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1 Introduction

Nonlinear partial differential equations (NPDEs) are
widely used to describe complex phenomena in various
fields of science, especially in physics. Therefore solving
nonlinear problems play an important role in nonlinear
sciences. Many effective methods of obtaining explicit
solutions of NPDEs have been presented such as the
tanh-function method and its various extension [1,2], the
Jacobi elliptic function expansion method [3], the
homogeneous balance method [4], the F-expansion
method and its extension [5], (G′

G )-expansion method [6],
the modified simple equation method [7,8], the
semi-inverse variational principle [9] the solitary wave
ansatz method [10,11,12,13,14,15,16,17,18,19,20,21]
and so on. It is very interesting to note that the solitary
wave ansatz method has been successfully applied to
many kinds of NLPDEs with constant and varying
coefficients, such as, for example, theK(m,n) equation
[14,21], the BBM equation [20], the B(m,n) equation
[17], the nonlinear Schrodinger’s equation [14,18] and
many others. This new method has been proved by many
to be reliable, effective and powerful. The aim of this
paper is to extend the solitary wave ansatz method of
finding new soliton solutions for the Coupled

Klein-Gordon-Schrodinger equation

utt − c2uxx +u+ |v|2 = 0, (1)

ivt + vxx +uv = 0. (2)

and the Coupled quadratic nonlinear equation

iut +uxx −u+u∗v = 0, (3)

2ivt + vxx −αv+
1
2

u2 = 0. (4)

2 Non-Topological solitary wave

In this section, we will calculate the non-topological
solitary wave solution of the Coupled
Klein-Gordon-Schrodinger equation and the Coupled
quadratic nonlinear equation, using the solitary wave
ansatz.

2.1 Non-Topological soliton solution of the
Coupled Klein-Gordon-Schrodinger equation

For solving the Coupled Klein-Gordon-Schrodinger
equations (1) and (2) we use a solitary wave ansatz of the
form

u(x, t) = A1sechp1τ , (5)

v(x, t) = A2sechp2τeiη , (6)
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where
τ = B(x−qt). (7)

and

p1 > 0, p2 > 0

for solitary waves to exist. Here, in (5) and (6)A1,A2 and
B are free parameters, whileq is the velocity of the
soliton. The unknown exponentsp1 and p2 will be
determined, The phase component of (6) is given by

η =−κx+ωt +θ , (8)

Whereκ represents the soliton frequency,ω is the soliton
wave number, andθ is the phase constant. Thus from (5)
and (6) we have:
utt = p2

1q2A1B2sechp1τ
−p1(p1+1)q2A1B2sech(p1+2)τ , (9)

uxx = p2
1A1B2sechp1τ

−p1(p1+1)A1B2sech(p1+2)τ (10)

|v|2 = A2
2sech2p2τ , (11)

vt = {p2qA2Bsechp2τtanhτ + iωA2sechp2τ}eiη , (12)

vxx = {p2
2A2B2sechp2τ

−p2(p2+1)A2B2sech(p2+2)+2iκ p2A2Bτ
sechp2τtanhτ −A2κ2sechp2τ}eiη , (13)

uv = A1A2sech(p1+p2)τ , (14)
Now substituting (9)-(14) into (1) and (2) gives

(p2
1A1B2(q2− c2)+A1)sechp1τ

−p1(p1+1)A1B2(q2− c2)sech(p1+2)τ
+A2

2sech2p2τ = 0, (15)

ip2A2B(q+2κ)sechp2τtanhτ
+(−ωA2+ p2

2A2B2−A2κ2)sechp2τ
−p2(p2+1)A2B2sech(p2+2)τ
+A1A2sech(p1+p2)τ = 0. (16)

By setting the imaginary part to zero in (16) we get

κ =−q
2

(17)

By balancing the power ofsech(p2+2)τ andsech(p1+p2)τ in
(16) we have:

p1 = 2.

By balancing the power ofsech(p1+2)τ and sech2p2τ in
(15) we get:

p2 = 2.

Now, from (15) and (16), setting the coefficients of the
linearly independent functionssech(pi+ j)τ to zero, where
i = 1,2 and j = 0,2, gives

p2
1A1B2(q2− c2)+A1 = 0,

−p1(p1+1)A1B2(q2− c2)+A2
2 = 0,

−ωA2+ p2
2A2B2−A2κ2 = 0,

−p2(p2+1)A2B2+A1A2 = 0.

Solving the above equations yields

B =

√

−1
4(q2− c2)

,A1 =−3
2

1
q2− c2 ,

A2 =
3
2

√

−1
q2− c2 ,ω =

−1
q2− c2 − q2

4
,

which shows that the solitary waves will exist for

1
q2− c2 < 0.

Thus, the solitary wave solution of the Coupled
Klein-Gordon-Schrodinger equation is given by

u(x, t) = −3
2

1
q2− c2 sech2(x−qt),

v(x, t) =
3
2

√

−1
q2− c2 sech2(x−qt)

× e
i( q

2x+( −1
q2−c2 −

q2
4 )t+θ)

.

2.2 Non-Topological soliton solution of the
Coupled quadratic nonlinear equation

For solving the Coupled quadratic nonlinear equations (3)
and (4) we use a solitary wave ansatz of the form

u(x, t) = A1sechp1τeiη , (18)

v(x, t) = A2sechp2τe2iη , (19)

where

τ = B(x−qt). (20)

and

p1 > 0, p2 > 0

for solitary waves to exist. Here, in (18) and (19)A1,A2
andB are free parameters, whileq is the velocity of the
soliton. The unknown exponentsp1 and p2 will be
determined, The phase component of (18) and (19) is
given by

η =−κx+ωt +θ , (21)

Whereκ represents the soliton frequency,ω is the soliton
wave number, andθ is the phase constant. Thus from (18)
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and (19) we have:

ut = {p1qA1Bsechp1τtanhτ + iωA1sechp1τ}eiη , (22)

uxx = {p2
1A1B2sechp1τ − p1(p1+1)A1B2

sech(p1+2)τ +2iκ p1A1Bsechp1τtanhτ
−A1κ2sechp1τ}eiη , (23)

u∗v = A1A2sechp1+p2τeiη , (24)

vt = {p2qA2Bsechp2τtanhτ +2iωA2

sechp2τ}e2iη , (25)

vxx = {p2
2A2B2sechp2τ − p2(p2+1)A2B2

sech(p2+2)τ +4iκ p2A2Bsechp2τtanhτ
−4A2κ2sechp2τ}e2iη , (26)

u2 = A2
1sech2p1τe2iη , (27)

Now substituting (22)-(27) into (3) and (4) gives

ip1A1B(q+2κ)+ sechp1τtanhτ +(−ωA1

+p2
1a1B2−A1)sechp1τ − p1(p1+1)A1B2

sech(p1+2)τ +A1A2sech(p1+p2)τ = 0, (28)

2ip2A2B(q+2κ)sechp2τtanhτ +(−4ωA2

+p2
2A2B2−4A2κ2−A2α)sechp2τ − p2(p2+1)

A2B2sech(p2+2)τ +
1
2

A2
1sech2p1τ = 0. (29)

By setting the imaginary part to zero in (28) and (29) we
get

κ =−q
2

(30)

By balancing the power ofsech(p1+2)τ andsech(p1+p2)τ in
(28) we have:

p2 = 2.

By balancing the power ofsech(p2+2)τ and sech2p1τ in
(29) we get:

p1 = 2.

Now, from (28) and (29), setting the coefficients of the
linearly independent functionssech(pi+ j)τ to zero, where
i = 1,2 and j = 0,2, gives

−ωA1+ p2
1A1B2−A1κ2−A1 = 0,

−p1(p1+1)A1B2+A1A2 = 0,

−4ωA2+ p2
2A2B2−4A2κ2−A2α = 0,

−p2(p2+1)A2B2+
1
2

A2
1 = 0.

Solving the above equations yields

B =

√

ω +κ2+1
4

, A1 =
3√
2
(ω +κ2+1),

A2 =
3
2
(ω +κ2+1), ω =−1

3
(
3
4

q2+α −1)

which shows that the solitary waves will exist for

ω +κ2+1> 0.

Thus, the solitary wave solution of the Coupled quadratic
nonlinear equation is given by

u(x, t) =
3√
2
(ω +κ2+1)sech2τei( q

2x− 1
3 (

3
4q2+α−1)t+θ),

v(x, t) =
3
2
(ω +κ2+1)sech2τe2i( q

2x− 1
3 (

3
4q2+α−1)t+θ).

3 Topological solitary wave

In this section, we will calculate the topological solitary
wave solution of the Coupled Klein-Gordon- Schrodinger
equation and the Coupled quadratic nonlinear equation,
using the solitary wave ansatz.

3.1 Topological soliton solution of the Coupled
Klein-Gordon-Schrodinger equation

To start off, the hypothesis is taken to be

u(x, t) = A1tanhp1τ , (31)

v(x, t) = A2tanhp2τeiη , (32)

where
τ = B(x−qt). (33)

and

p1 > 0, p2 > 0

for solitary waves to exist. Here, in (31) and (32)A1,A2
andB are free parameters, whileq is the velocity of the
soliton. The unknown exponentsp1 and p2 will be
determined, The phase component of (32) is given

η =−κx+ωt +θ , (34)

Whereκ represents the soliton frequency,ω is the soliton
wave number, andθ is the phase constant. Thus from (31)
and (32) we have:

utt = A1p1B2(p1−1)q2tanhp1−2τ −2p2
1q2A1B2

tanhp1τ +A1p1B2(p1+1)q2tanhp1+2τ ,
uxx = −A1p1B2(p1−1)tanhp1−2τ +2p2

1A1B2tanhp1τ
−A1p1(p1+1)B2tanh(p1+2)τ ,

|v|2 = A2
2tanh2p2τ ,

vt = {−p2qA2Btanhp2−1τ + p2qA2Btanhp2+1τ
+iωA2tanhp2τ}eiη ,

vxx = {p2A2B2(p2−1)tanhp2−2τ +(−2A2p2
2B2

−A2κ2)tanhp2τ + p2(p2+1)A2B2tanh(p2+2)τ
−2iκ p2A2Btanhp2−1τ +2ip2A2Btanhp2+1τ}eiη ,

uv = A1A2tanh(p1+p2)τ ,
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Now substituting the above expressions into (1) and (2)
gives

A1p1B2(p1−1)(q2+ c2)tanhp1−2τ +(−2p2
1A1B2

(q2+ c2)+A1)tanhp1τ +A1p1B2(p1+1)(q2+ c2)

tanhp1+2τ +A2
2tanh2p2τ = 0, (35)

−ip2A2B(q+2κ)tanh(p2−1)τ + ip2A2B(q+2κ)
tanh(p2+1)τ +(−ωA2−2A2p2

2B2−A2κ2)tanhp2τ
+A2p2B2(p2−1)tanh(p2−2)τ + p2(p2+1)

A2B2tanh(p2+2)τ +A1A2tanh(p1+p2)τ = 0. (36)

By setting the imaginary part to zero (36) we get

κ =−q
2

(37)

By balancing the power oftanh(p1+2)τ and tanh(p1+p2)τ
in (36) we have:

p1 = 2.

By balancing the power oftanh(p1+2)τ and tanh2p2τ in
(35) we have:

p2 = 2.

Now, from (35) and (36), setting the coefficients of the
linearly independent functionstanh(pi+ j)τ to zero, where
i = 1,2 and j = 0,±1, gives

−2p2
1A1B2(q2+ c2)+A1 = 0,

A1p1B2(p1+1)(q2+ c2)+A2
2 = 0,

−ωA2−2A2p2
2B2−A2κ2 = 0,

p2(p2+1)A2B2+A1A2 = 0.

Solving the above equations yields

A1 =
−3

4(q2+ c2)
, A2 =

3
4

√

1
(q2+ c2)

B =

√

1
8(q2+ c2)

, ω =− 1
(q2+ c2)

+
q2

4
.

Hence, finally the topological solitary wave solution to the
Coupled Klein-Gordon-Schrodinger equation is given by

u(x, t) =
−3

4(q2+ c2)
tanh2[

√

1
8(q2+ c2)

(x−qt)],

v(x, t) =
3
4

√

1
(q2+ c2)

tanh2[

√

1
8(q2+ c2)

(x−qt)]

×e
i(− q

2x+(− 1
(q2+c2)

+ q2
4 )t+θ)

.

3.2 Topological soliton solution of the Coupled
quadratic nonlinear equation

To start off, the hypothesis is taken to be

u(x, t) = A1tanhp1τeiη , (38)

v(x, t) = A2tanhp2τe2iη , (39)

where
τ = B(x−qt). (40)

and

p1 > 0, p2 > 0

for solitary waves to exist. Here, in (38) and (39)A1,A2
andB are free parameters, whileq is the velocity of the
soliton. The unknown exponentsp1 and p2 will be
determined, The phase component of (38) and (39) is
given by

η =−κx+ωt +θ , (41)

Whereκ represents the soliton frequency,ω is the soliton
wave number, andθ is the phase constant. Thus from (38)
and (39) we have:

ut = {−A1p1Bqtanhp1−1τ + p1qA1Btanhp1+1τ
+ iωA1tanhp1τ}eiη ,

uxx = {A1p1B2(p1−1)tanhp1−2τ +(−2p2
1A1B2

−A1κ2)tanhp1τ +2iA1κ p1tanhp1+1τ}eiη ,

u∗v = A1A2tanh(p1+p2)τeiη ,

vt = {−p2qA2Btanhp2−1τ + p2qA2Btanhp2+1τ
+2iωA2tanhp2τ}e2iη ,

vxx = {p2A2B2(p2−1)tanhp2−2τ +(−2A2p2
2B2

−4A2κ2)tanhp2τ + p2(p2+1)A2B2tanh(p2+2)τ
−4iκ p2A2Btanhp2−1τ +4iκ p2A2B

tanhp2+1τ}e2iη ,

u2 = A2
1tanh2p1τe2iη ,

Now substituting the above expressions into (3) and (4)
gives

−iA1p1B(q+2κ)tanhp1−1τ + ip1A1B(q+2κ)
tanhp1+1τ +(−ωA1−2p2

1A1B2−A1κ2−A1)tanhp1τ
+A1p1B2(p1−1)tanhp1−2τ
+A1p1B2(p1+1)tanhp1+2

+A1A2tanhp1+p2τ = 0, (42)

−2ip2A2B(q+2κ)tanh(p2−1)τ +2ip2A2B(q+2κ)
tanh(p2+1)τ +(−2ωA2−2A2p2

2B2−4A2κ2−αA2)

tanhp2τ +A2p2B2(p2−1)tanhp2−2τ

+p2(p2+1)A2B2tanh(p2+2)τ +
1
2

A2
1tanh2p1τ = 0. (43)

By setting the imaginary part to zero in (42) and (43) we
get

κ =−q
2

(44)

By balancing the power oftanh(p1+2)τ and tanh(p1+p2)τ
in (42) we have:

p1 = 2.

By balancing the power oftanh(p1+2)τ and tanh2p2τ in
(43) we have:

p2 = 2.
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Now, from (42) and (43), setting the coefficients of the
linearly independent functionstanh(pi+ j)τ to zero, where
i = 1,2 and j = 0,±1, gives

−ωA1−2p2
1A1B2−A1κ2−A1 = 0,

A1p1B2(p1+1)+A1A2 = 0,

−2ωA2−2A2p2
2B2−4A2κ2−αA2 = 0,

p2(p2+1)A2B2+
1
2

A2
1 = 0.

Solving the above equations yields

A1 = −3
4
(κ2+ω +1), A2 =

3
4

√

−2(κ2+ω +1),

B =

√

−1
8(κ2+ω +1)

, ω = (3κ2+α −1)

which shows that the solitary waves will exist for

κ2+ω +1< 0

Thus, the solitary wave solution of the Coupled quadratic
nonlinear equation is given by

u(x, t) = −3
4
(κ2+ω +1)tanh2[

√

−1
8(κ2+ω +1)

(x−qt)]ei( q
2x+( 3

4q2+α−1)t+θ),

v(x, t) =
3
4

√

−2(κ2+ω +1)tanh2[

√

−1
8(κ2+ω +1)

(x−qt)]e2i( q
2x+( 3

4q2+α−1)t+θ),

4 Conclusion

In this paper, we have used the solitary wave ansatz
method to obtain the topological and non-topological
soliton solution of the Coupled
Klein-Gordon-Schrodinger and Coupled quadratic
nonlinear equations. It should be noted that solitary wave
ansatz method is a powerful efficient method to obtain
exact topological and non-topological soliton solutions
for nonlinear partial differential equations.
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