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Abstract: The amount of information stored in databases is constantly increasing. Databases contain multiple records, each of them
divided in several data fields. And some of these fields may contain sensitive information, so there is a need to prevent free access to
it. Traditionally, cryptography has been used to conceal this kind of information, but conventional cryptography has the problem that,
for queries that need access to a specific field for all the records, it requires the decryption of the entire data field. Order preserving
encryption ensures that comparing encrypted data returns the same result than comparing the original data. This permits to order
encrypted data without the need of decryption. In this way, databases using this kind of cryptosystems admit encrypted record fields
while still allowing searches and range queries. In this paper, we propose an order preserving symmetric encryption scheme whose
encryption function is recursively constructed. Starting with the trivial order preserving encryption function, which is the identity, a
function is constructed in a series of steps by making it more and more complex until the the desired security level is reached. The
security of the proposed cryptosystem is also analyzed.
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1 Introduction

Cryptography allows hiding sensitive information from
potential attackers. However, the usage of encrypted
information can respond to different needs which require
different cryptographic techniques. In particular, this
work focuses on database privacy.

Notice that database security is essential to prevent
unauthorized access to sensitive information. As an
example, a real incident is exposed in The Toronto
Star [1], which explains that a bank sold a hard disk on
eBay, forgetting to delete plain data stored from hundreds
of its customers; the buyer, upon realizing this, tried to
resell the disk on eBay.

In secure databases, sometimes one needs to permit
certain operations, or queries, that would require the
database to decrypt all the fields necessary to perform
them, e.g. obtaining records with a field ranging between
two values.

Order Preserving Encryption (OPE) allows to perform
order comparisons directly on encrypted data, so it
ensures that ciphertexts retain the order established
between plaintexts. So, if a field is encrypted in this way,
SQL range queries [2] can still be done efficiently, while

ensuring that an attacker with access to the information
stored in the database cannot obtain information about the
data in clear.

Consider an encrypted medical database and suppose
we want to know how many patients are in an age group.
If the cryptosystem used is not order preserving,
performing the query requires that we encrypt each of the
values belonging to the range of the age group and then
compare them with the corresponding fields in the
encrypted database, or, alternatively, decrypt the age field
for all the records, and then test whether each one is
within the range of the query (if the encryption algorithm
is not deterministic only the second alternative is valid).

But, if the database uses OPE, we need to encrypt
only the first and last values of the range, and test how
many records have their encrypted age field within these
two encrypted values.

This becomes even more necessary if, instead of
working with integer valued fields, such as age, we work
with real valued fields. E.g. in the medical database
example, we could be interested in the percentage of
patients whose blood sugar level is over a certain
threshold.

∗ Corresponding author e-mail:santi@matematica.udl.cat

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080501


2086 S. Mart́ınez et. al. : Securing Databases by using Diagonal-based Order...

In essence, an OPE scheme is a strictly increasing
function that goes from the set to which data belongs to
the set to which the ciphertexts belong. Its security relies
in that this function, while maintaining order, looks as
random as possible [3]. This will ensure that only those
with an exact knowledge of how to compute it (which is
determined by the cryptosystem key) will be able to invert
it.

OPE schemes are necessarily symmetric, since the
knowledge of the encryption function permits to
approximate, to any precision, the decryption function.
Notice that, if an attacker with the capability of
encrypting arbitrary values wants to decrypt a particular
value, she may perform a dichotomic search for the target
value, until a satisfactory approximation is reached.

In this paper, we present the Diagonal-based Order
Preserving Encryption scheme (DOPE). The scheme has
been designed for environments in which there exists the
possibility that an intruder can get access to the encrypted
database but cannot encrypt/decrypt arbitrary values.
Notice that, even if the access control system of the
database manager is responsible of deciding which data
can be accessed by each user, in general, direct access to
the contents of the database cannot always be prevented,
due to security breaches.

From the attackers perspective, knowing that a
specific field has been ciphered with order preserving
encryption provides an useful source of information if
they can get access to stored data. If an attacker knows the
corresponding encrypted values for a set of values, she
may try to approximate the decryption function. So, if she
gets access to new encrypted values, she can compute an
approximation of the original values.

E.g., an attacker knowsx1, x2, y1, y2 and the fact that
y1 = Enc(x1) and y2 = Enc(x2); if she obtains an
encrypted valuey, with y1 < y < y2, she then knows that
its decryption,x, lies somewhere in the interval(x1,x2).
Moreover, she can interpolate (using, for example, linear
interpolation) a valuex′ whose closeness tox will depend
on the predictability of the function and the distance
between the values she knew beforehand.

Thus, order preserving encryption functions should
minimize this problem ensuring a high level of
unpredictabilityby being as random as possible [3].

The rest of the paper is structured as follows:
Section2, provides some related works. In Section3, the
DOPE scheme is presented. Section4, discusses the
security of this cryptosystem. Experimentation results are
provided in Section5. Finally, conclusions are given in
Section6.

2 Related Work

During the last decade, the topic of Order Preserving
Encryption has been attracting research interest, with
several scientific papers published on this subject.

An initial approach by Bebek is found in [4], where the
author proposes a method that allows the encryption of an
integerp by adding thep first values of a secure pseudo-
random sequence of positive integers. However, the cost of
encrypting ann bits valuep is exponential inn (since it is
linear in p).

Moreover, suppose thatµ is the mean of the
distribution followed by the pseudo-random sequence (for
a uniform distribution on the interval[1,Max], µ will be
Max+1

2 ), then the functionf (x) = µx would approximate
the encryption function (andf−1(x) = x/µ would
approximate the decryption function). This
approximation will be less useful ifµ is close to 0 and the
distribution has a large standard deviation.

In [5], Ozsoyoglu et al. propose the use of
polynomials for the encryption of integers. These
polynomials must have no extremum in the interval at
which the data belongs. However, it may be impossible to
obtain the formula for the inverse of some polynomials.
So, the authors propose to compose various invertible
polynomials, so that decryption consists on applying the
inverses in reverse order.

To avoid integer overflow errors, they propose
controlling the coefficients and using logarithms, which
requires dealing with floating point values and precision
errors. This makes the election of the key a complex
process. Besides, decryption is harder than encryption,
since several roots must be computed.

Agrawal et al. [6] propose the transformation of data
that follows certain statistical distribution into ciphertexts
which maintain the order and follow a different
distribution, chosen by the user.

In order to generate the encryption function, they use
all the data to be encrypted and a list of samples of the
target distribution. Hence, key generation time is linear in
the size of the database. When encrypting, data is first
transformed in a uniform distribution, which is then
transformed into the target distribution. To do this, they
split data in several partitions or buckets and use linear
interpolation inside them.

If a large amount of data is added to the database, after
a key has been generated, it may be necessary to choose a
new key and re-encrypt the database.

In [7], Lee et al. propose the COPE scheme (Chaotic
Order Preserving Encryption). In this scheme, bucket
order is randomized according to the key, so, in fact, it is
not a pure OPE scheme. The fact that buckets must be
sorted to answer a query may affect negatively the cost.

Boldyreva et al. [3] presented an order preserving
encryption function relying on the use of a sampling
algorithm for the hypergeometric distribution (according
to Yum and Lee [8], the sampling algorithm is called less
than logM + 3 times on average, whereM is the size of
the plaintext space).

They point out the fact that, for integer OPE functions,
the output set is larger than the input set (which permits
that no two clear values correspond to the same encrypted
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value). So, a function from{1, ...,M} to{1, ...,N}, N>M,
can be uniquely determined by the selection of a subset (of
sizeM) of the output set which contains the encryption of
the values of the input set.

More importantly, they proposed a criteria that a good
OPE function must fulfill, based on the different ways this
selection can be performed (which is related to the
negative hypergeometric distribution), noting that,
basically, the function must be “as random as possible”,
while maintaining order.

Mart́ınez et al. proposed two methodologies designed
to analyze the quality of an order preserving encryption
function [9]. The first one is based on the conversion of
the encryption function to a sequence to be analyzed as a
noise signal. The second one is based on the differences
between the encryption function and the approximations
an attacker may compute from a small set of known
(correct) points. These differences are called the
unpredictabilityof the function. Both techniques consider
encryption functions accepting data belonging to the real
interval [0,1]. But other functions can be mapped
accordingly in order to perform the analysis.

An order preserving cryptosystem, whose encryption
function derives from the noise analysis technique, was
also presented.

In this paper, we propose a more efficient order
preserving encryption scheme. In order to evaluate the
security of our approach we will quantify its randomness
by means of theunpredictabilitymetrics.

3 Diagonal Order Preserving Encryption

This section presents our Diagonal-based Order
Preserving Encryption scheme (DOPE), including some
basic considerations (Section3.1), the construction of the
encryption function (Section3.2), the encryption and
decryption processes (Section3.3), and the key selection
criteria (Section3.4).

3.1 Basic Considerations

We propose a cryptosystem in whichx1 < x2 ⇔Enc(x1)<
Enc(x2), wherex1, x2 are two clear values, so, the order of
clear data corresponds to the order of encrypted data. In
fact, this is the defining property of a strictly increasing
function.

In our scheme, input and output data belong to the real
interval [0,1]. For this reason, before encryption is done,
if input data belongs to a different set it must be mapped
into it. Any interval, even the wholeR, can be mapped into
[0,1] in some way.

Notice that the mapping should be reversed after
decryption in order to recover the original data. So, a
good mapping function is one that ensures a somewhat

uniform distribution over the interval[0,1] (so that
entropy is maximized) while being easy to invert.

This mapping process could lead to some information
loss (e.g. when the values to be encrypted are character
strings), since we are limited by the number of bits of the
floating point type used. This problem can be overcome
by storing the field in duplicate, using the proposed
cryptosystem and an auxiliary one which ensures
unambiguous decryption.

Since this mapping is specific to the particular field
being encrypted, we will consider this a solved problem,
thus focusing in the problem of encrypting values from
[0,1] whose distribution is somewhat uniform.

3.2 Key Generation

As has been said, we need a strictly increasing function for
encryption. Like all the previous methods, the proposed
cryptosystem is also symmetric.

The encryption functions considered in this work are
piecewise linear functions, where the number of line
segments is related to their security level.

In order to specify one of these functions, we use, as
defining points, the list of points at which the function
changes direction. This list of points is the key of the
cryptosystem.

The key generation algorithm proceeds by constructing
the encryption function in a series of steps. Each step will
add a point to the list. The steps are grouped by levels, so
that at each level, the number of points is roughly doubled
(see Figure1).

Initially, the function is the identity defined from
(0,0) to (1,1). Notice that the final order preserving
function will be enclosed in the square with these two
points as opposite vertices (Figure1a). Moreover, every
OPE function going through these two points will cross
the descending diagonal, the one from(0,1) to (1,0),
exactly once.

So, we randomly choose a point on this diagonal and
refine the encryption function, so that it goes through the
new point (Figure1b). This point allows to define two
rectangles whose sides are parallel to the axes and with
one vertex at the new point and another at one of the
extreme points.

Similarly to the initial case, any OPE function going
through the current list of points, will be enclosed by the
two rectangles, and will cross both descending diagonals
once. So, the process can be repeated by refining, at each
step, one of the two current function pieces.

Figure 1c shows the result of taking a point on the
descending diagonal of each of the two rectangles and
refining the encryption function so that it goes through the
new points. This corresponds to the second level of the
algorithm. The function is now composed by four line
segments.
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(a) Start: 2 extreme points. (b) Level 1: 3 points.

(c) Level 2: 5 points. (d) Level 3: 9 points.

Figure 1: Key generation steps.

The third level refines the function by choosing four
new points inside the rectangles corresponding to the
current line segments. The result is shown in Figure1d.

The process will continue until the desired security
level l . The obtained encryption function will have 2l +1
points (or 2l line segments). Notice that the obtained
function will be increasing.

3.3 Encryption and Decryption

The encryption algorithm requires two steps. It takes as
input the cryptosystem key (as a list of points sorted by
their abscissas) and the valuex to be encrypted.

The first step consists on a dichotomic search to locate
the position of the clear value in the list of abscissas. If
there exists a point whose abscissa coincides with the
value, then the encrypted value will be the ordinate of this
point. Otherwise, there are two key points,
Pi = (xi ,yi),Pj = (x j ,y j), whose abscissas precede and
succeed the clear value,xi < x< x j .

Then, the second step consists on a linear interpolation
between these two points to obtain a point whose abscissa
is the value to encrypt. So, the ordinate is computed with
the formula:

y= yi +(x−xi)
y j −yi

x j −xi
. (1)
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This ordinate is the encryption ofx.
The decryption algorithm is almost identical. Its input

is the cryptosystem key and the valuey to be decrypted.
Note that, although the key points are sorted by their

abscissas, using the ordinates yields, obviously, the same
order.

So, the algorithm proceeds with the same two steps.
First, a dichotomic search to locate, in this case, the
position of the encrypted value in the list of ordinates.
Second, the interpolation of the preceding and succeeding
points to obtain a point whose ordinate is the value to
decrypt:

x= xi +(y−yi)
x j −xi

y j −yi
. (2)

The corresponding abscissa is the decryption ofy.

3.4 Restrictions on Key Selection

In this section, we will show the problems that arise from
an unrestricted key generation process and how to solve
them. In order to do this, some example functions have
been generated. Their keys have 4095 random points plus
the two extreme points(0,0) and (1,1). In a real
environment, larger keys are recommended, but due to the
way key generation works, the difference between keys of
4097 points and larger ones is not noticeable with the
naked eye.

Figure2 shows two of these functions. Each key point
belongs to the descending diagonal of a rectangle defined
in a lower level (as proposed in Section3.2). The point
selection follows a uniform distribution along the length
of the diagonal.

While the function in Figure2a seems more or less
acceptable (although it has some deficiencies), the one in
Figure2b is clearly problematic. It has some flat intervals
and jumps, and has the additional problem of being too
low during most of its range.

In Figure3, there are two more extreme examples. We
call an encryption function of this kind adegenerate
function. It can come in two flavors: a function that
remains almost flat for most of its domain, approaching
the point (1,0), and then grows abruptly to the point
(1,1), as can be seen in Figure3a, or a function that
grows fast, approaching the point(0,1), and then remains
almost flat until reaching the point(1,1), similar to
Figure 3b. Degenerate functions are less random, and,
because of this, less useful.

Moreover, taking such functions for the encryption
process could be a problem since they may carry a greater
information loss in the least significant bits. Notice that,
in jumps, there is a risk of two consecutive key points
having the same abscissa (since floating point numbers
have a limited number of bits). In the same way, flat
intervals may involve consecutive key points with equal
ordinates. These two facts would hinder encryption and

decryption since the interpolation would require a
division by zero.

However, if no restriction is applied to the selection of
the random points that compose the key, we obtain these
functions quite often. So we must modify the key
generation process in order to avoid jumps, flat intervals
and degenerate functions in general.

Flat intervals and jumps are caused by the selection of
points that belong to the borders of the rectangles defined
in the previous level, i.e. choosing a point near the
extremes of the diagonal. Notice that, if the new random
point is one of the extremes, the new rectangles defined
by this point and the previous ones are flat (one vertical
and one horizontal). So, even if there are more points to
be selected inside them, the shape will remain unaltered.

In order to prevent this, the rectangles will leave a gap
on each side to ensure that the points of the higher levels
will have enough space. This gap is decreased at each
level and does not affect the level 0 points, so, the two
first points will still be(0,0) and(1,1). The third point to
be generated will be somewhere in the diagonal of a
rectangle from(g1,g1) to (1− g1,1− g1), with g1 being
the initial (level 1) gap. If the selected point is on the
upper-left extreme of the diagonal,(g1,1− g1), then we
must place the next point in a rectangle from(g2,g2) to
(g1 − g2,1 − g1 − g2). This rectangle has a width of
g1 − 2g2, so, in order to avoid flat rectanglesg2 must be
less thang1/2. We propose to usegn+1 = gn/gd, where
gd is a constant that controls the shrinking of the gaps. So,
we need to find the appropriate value for the initial gap,
g1, and the gap shrinking factor,gd. Figure4 shows this
situation.

We will now consider the evolution of the thinner
permitted rectangles obtained when the selected points
are on the extremes of the diagonals. The level 1
permitted rectangle (which happens to be a square) has a
width and height of 1−2g1, so, 0≤ g1 < 1/2. Then, the
level 2 rectangles will have a width and height of, at least,
g1 − 2g2 = (gd − 2)g1/gd, so, gd > 2. The level 3
rectangles have a minimum width and height of
g2 − 2g3 = (g1 − 2g2)/gd = (gd − 2)g1/g2

d. And, in
general, the minimum width and height of a levell > 1
permitted rectangle will begl−1−2gl = (gd −2)g1/gl−1

d .

The problem is that it is impossible to maximize all
these rectangles at the same time, since, in order to
maximize the rectangles of a levell , we need to leave
small gaps in this level, which then, if the point is chosen
on the extreme, makes the levell + 1 rectangles smaller.
We suggest to use the valuesg1 = 2−7 and gd = 4.
Section4.2will justify the choice of these values.

This restriction prevents flat intervals and jumps in the
encryption function, so this variation will minimize the
appearance of degenerate cases while ensuring a random
appearance.
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Figure 2: Examples of unrestricted encryption functions with a 4097 points key.
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Figure 3: Examples of degenerate encryption functions witha 4097 points key.

4 Security of the Encryption Function

OPE functions are strictly increasing functions, so anyone
who knows some of its points (i.e. plaintext-ciphertext
pairs) can approximate them.

So, better OPE schemes are those in which these
approximations are further from the correct function.
In [9], we provided a method to evaluate OPE functions
following this criterion.

4.1 Attack Scenario

We consider the following scenario: an attacker has
gained access to the database and knows all the encrypted

values. Besides, she knows the corresponding clear values
for some of the encrypted values. Notice that, she knows,
at least, that the function goes through the points(0,0)
and(1,1).

With these premises, the attacker may interpolate the
decryption function between the points she knows, and
use it to obtain an approximation of the clear values
corresponding to the rest of the database values.

In order to evaluate the security of the proposed
cryptosystem, we will use the unpredictability metric [9]
to test how good is an approximation of the function when
the attacker knows some of the points it goes through.

This metric is based on the continuous mean absolute
error (MAE) between the decryption function and its
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Figure 4: Gaps to prevent equality of consecutive abscissas
and ordinates. In this graphicg1 = 1/4, gd = 4.

approximation (so a larger value implies less predictive
power). It corresponds to the average of the difference
between the decryption function and the approximation
over all the function domain.

In order to simplify the analysis, the points known to
the attacker (which we call the attacked points) are
considered with equally spaced ordinates. Thus, for any
quantity of attacked points a specific unpredictability may
be computed. Then, we can evaluate the general
unpredictability of the encryption function by computing
the specific unpredictabilities for different sets of attacked
points.

In the worst case, when the attacker can approximate
the function very well, the MAE will tend to 0. In general,
for an attack withn+1 known points with equally spaced
ordinates, the maximum MAE is12n. It is achieved when
the decryption function is a staircase whose only jumps are
at the attacked points. However, functions of this kind are
not adequate, since they collapse most of the clear values
to a small set of possible encrypted values.

So, the best functions are those whose specific
unpredictabilities for most sets of attacked points
correspond to MAEs that lie somewhere in between the
minimum (0) and the maximum (12n). In [9], we proposed
that the recommended MAEs should be the average of the
two values: 1

4n.

4.2 Security Analysis Results

We have analyzed the unpredictability of the DOPE
scheme, using different key lengths and combination of
parameters (g1 and gd). For each one, we have created
five different keys, and, for each key, we have considered

several approximations of the decryption function with
different amounts of attacked points. The number of
attacked points considered has been 2, 3, 4, 6, 9, 13, 19,
28, 42, 63, 94, 141, 211, 316, 474, 711, 1066 and 1599
(each value is 1.5 times the previous value, rounding
down).

With these experiments we have found the best
combination of parameters in order to achieve more
unpredictable encryption functions. The experiments
performed show that, as stated in Section3.4, the best
initial gap and gap shrinking factor areg1 = 2−7 and
gd = 4. From now on, when we refer to DOPE we will
assume this configuration.

Figures5, 6 and7 show the averaged MAEs that have
been obtained. Each line (except the two higher ones)
corresponds to a particular key length. The horizontal axis
corresponds to the number of attacked points and the
vertical axis corresponds to the average of the MAE
between five pairs of decryption function and
approximation. Both axis are in logarithmic scale.

The two higher lines are the maximum and
recommended MAE. So, the higher the lines, the more
unpredictable are the functions. But, if a function
approached the maximum MAE it would mean that it is a
staircase.

In general, the larger the key, the less predictable is the
function. This is more noticeable when the attacker knows
a bigger amount of points.

Figure 5 compares DOPE with the unrestricted
gapless DOPE (withg1 = 0). The fact that the restricted
version avoids degenerate functions is what causes its
better results. Notice that, with a null initial gap, any
subsequent gap will also be zero regardless of the value of
gd.

Although, we have experimented with several
combinations of parameters, here we will only show the
graphics of those that were closer to the chosen
configuration.

Figure 6 shows the unpredictability of DOPE with
smaller and larger initial gaps, but with the same gap
shrinking factor. As can be seen, both configurations give
results that are worse than standard DOPE.

Figure 7 shows the unpredictability of DOPE with
smaller and larger gap shrinking factors, but with the
same initial gap. In this case, the results obtained are also
worse than those of the standard version of DOPE.

This means that the corrections performed in order to
avoid degenerate functions and the selection of parameters
are fairly accurate.

5 Experimentation

In order to test the performance of the presented
cryptosystem, we have conducted a set of experiments.
We present the experimentation results obtained from the
implementation of the proposed DOPE scheme. Different
amounts of points have been used to test the efficiency of
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Figure 5: Unpredictability of DOPE and gapless DOPE.
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Figure 6: Unpredictability of DOPE with different initial gaps.

key generation and encryption/decryption, when key
length increases.

Table1 shows the results for numbers of points of the
form 2l , for 4 ≤ l ≤ 27, using a 2.4 GHz computer. It
reflects the number of points of the key, its resulting size,
the key generation time, GenT, and the
encryption/decryption time,EncT. The values to encrypt
and the key points coordinates have been represented as
64 bit floating point numbers (typedouble in the C
language), so, the size of a key, in bytes, is 16 times its
number of points.

In order to obtain the key generation time, we
generated ten encryption functions for each value ofl and
computed the mean of their generation times.

To measure the encryption time of a single value, each
of the functions has been used to encrypt a large set of
one million values between 0 and 1. Then, we computed
the mean of the encryption times of these sets, divided by
the number of values they contain (i.e. 1000000), so that it
corresponds to the encryption time of a single value.

Key generation times are linear in the number of
points, especially for larger keys. For very small ones
there are some overheads associated which increment
their generation times.

As expected, encryption times are logarithmic in the
number of points. And decryption times (not shown) were
almost identical. Even encrypting a large amount of data
at once, the obtained times are acceptable. E.g. with a key
of 65537 points (l = 16), the time needed to encrypt one
million values would be of about 62.9 ms (1000000·62.9
ns). So, the cryptosystem is considerably fast.

Key generation is much slower than the encryption of
a single value, but it only takes place occasionally, so its
cost is affordable. A key of 65537 points will take 3.85 ms
to generate, and will occupy 1 MiB.

If key size were a problem, the seed used in the pseudo-
random generator can be stored in its place. This way, it
can be generated again whenever needed (maintaining it
in memory the maximum time possible, in order to reduce
the number of regenerations). Obviously, the seed (or the
key) must be stored in a secure way.
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Figure 7: Unpredictability of DOPE with different gap shrinking factors.

Table 1: DOPE Experimentation Results

l Num. Points Key Size GenT EncT
4 17 272 B 18.1 µs 15.39 ns
5 33 528 B 19.1 µs 18.89 ns
6 65 1.02 KiB 21.0 µs 22.05 ns
7 129 2.02 KiB 23.9 µs 25.78 ns
8 257 4.02 KiB 31.4 µs 29.39 ns
9 513 8.02 KiB 47.6 µs 34.72 ns

10 1025 16 KiB 74.5 µs 39.08 ns
11 2049 32 KiB 131.1 µs 43.27 ns
12 4097 64 KiB 247.6 µs 47.58 ns
13 8193 128 KiB 490.4 µs 51.30 ns
14 16385 256 KiB 976.9 µs 55.09 ns
15 32769 512 KiB 1.922 ms 59.30 ns
16 65537 1 MiB 3.853 ms 62.92 ns
17 131073 2 MiB 6.954 ms 66.76 ns
18 262145 4 MiB 15.92 ms 71.25 ns
19 524289 8 MiB 32.65 ms 77.22 ns
20 1048577 16 MiB 64.84 ms 84.77 ns
21 2097153 32 MiB 129.5 ms 91.89 ns
22 4194305 64 MiB 258.7 ms 99.28 ns
23 8388609 128 MiB 515.5 ms 108.1 ns
24 16777217 256 MiB 1.026 s 121.0 ns
25 33554433 512 MiB 2.050 s 149.9 ns
26 67108865 1 GiB 4.091 s 194.6 ns
27 134217729 2 GiB 8.166 s 220.7 ns

6 Conclusions

In this paper, a new order preserving encryption (OPE)
scheme has been proposed. It encrypts data belonging to
the real interval[0,1], so, if input data belongs to a
different set, it must be mapped into it. With this
cryptosystem, encryption and decryption times are
logarithmic in the number of key points, which has been
demonstrated by means of an experimentation.

A security analysis has been performed in order to test
the unpredictability of the obtained functions and select
the best parameter configuration for the restrictions in key
generation. This allowed to avoid degenerate cases, so that
the desired entropy can be obtained.

An attacker with access to the contents of a database
with some fields using OPE can correctly order the
records by these fields (which is unavoidable, as this is
the defining property of OPE). In order to avoid the
exposition of sensitive information, an important
recommendation is to encrypt all the fields, using one
cryptosystem or another depending on the type of queries
that should be allowed.

Thus, if a field is not searchable, it should be encrypted
using a non-deterministic cryptosystem, so that same data
produce different ciphertexts. E.g.: a database of people
may contain a ‘haircolor’ field, but disallow searches of
the type “haircolor=chestnut”.

For fields in which searches by equality are allowed
but interval searches are not permitted (or make no
sense), a deterministic cryptosystem must be applied.
E.g.: ‘city of birth’ could be encrypted in this way.

Fields in which interval searches are allowed should
be ciphered with an OPE scheme, like the proposed in this
paper. E.g.: ‘yearof birth’ should be encrypted in this
way, in order to be able to search by filtering age ranges.

As said in Section3.1, both in the conversion of the
data that needs to be encrypted into a floating point value,
and in the encryption process, the least significant bits can
be modified, introducing small errors. In most situations,
this will not be a problem, e.g. for the field ‘yearof birth’
belonging to the integer interval[1890,2145], only the first
8 bits will be relevant, so that small errors will not affect
at all. However, with fields requiring more precision, some
information could be lost.

In situation in which these small errors can be a
problem, it is a good practice to store the field in
duplicate, using the proposed cryptosystem and an
auxiliary one which ensures unambiguous decryption.
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Finally, if the database contains multiple sortable
fields, it is recommended to encrypt each of them with a
distinct key, to hinder the approximation of the encryption
function by attackers with access to plaintext-ciphertext
pairs of different fields.
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