 108 g+ 5 (oI35 o}

where G is independent of n and f.

Proof. Sinceag, € [1—¢, 1], for sufficiently largen, in view
of the assumption om, we have

z ‘f( )l_ ncn+1|f(xncn+1)|

k=cn+1

S AZPIROEE) < Z{ﬁfwn)w“*%vﬁ*%(on)

k=cn+2

+3 (xsf—xzf_l)\f<xz,f>]wavﬁ<ng>}g

k=cn+2

1
Co{ H1(0m w853 (0n) 4 18 o}

where we have used

1 41
M~ L) (1P,

XgA,I(L;_Xni(BlNi(l Xﬂk) (l+xaB)27 k:].,...,n—l

(cfr. [13])), and WG’B(Xn.l:nH) ~ W% (a,). Then the
assertion immediately follows fron8). Im

The previous theorems and corollaries are related to
formulas of the type2) which consist of a truncation of
the Gauss—Jacobi formula at the nodes closest to the right
extreme of the integration interval. In this case, the use of
the truncation formula is of interest for functions that
have a particular behavior in a neighborhood of this
extreme. Same token can be constructed formulas that are
well suited to the same situations in a neighborhood at the
other extreme. Lef{ o) }nen Such thata) > o), and

B < 0, <3 We define the integer, = ¢/(n) as

a,
n,

c,e{1,2,...,n—1}.

Consider the quadrature rule with gaussian weights and
nodes

[(fwf) = TR Fw ) + R

Cn

RFwf) =

Aié F00i0) + R (1w F),
k=ch+1
where the integet, is defined in ).
Regarding the latter formula may be for example set
the following convergence results of which we omit the
proof being quite similar to that of the Theorethand4.

Theorem 5. Let|f(x)| <K, xe[-1,—1+¢€]U
€ >0, K> 0. Then, for sufficiently large n,

[1—¢,1],

[RE2(fwe )| < [RS8+

C3{(l on) 1 max [f(x)|+ (1+ 0Pt max |f(x)|},

On<x<1l —1<x<a},

where G is independent of n and f.
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Theorem 6. Let | f(x)|w®#(x) be not increasing i1 —
€,1] and not decreasing if-1,—1+¢], € > 0. Then, for
sufficiently large n,

[REI(FwP)| < |REI(F;w )|+ Ca { I W2 1.0
+ﬁ|f(0n)|Wa 2 Z(Un)‘f'ﬁ’f(anﬂwa 2P72(0y) ¢ s
where G is independent of n and f.

3 Computation of integrals on unbounded
interval

Define
X— XX,Cn
XTYI,Cn‘HI- - XK,Cn 7
whered € C*(R), 6(x) = 0 whenx <0 andd(x) =1 when

x> 1.
We remark that the function

fe, ==&, f,

has the same degree of smoothness. of

The following lemmas are needed to prove the
convergence of the quadrature rut.
Lemmal. LetN,= [c1; T, with 0 < ¢ < 1fixed. For any

c+1
f € Wl(wy), we have

The present section is devoted to the investigation of

guadrature rules to compute the integral
[(fwy) = [ 100wy (0dx

where wy(x) = xYe™, y > —1, and f satisfies the
smoothness condition if> 1

f e Wh(wy) = {f cHY e AC, [[F Wyl < 00},

beingAC the set of all real functions which are absolutely

continuous on any bounded subinterval@fc).

Eanl( f/)Wy+1/271

N

I(F = o)Wy ll1 <Ca +e 2N fwy|1|

where  E,-1(f') = pelnt I( = Py fl0,?
n—-1

and(ﬂ,(fz are independent of n and f.

Wyi1/2,1

Proof. The proof is based on the inequality

/2(1+0)V|pv(X)|Wy(X)dx§ ©)

We consider the classical Gauss—Laguerre quadrature rule

I(fwy) = II‘?L(f;WV)—’_R’f?L(f;WV) =

n
> Ar{kf(xx,k) +RYN(frwy),
K=1

whereA!,, k=1,...,n are the Christoffel constants with

respect to the generalized Laguerre weight ande Ko
k=1,...,nare the zeros of thath generalized Laguerre
orthogonal polynomial ordered in increasing order.

c 1
Fl <Xy <X < <Xy <An—2y+2—cy(4n)3,

with some constants; andc, independent of > 1 and
ke {1,2,....,n}, (see B] and [13)).

Let {Th}nen such thatty < Tn41, 0< Th <cn0<c< 1,
andnirpo Tp = 0. We define the integex, = c(n) as

ARﬁL(fanyM <G

Ae [Cpgwax o >0,

for any polynomialp, of degreev > 2(2y+1)/o and
whereA = A(o) andC = C(o) are independent aof and

pv, (see P)).
By using @) we have

[(F = fe)Wyll2 < [ fWy 14z, ) < Eng (w1t

Ce 2N fwy 1,

where En,(flw,1 = (f—P)w,|1, and C,C;

inf ||
PE”Nn
independent ofi and f.
Thus, the assertion follows by Favard’s theorém.

Lemma2. LetN,= [T with0 < c < 1fixed. For any

f € Wl(wy), we have

Eng—1(') 1 .
T2 Wyt + efcan” fwy||1| ,

Consider the quadrature rule with gaussian weights an VNn
nodes
I(fwy) =185 (f;wy) + REH(F;wy) = where I:Isd“’l(f_l)‘”wl/z»l = infpemy,_; [1(F' = P)Wy.p 151,
. 5) andC,,C; are independent of n and f.
A F (XY Lfiwy).
kzl it O + RE-(fiwy) 2 1, denotes the set of the polynomials of degree.
@© 2014 NSP
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Proof. By using Peano’s theoreri?], we have Proof. The assertion immediately follows from
Lemmasl and taking into account that

. o * 0. /
R ) = [, RE (=0 my) 00 REL(Fiwy) = RS (T wy) + (1 — fop iy 1.

where(x—1)% =1ift <xand(x—t)2 =0ift > x. m
Foro<t<x’ We observe that, unlike what happens in the case of
= o the bounded interval, the formul&)(performs better than
o the ordinary Gauss—Laguerre rule. Indeed, it was recently
‘Rﬁ;" ((. )9 ;Wy)' = ‘/ (x—1)% wy(x)dx— shown the same estimate of Theor&nfor the gaussian
0 error RCL(f;wy) but only in more restrictive assumptions
n 0 ; on the function f (see Corollaryin [1]).
Y (v
kZlAn,k (Xn,k t)+ ’ _/0 wy(x)dx

/
< EW L (t), Since the Christoffel constangg’, decrease rapidly
n with k goes ton, it happens that for sufficiently lardethe
- quantitiesA”, f(x’,) are not significant with respect to
whereC' is mdependent of. kA nk/ : .
; the machine precision. In this case the following formula
Fort > xn 1, being ; _ .
is useful in computations

RS- (=% wy )| <A, |(fwy) = ISH(Fw) + RE(f1w)
- )\r{kf(xx’k)—kline'-(f;wy),

whereA}(t) is thenth Christoffel function with respect to S
nk—

the weightw,, we deduce
u
R (foiwy)| < [

wheret > 0 is fixed in a suitable way. In this regard the
ROL ((_ *t)g ;WV)‘ [, (t)|dt  following theorem holds.

C et Theorem 8. For any fe Wi (w,) we have, for sufficiently
< 00wy 00 large n,
. o ENe—1(FDw g 01
having used ‘R_f?L(f;WVH <é S vzl | o CZN”HnyHl
M@® <CVAaw, (), X, <t<denn>10<c<l, "
7) Cs n3/2m>ax Fow,, 1 (x)],
(see Bl and [13)). =T
Thus, " since &0 = 0 i x < Mo and  where Bys(y1 = focny (1~ Pyl
n
&) < 8]/ (X Yo — X)) ~ - for ofnaLJf n],0<c<1, andCy,C,, C3 are independent
,Cn

y Y
X € (Xhen X ,  where we have used Lo .
(0o ”’Cn”) Proof. The assertion immediately follows from Theorem

Xy — Xhi_1 ~ \/Xhi/(4n—xh ), k€ {2,3,...,n}, (see  7taking into account that
[3]), recalling thatfe, = f — &, f, we can write cn

T R_EL(f;Wv) = RSL(ﬁWV)— VZ )‘r{kf(xr{,k)v
GL/ £ oY 1 y+3!11 Xa k=T
RS- (fe;w!)| <C [ﬁ + |fWV||L1[4Tn,oo)‘| ;
and using 7). M

Finally, it is interesting to truncate the
Gauss—Laguerre formula also with regard nodes close to
0 when the functiorf has a particular behavior near this
point Let {t\}nen such that 1, > 1/,, and

Theorem 7. For any f < WZ2(w,) we have, for sufficiently X}, < T, < Xhn. We define the integas, = v(n) as
large n,

with some constar@” independent ofi and f.
Then, by 8) and Favard’s theorem, the assertion follows
m

Ko STASX, 1. Un€{l2...n-1}.
~ | Eny—1(f’ 7
‘ﬁnGL(f;Wy)’ <C anl()WyH/zl e G| fwy||1] . Consider the quadrature rule with gaussian weights and
VN nodes
where B 1(f w101 - I(fwy) = 183(f;wy) + REI(f;wy) =

infpenanl ||(f/ — P)Wy+1/2||1, N = [C+l ] O0<c<l, &

Tinn A F )+ R (frwy),
andCy,C; are independent of n and f. k! Ou) R (5w

k=un+1
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1
Table 1: Relative errors for the examp% f1(x)dx
-1

T T T
n O’n:].*ﬁ O’nzlfﬁ o'n:].*%
4 | 7.4981e-05 [1]| 7.4981e-05 [1]| 0.0304 [2]
8 | 2.6413e-07 [1]] 1.6792e-04 [2]| 0.0048 [3]
16 | 4.9695e-07 [2]] 1.9670e-04 [4]| 0.0012 [5]
32 | 1.1580e-09 [2]| 1.7033e-05 [6]| 0.0012 [10]
64 | 9.1447e-11 [3]| 3.3379e-06 [10]| 4.9848e-04 [18]
128 | 1.6519e-11 [5]| 7.6378e-07 [17]| 1.8150e-04 [32]
256 | 6.3112e-13 [7]| 1.8033e-07 [29]| 8.9335e-05 [59]
512 | 6.6592e-14 [11]| 3.2698e-08 [48]| 3.8077e-05 [107]
1
Table 2: Relative errors for the examp% L f2(x)dx
n onzlf% onzlf% onzlf\%
4 | 3.7802e-06 [1]| 3.7802e-06 [1]| 0.0048 [2]
8 | 3.6473e-10 [1]| 2.5034e-06 [2]| 3.7565e-04 [3]
16 | 5.5056e-10 [2]| 3.9856e-06 [4]| 5.8093e-05 [5]
32 | 8.7003e-14 [2]| 1.2285e-07 [6]| 6.0245e-05 [10]
64 | 3.4444e-15 [3]| 1.2048e-08 [10]| 1.6884e-05 [18]
128 | 2.5514e-16 [5]| 1.4495e-09 [17]| 3.9386e-06 [32]
256 | 3.8271e-16 [7]| 1.8101e-10 [29]| 1.4165e-06 [59]
512 | 7.6542e-16  [11]| 1.5391e-11 [48]| 4.1346e-07 [107]
1
Table 3: Relative errors for the examp% L f3(x)dx
n O-n:].—% Unzl—% Unzl—%
4 | 0.1235 [1]| 0.1235 [1] | 0.1235 [2]
8 | 3.8490e-05 [1]| 3.8525e-05 [2]| 3.9268e-05 [3]
16 | 2.8557e-09 [2]| 4.0022e-08 [4]| 1.8081e-07 [5]
32 | 5.3603e-10 [2]| 9.8657e-09 [6]| 1.8190e-07 [10]
64 | 2.7235e-10 [3]| 4.9043e-09 [10]| 8.0557e-08 [18]
128 | 1.7624e-10 [5]| 2.8863e-09 [17]| 3.7288e-08 [32]
256 | 8.2728e-11 [7]] 1.8274e-09 [29]| 2.3537e-08 [59]
512 | 4.9556e-11 [11]| 1.1207e-09 [48]| 1.4509e-08 [107]
1
Table 4: Relative errors for the exampljé L fa(x)dx
n O’n:l—% Un:].—% O‘nzl—%
4 | 0.5672 [1]| 0.5672 [1] | 0.5672 [2]
8 | 0.0083 [1] | 0.0083 [2] | 0.0083 [3]
16 | 8.1887e-10 [2]| 8.1887e-10 [4]| 8.1889e-10 [5]
32 | 1.9533e-15 [2]| 2.1035e-15 [6]| 3.4258e-14 [10]
64 | 6.3106e-15 [3]| 6.3106e-15 [10]| 1.2922e-14 [18]
128 | 1.5025e-15 [5]| 1.5025e-15 [17]| 1.5025e-15 [32]
256 | 1.0668e-14 [7]] 1.0668e-14 [29]| 1.0968e-14 [59]
512 | 3.0050e-16 [11]| 3.0050e-16 [48]| 3.0050e-16 [107]
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On
Table5: Relative errors for the examp% . fa(x)dx
1 I I
n Gn=lfﬁ O‘n:].*% O’n:J.*%
4 | 2.4315e-06  [1]| 1.1830e-04 [1]| 0.0036 [2]
8 | 1.4536e-08  [1]| 1.0328e-05 [2]| 8.6781e-07 [3]
16 | 3.8593e-10  [2]| 2.6369e-06 [4]| 6.3985e-05 [5]
32| 1.7319e-12  [2]| 1.8910e-08 [6]] 2.0670e-05 [10]
64 | 1.6584e-14  [3]| 2.8534e-09 [10]| 4.0532e-06 [18]
128 | 3.8271e-16  [5]| 1.6778e-10 [17]] 2.2132e-07 [32]
256 | 3.8271e-16  [7]| 1.6370e-11 [29]| 6.7839e-08 [59]
512 | 7.6542e-16 [11]| 1.9142e-12 [48]| 2.3799e-08 [107]
On
Table 6: Relative errors for the examplf ) fa(x)dx
n anl—% Unzl—% O’nzl—%
4| 0.1235 [1] | 0.1235 [1] | 0.1235 [2]
8 | 3.8485e-05  [1]| 3.8456e-05 [2]| 3.8482e-05 [3]
16 | 1.0661e-09  [2]| 1.6973e-08 [4]| 1.2303e-07 [5]
32 | 2.2008e-10  [2]| 1.4686e-10 [6]| 4.5893e-08 [10]
64 | 7.6228e-11  [3]| 2.2868e-10 [10]| 1.1893e-08 [18]
128 | 8.7567e-12  [5]| 4.1109e-11 [17]| 9.4843e-10 [32]
256 | 6.2114e-13  [7]| 3.7809e-11 [29]| 4.8862e-10 [59]
512 | 8.9031e-12 [11]| 2.4744e-11 [48]| 2.9971e-10 [107]
Table 7: Relative errors for the examp%) f5(x)e *dx
1 n 1 n 1
8 | 3.0304e-04 [0,1]| 3.0304e-04 [1,1]| 0.4372 [0,4]] 0.4372 [1,4]
16 | 1.8517e-07 [0,3]| 2.3808e-07 [2,3]| 0.0546 [0,9]| 0.0546 [2,9]
32 | 6.4162e-16 [1,6]| 4.7290e-11 [2,6]| 0.0012 [1,20]| 0.0012 [2,20]
64 | 3.297%-14  [2,12] 2.8329e-10  [3,12] 4.4579e-06 [2,44] 4.4582e-06 [3,44]
128 | 6.4162e-16  [2,23] 9.9652e-11  [4,23] 1.6115e-10 [2,94] 2.6080e-10 [4,94]
256 | 1.0266e-15  [2,47] 7.9062e-12  [5,47] 1.0266e-15 [2,135] 7.9062e-12 [5,135]
512 | 3.8497e-16  [3,93] 2.4433e-13  [6,93] 3.8497e-16 [3,416] 2.4433e-13 [6,416]
where the integec, is defined in 4). Regarding the where Ky,_1(f )Wy+1/2 1= mfPeI‘an N ||( —P)wy., 151,

latter formula may be set the following convergence result

Nn =[5

of which we omit the proof being quite similar to that of 4, aan
the Theorem4 and7 .

} O<c<l, andCl,Cz, C4 are independent

4 Numerical results

Theorem 9. For any f e W(wy) such that|f(x)| <K,

x € [0,¢], € > 0 and K> 0 we have, for sufficiently large

A set of test examples are considered to confirm
n!

numerically the convergence of the formul&) (in
agreement with the main result consisting in the Theorem
1 and in the subsequent remarks. We have computed the

/
1My integrals

N

Rt (fiwy)| <& &M w1 | +

Ca(th)Y** max |f(x)],
0<x<Tth

I(fiw®P) = /711 fiowP(x)dx, i€ {1,234},
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assuminga = = 0 and fij(x) = (1 —x)", i € {1,2}, [8] G. Mastroianni, G. Monegato, Truncated interpolation
vi=7/2,vp=11/2, fi(x) = exp(2 — a,%l) i € {34}, processes on unbounded intervals and their applications,
ag = 20, a4 = 40. Obviously, these integrals can be  Rend.Circ. Mat. Palerm&s, 123-139 (2006). o
efficiently computed by the gaussian rule with respect to d9 G. Mastroianni, G. Monegato, Some new applications
suitable weight, but our choice is merely demonstrative of ~ ©f truncated Gauss-Laguerre quadrature formulas, Numer.
the above. We have obtained the results for the relative _Al9orithms, 49, 283-297 (2008).
errors|%3(fi;w°’°)|/|l(fivv°:°)|, i € {1,2,3,4} reported [10] G. _ Mgstronanm, G. Monegato, Erratum: Some new
in Tables 1—4 for different choices ¢, }nen, Wheren is applications  of trun(_:ated Gauss-Laguerre quadrature
the number of the gaussian nodes while the number i formulas, Numer. Algorithmss2, 507 (2009)' . .

. 11] G. Mastroianni, G. Monegato, Numerical integration of
square brackets denotes the number of omitted node

- . . " functions with a very small significant support, J. Compult.
Further, in Tables 5—6 we report the relative errors given Appl. Math., 236, 4082-4089 (2012).

by the approaé:h suggested in the Theof@to compute [12] A.H. Stroud, Kwan-Wei Chen, Peano error estimates for

the integrals ! fix)dx, i € {2,3}. Gauss-Laguerre quadrature formulas, SIAM J. Numer. Anal.,
. - 9, 333-340 (1972).
Finally, we have used the formul&8)(to compute the [13] G. Sze@, Orthogonal Polynomials, Amer. Math. Soc.,

integral . Providence, R.1.23, (1975).
| (fswy) = / x0e=Zdx,
0

with y = 0 and f5(x) = x}% . In Table 7 we report the
relative errors for different choices of the sequences |
{1} }nen @and{Tn}nen. Heren denotes the number of the  §
gaussian nodes while the numbers in square bracketss
denote the numbers of the omitted nodes near 0 and
sufficiently large, respectively.

All the numerical experiments are carried out with
MATLAB/R2011a.
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