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1 Introduction Klein-Gordon-Schrodinger equation
Ut — C2U+ U+ V]2 =0, (1)
iVt + Vyx + UV = 0. (2)
and the Coupled quadratic nonlinear equation

Nonlinear partial differential equations (NPDEs) are
widely used to describe complex phenomena in various 1
fields of science, especially in physics. Therefore solving 2iv; + vy — av+ —u? = 0. 4)
nonlinear problems play an important role in nonlinear 2

sciences. Many effective methods of obtaining explicit

solutions of NPDEs have been presented such as the Non-Topological solitary wave

tanh-function method and its various extensiare], the

Jacobi elliptic function expansion method],[ the | this section, we will calculate the non-topological
homogeneous balance method],[the F-expansion solitary wave solution of the Coupled
method and its extensioB]| (%)-expansion methodd], Klein-Gordon-Schrodinger equation and the Coupled
the modified simple equation method7,$], the  quadratic nonlinear equation, using the solitary wave
semi-inverse variational principled] the solitary wave ansatz.

ansatz method 100,11,12,13,14,15,16,17,18,19,20,21]

and so on. It is very interesting to note that the solitary

wave ansatz method has been successfully applied t@.1 Non-Topological soliton solution of the

many kinds of NLPDEs with constant and varying Coupled Klein-Gordon-Schrodinger equation
coefficients, such as, for example, tkém,n) equation

[14,21], the BBM equation 20], the B(m,n) equation  For solving the Coupled Klein-Gordon-Schrodinger

[17], the nonlinear Schrodinger’s equatiof4[18] and  equations (1) and (2) we use a solitary wave ansatz of the
many others. This new method has been proved by manyyrm

to be reliable, effective and powerful. The aim of this HPL
paper is to extend the solitary wave ansatz method of(%t) = Assech™. ®)
finding new soliton solutions for the Coupled v(x,t) = AysechP2te (6)

iU+ Uy —U+U*v=0, 3)
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where Solving the above equations yields
T=B(x—qt) (1)
and -1 3 1
B= A= —7 )
p1>0,p2>0 4R —c?) 20— 2
for solitary waves to exist. Here, in (5) and (&), A, and )
B are free parameters, whilg is the velocity of the  , _ 3/ -1 -1 o
soliton. The unknown exponentp; and p, will be 2\ 2 —c?’ g2—c2 4’

determined, The phase component of (6) is given by

8

Wherek represents the soliton frequenay,s the soliton
wave number, an@ is the phase constant. Thus from (5)
and (6) we have:

W = PoqPA1B?sechPit

n=—-kx+wt+0,

—pa1(p1+ 1)gPA;B?sech(Pr2) 7, 9)
U = P2A1B?sechPiT
—p1(p1+ 1)AsB?sech(P1+2)t (10)
V|2 = Adsech?Pt, (11)
W = {p20A:BsechP?Ttanht + iwAssechP 1}, (12)
Vix = { P3AB%sechP2t
—p2(p2+ 1)A2B?sech(P2+2) 4 2ik poABT
sechP2ttanht — Aok ?sechP27 e, (13)
uv = AjApsech(Pripa) T, (14)
Now substituting (9)-(14) into (1) and (2) gives
(PiALB?(g? — ¢?) + Ag)sechPit
—p1(p1+ 1)A1B?(¢? — ¢?)sech(P12)t
+A3sech?P21 = 0, (15)
ip2A2B(g+ 2k )sechP2Ttanht
+(—wA2 + P3AB? — Agk?)sechP2T
—p2(p2+ 1)AzB?sech(P2+2)
+A1Azsech(PrP2) T = 0, (16)

By setting the imaginary part to zero in (16) we get

__19
=72
By balancing the power aech(P2+2) t andsech(PLP2) T in

(16) we have:

17

p1=2
By balancing the power ofech(P1t2 1 and sech?f2t in
(15) we get:
p2=2.
Now, from (15) and (16), setting the coefficients of the
linearly independent functiorsech(Pi+i)t to zero, where
i=212andj=0,2 gives
pIAIB? (7 — ¢?) + AL =0,
—p1(pL+ DABA (¢ — %) + A =0,
— WA + P3AB? — Agk? =0,
—p2(p2+1)AoB* + A1A; = 0.

which shows that the solitary waves will exist for

Thus, the solitary wave solution of the Coupled
Klein-Gordon-Schrodinger equation is given by
u(x,t) = ngiiczsechz(x—qt),
v(x,t)fg 27_1(:zsech2(x—qt)
xei(%er(ﬁf%)He)

2.2 Non-Topological soliton solution of the
Coupled quadratic nonlinear equation

For solving the Coupled quadratic nonlinear equations (3)
and (4) we use a solitary wave ansatz of the form

u(x,t) = AgsechPrte, (18)
V(x,t) = ApsechP21e?, (19)
where

T=B(x—qt). (20)
and
p1> 07 p2 > 0

for solitary waves to exist. Here, in (18) and (1&), A
andB are free parameters, whitgis the velocity of the
soliton. The unknown exponentp; and p, will be
determined, The phase component of (18) and (19) is
given by

n=—KxX+wt+0, (22)

Wherek represents the soliton frequenay,s the soliton
wave number, an@ is the phase constant. Thus from (18)
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and (19) we have:
U = {p1gA1BsechPi ttanht +iwAysechP t}e,  (22)
Uo = { PYALB?sechP T — py(py + 1)AcB?
sech(P1+2) 7 4 2ik py Ay BsechP! ttanht

*AlKZSGChplT}ein, (23)

u*v = AjApsechPrtP2 rei”, (24)
Vi = {p2gAsBsechP2Ttanht + 2iwA;

sechp2r}ez”7, (25)

Vix = { P3AsB?sechP2 T — po(pp 4 1)AsB2
sech(P2+2) T 4 4ik poAsBsechP2 Ttanht
—4Aok2sechP21}e (26)
u? = AZsech?Pire?n, (27)
Now substituting (22)-(27) into (3) and (4) gives
ip1A1B(g+ 2k) + sechPittanht + (—wA;
+p3ayB? — Ag)sechPt — py(py + 1)A1B?
sech(P#2) 1 4 A Apsech(PLPe) T — (28)
2ip2A2B(g+ 2k)sechP2ttanht + (—4wA;
+P3AB? — 4Aok? — Apar)sechP?T — pp(p2 + 1)

AoB2sech(P2+2) 7 4 %Aﬁsechzi’lr =0. (29)
By setting the imaginary part to zero in (28) and (29) we
get
__1
K= > (30)

By balancing the power afch(P1+2) T andsech(P+P2) T in
(28) we have:

p2=2.
By balancing the power ofech(P2t2 1 and sech®Pit in
(29) we get:

p1=2

Now, from (28) and (29), setting the coefficients of the
linearly independent functiorsech(Pi+1) 1 to zero, where

i=12andj=0,2, gives
— WA + p2AIB? — Ask? — A1 =0,
—p1(p1+1)A1B? + AjA, = 0,
—4wA + PaAB? — 4AsK? — Aol =0,
1
— pz( p2 + l)AzBZ + éAi =0.

Solving the above equations yields

w+Kk2+1 3 2
B=/———— A= —(w 1
7 , A1 \@( +K +1),

_3 2 _ 135
Az—é(w-i-K +1), w= 3(4q +a-—1)

which shows that the solitary waves will exist for

w+K2+1>0.

Thus, the solitary wave solution of the Coupled quadratic
nonlinear equation is given by

uxt) = 32(w+ k2 + 1)sech?re (I3 (30P+a-1)t+6)

V2

V(xt) = g(er K2+ 1)sech?re? (3 (id+a-1t+6),

)

3 Topological solitary wave

In this section, we will calculate the topological solitary
wave solution of the Coupled Klein-Gordon- Schrodinger
equation and the Coupled quadratic nonlinear equation,
using the solitary wave ansatz.

3.1 Topological soliton solution of the Coupled
Klein-Gordon-Schrodinger equation

To start off, the hypothesis is taken to be

u(xt) = AjtanhPit, (31)
V(x,t) = AgtanhP27€e (32)
where

T=B(x—qt). (33)
and
p1>0, p2>0

for solitary waves to exist. Here, in (31) and (3®), A,
andB are free parameters, whibtpis the velocity of the
soliton. The unknown exponentp; and py will be
determined, The phase component of (32) is given

n=-—-Kx+wt+0, (34)

Wherek represents the soliton frequenay,s the soliton

wave number, anf is the phase constant. Thus from (31)

and (32) we have:
W = A1p1B%(p1 — 1)gPtanhPL 21 — 2pfgPA. B
tanhPL T + Ay p1B?(py + 1)gPtanhP2r,
U = —A1 p1B2(p1 — 1)tanhPr =27 4 2p2A;BtanhPL T
—A1p1(p1+1)B?anhip; +2)T,
V|2 = Adtanh?P2T,
vt = {—p2gA2BtanhP2 11 + pgAsBtanhP2 1t
+iwAgtanhP2r}e",
Vix = { P2A2B?(p2 — 1)tanhP2 21 4 (—2A,p3B?
—Aok?)tanhP2T 4 py(p2 4 1)AzB%tanh(P2+2)
—2iKk p2AzBtanhP> 11 + 2ipyAsBtanhP2 171,
uv = AAgtanh(PrtP2) T
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Now substituting the above expressions into (1) and (2)where

gives
A1 p1B?(p1 — 1)(q + c)tanhPr 27 4 (—2p2 A B?
(9P +¢2) + Ap)tanhPL T + Ay p1B?(p1 + 1) (P + ¢2)
tanhP1+21 4 Adtanh?21 = 0,
—ip2A2B(q+ 2k )tanhP2= Y1 4 ip,AsB(q + 2K)
tanh(P U1 4 (— Ay — 2A0p3B? — Ak ?)tanhP2T
+A2p2B?(pz — Dtanh(P22 1 4 po(pp + 1)
AB%tanh(P2+2) 1  AjAstanh(PrHP2) T — 0,

By setting the imaginary part to zero (36) we get

K=—1

2

By balancing the power dfanh(P1t2 1 andtanh(P1tP2) ¢
in (36) we have:

(35)

(36)

(37)

p1=2.
By balancing the power dfanh(Prt2 1 andtanh?P2t in
(35) we have:

P2 = 2.
Now, from (35) and (36), setting the coefficients of the

linearly independent functiortsanh(P 1) to zero, where
i=12andj=0,%+1, gives

—2pfA1B3 (P +¢%) + A =0,
A1p1B?(p1+1) (0 +¢%) + A3 =0,
— WAy — 2A;p3B% — Agk? =0,
P2(P2+ 1)A2B? + AAp = 0.
Solving the above equations yields

A3 a8 1
YT aered) P A\ (@)
“\Ve@red) YT (@) 4

Hence, finally the topological solitary wave solution to the
Coupled Klein-Gordon-Schrodinger equation is given by

— 1
— 2 _
U(X,t) - 4(q2+C2)tanh [ 8(q2+C2)( qt)]7
3 1 , 1
V(th) Z ( 2+CZ) h [ 8(q2+02)( _qt)]
X(;(fgxﬂf(ﬁqzifﬁa )t+6)

3.2 Topological soliton solution of the Coupled
quadratic nonlinear equation

To start off, the hypothesis is taken to be
u(x,t) = AgtanhPrre",
v(x,t) = AgtanhP2re?",

(38)
(39)

T =B(x—qt). (40)
and
pl > 07 p2 > 0

for solitary waves to exist. Here, in (38) and (3®),A;
andB are free parameters, whibpis the velocity of the
soliton. The unknown exponentp; and py will be
determined, The phase component of (38) and (39) is
given by
n=-—-kx+wt+0, (41)
Wherek represents the soliton frequenay,s the soliton
wave number, anf is the phase constant. Thus from (38)
and (39) we have:
u = {—A;piBatanhP 11 + p;gAsBtanhPi 1t
+ iwAtanhPiT}e",
e = {A1p1B?(p1— 1)tanhPr 21 + (—2p3A.B?
—Ark?)tanhPLT 4 2i A k pytanhPr T }e",
u*v = AjAgtanh(PrtP2) 1l

vt = {—p2gAz2BtanhP2~11 + pgAsBtanhP2 1t
+2iwAgtanhP21 e,
Vix = { P2AoB?(p2 — )tanhP? 27 4 (—2A,p3B?

—4Aok?)tanhP2T + po(p2 + 1)AgB%tanh(P2+2) 1
—4iKk ppAsBtanhP2 11 4 dik poAsB
tanhP2 17 en,

u? = Altanh®Prre?n,

Now substituting the above expressions into (3) and (4)
gives

—iALp1B(q+ 2k)tanhPr 11 +ip AL B(q + 2K)

tanhP1 17 4 (—wA; — 2p?A1B2 — Ajk? — Ag)tanhPit
+A;p1B?(py — 1)tanhP1—21

+A1p1B?(p1 + 1)tanhPt2

+AAstanhPrtPer = 0,

—2ip2AoB(q+ 2k )tanh(P2~ Y 1 4 2i p2AsB(q 4 2K)
tanh(P2HU 1 4 (—20A; — 22 p3B? — 4Aok? — aAp)
tanhP21 + Ay p2B?(p2 — 1)tanhP2 21

(42)

1
+p2(p2+ 1)AB?tanh(P2+2) 1 4 EAitanthir =0. (43)

By setting the imaginary part to zero in (42) and (43) we
get q

K:—é

By balancing the power dfanh(P1t2 1 andtanh(P1+P2) ¢
in (42) we have:

(44)

p1=2.
By balancing the power dfanh(P1*2 1 andtanh??2t in
(43) we have:

P2 = 2.
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