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Abstract: To deal with the problems of non - response, one parameter classes of imputation techniques have been suggested and
their corresponding point estimators have been proposed. The proposed estimator is more efficient than several other estimators. A
design based approach is used to compare the proposed strategy with existing strategies. Theoretical results have beenverified through
empirical studies handling real data set examples.
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1 Introduction:

Incomplete data or non - response in the form of missingness,censoring or groupings are troubling issues for many data
sets. Statisticians have recognized for some time that failure to account for the stochastic nature of incompleteness or non
- response can spoil the nature of data . There are several factors that affect the non - response rate in any particular
inquiry. Hansen and Hurwitz (1946) were the first to deal withthe problem of incomplete samples in mail surveys. Mail
surveys or telephone surveys are commonly used by bureaucratic or business organizations because of their low cost . In
respect of non - response, Rubin (1976) defined two key concepts: Missing at random (MAR) and Observed at random
(OAR).

1.1 Missing at random (MAR):

The data are MAR if the probability of observed missingness pattern given the observed and unobserved data does not
depend on the values of the unobserved data. It will, therefore, include cases where the enumerator is not able to contact
the respondents only by chance and had he been able to contact, the data would have been collected. For example when
the information is kept on punched cards, the non - response due to the accidental loss of one or more cards is of the first
category. Although this illusion is rather outdated in the world of modern computing but still there is a chance that some
data files may get damaged due to virus attacks. This type of non - responce is called random non - response.

1.2 Observed at random (OAR):

The data are OAR, if for every possible value of the missing data, the probability of the observed missingness pattern,
given the observed and unobserved data, does not depend on the values of the observed data.The combination of MAR
and OAR is called MCAR. In other words, the MCAR can be defined as f (A|D)= f (A) for all D, where D is the data
matrix and A is the missing data indicator matrix(ai j = 1 if di j is reported,ai j = 0 otherwise). Heitjan and Basu (1996)
have also considered the problem of distinguishing betweenMAR and MCAR. Note that the concept of OAR is vestige
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of Rubin (1976). Now a days people jump right from MAR to MCAR,which is a logical step and quite easy to follow .
Among other methods to deal with the problem of non - response, one of the popular method is to impute the non -
response units by suitably selected respondent units of thepopulation.

Let Ȳ be the mean of the finite population U of size N. A simple randomsample without replacement (SRSWOR),
s, of sizen is drawn from U to estimatēY . Let r be the number of responding units out of sampled n units. Let the set
of responding units be denoted by A and that of non - responding units is denoted byAC. For every uniti ∈ A, the value
yi is observed. However for the unitsi ∈ AC, theyi values are missing and hence for them imputed values are derived .
We assume that imputation is carried out with the aid of an auxiliary variable X such thatXi, the value of X for unit i, is
known and positive for everyi ∈ s = A∪ AC. In other words, the dataxi : i ∈ s are known.

2 Notations:

Let U = U1,U2, · · ·UN be the finite population of size of N and the character under study be denoted by Y. It is assumed
that information on an auxiliary variate X (with the known population mean) is available at the beginning of the survey.
A simple random sample (without replacement)s of n units is drawn from the population. Let the number of responding
units out of sampled n units be denoted by r, the set of responding units by A, and the non responding unit byAC. For
every uniti ∈ A the valueyi observed, but for the unitsi ∈ AC, theyi values are missing and for them imputed values are
derived. The imputation is carried out with the aid of a quantitative auxiliary variate X, such thatXi, the value of X for
unit i, is known for eachi ∈ s.

The following notations are used hereafter:
X̄ , Ȳ :The population mean of the variates X and Y respectively.
x̄n: The sample mean of X for the sample of size n.
ȳr: The mean of the variable Y for the set A.
ρyx: The correlation coefficient between the variates Y and X.
S2

X , S2
Y : The population mean squares of X and Y respectively.

CX , CY : The coefficient of variation of X and Y respectively.

3 Some imputation methods:

Some classical methods of imputation, which are available and commonly used, are as follows :

3.1 Mean method of imputation:

Under this method, the study variate after imputations takes the form,

y.i =

{

yi if i ∈ A
ȳr if i ∈ Ac (1)

Under this method of imputation, the point estimator of the population mean̄Y is given by

ȳs =
1
n ∑

i∈s
y.i = ȳr (2)

Where

ȳr =
1
r ∑

i∈A

y.i
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3.2 Ratio method of imputation:

y.i =

{

yi if i ∈ A
b̂xi if i ∈ Ac (3)

Under this method of imputation, the point estimator of the population mean̄Y is given by

ȳRAT = ȳr
x̄n

x̄r
(4)

Where

x̄n =
1
n ∑

i∈s
xi, x̄r =

1
r ∑

i∈A

xi

and

b̂ =
∑i∈A yi

∑i∈A xi

3.3 Compromised method of imputation:

Singh and Horn (2000) proposed the compromised imputation procedure, where the study variate after imputation takes
the form

y.i =

{

α
n
r

yi +(1−α) b̂xi if i ∈ A

(1−α)b̂xi if i ∈ Ac
(5)

Whereα is a suitably chosen constant, such that the variance of the resultant estimator is minimum. In this case
the information from the imputed values for the responding units is also used in addition to that from non - responding
units.Thus the point estimator of the population mean underthe above imputation method becomes,

ȳCOMP = α ȳr +(1−α)ȳr
x̄n

x̄r
(6)

On similar lines, Ahmed et al. (2006) proposed several new imputation techniques by introducing some unknown
parameters and hence proposed the corresponding estimators for estimating the finite population mean̄Y .

4 Proposed methods of imputation:

Motivated with Bahl and Tuteja (1991), we here propose the following exponential - type method of imputation

y.i =















k
n
r

yi +(1− k)ȳr exp

(

X̄ − x̄r

X̄ + x̄r

)

i f i ∈ A

(1− k)ȳr exp

(

X̄ − x̄r

X̄ + x̄r

)

i f i ∈ Ac
(7)

Which may be termed as exponential - type compromised imputation .

The point estimator of the population meanȲ under the proposed method of imputation is

ȳET = kȳr +(1− k)ȳrexp

(

X̄ − x̄r

X̄ + x̄r

)

(8)

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


214 A. K. Singh et. al. : Exponential - Type Compromised Imputation...

4.1 Properties of the proposed estimator ȳET :

The bias B(.) and mean square error M(.) of the estimator ¯yET up to the first order of approximations is derived under the
following transformations:

ȳr = Ȳ (1+ e1), x̄r = X̄(1+ e2)

and
x̄n = X̄(1+ e3)

such that
|ei|< 1 ∀ i = 1,2,3

Hence we have

E(ei) = 0, i = 1,2,3, ; E(e2
1) =

V (ȳr)

Ȳ 2 , E(e2
2) =

V (x̄r)

X̄2 , E(e2
3) =

V (x̄n)

X̄2

Under the above transformations the estimator takes the following form :

ȳET = kȲ (1+ e1)+ (1− k)Ȳ(1+ e1)exp

{

−
e2

2

(

1+
e2

2

)−1
}

(9)

Now we have the following theorems,

4.2 Theorem

The bias of the proposed estimator ¯yET to the first order of approximations is given by

B(ȳET ) = (1− k)

(

1
r
−

1
N

)

Ȳ

[

3
8

C2
X −

1
2

ρY XCXCY

]

(10)

Proof: we have

B(ȳET ) = E [ȳET − Ȳ ] = E

[

kȲ (1+ e1)+ (1− k)Ȳ(1+ e1)exp

{

−
e2

2

(

1+
e2

2

)−1
}

− Ȳ

]

(11)

Writing the expression of ¯yET in terms of e′is, expanding the right hand side of the above expression, taking
expectations and collecting the terms up to the first order ofapproximations, we get the expression for bias of the
estimator as given in (10)

4.3 Theorem

The mean square error of the proposed estimator up to the firstorder of approximations is given by

M(ȳET ) =

(

1
r
−

1
N

)

Ȳ 2
[

C2
Y +

(1− k)2

4
C2

X − (1− k)ρYXCXCY

]

(12)

Proof:
By the definition of mean square error we have

M(ȳET ) = E [ȳET − Ȳ ]2

Now using the expression given in equation (9) for ¯yET , expanding the terms and taking expectations and retaining
the terms up to the first order of approximations we get expression for mean square error as given in equation (12)

c© 2014 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.3, No. 2, 211-217 (2014) /www.naturalspublishing.com/Journals.asp 215

4.4 Minimum mean square error of ȳET

The mean square error of ¯yET as given in (12) is a function of unknown constant k. Therefore , it is natural to search for an
optimum value of k, such that the mean square error of the proposed estimators becomes minimum . Hence differentiating
equation (12) with respect to k and equating to zero we get optimum value ofk as

k = 1−2ρYX
CY

CX
(13)

4.5 Theorem

Putting the value of k as given in equation (13) in the equation (12) the minimum mean square error of ¯yET is derived as

M(ȳET )min =

(

1
r
−

1
N

)

Ȳ 2[C2
Y (1−ρ2

XY )
]

(14)

In order to compare the proposed estimator ¯yET with the imputed estimators ¯yr, ȳRAT andȳCOMP, we give below the
expression of bias and mean square error of these estimators. We have

B(ȳr) = 0; V (ȳr) =

(

1
r
−

1
N

)

S2
Y (15)

B(ȳRAT ) =

(

1
r
−

1
n

)

Ȳ
[

C2
X −ρXYCYCX

]

(16)

M(ȳRAT ) =

(

1
n
−

1
N

)

SY
2+

(

1
r
−

1
n

)

[

S2
Y +R2S2

X −2RSXY
]

(17)

B(ȳCOMP) = (1−α)

(

1
r
−

1
n

)

Ȳ
[

C2
X −ρXYCYCX

]

(18)

M(ȳCOMP) =

(

1
r
−

1
N

)

Ȳ 2C2
Y +

(

1
r
−

1
n

)

Ȳ 2[(1−α)2C2
X −2(1−α)ρXYCXCY

]

(19)

and

M(ȳCOMP)opt. = M(ȳRAT )−

(

1
r
−

1
n

)(

1−ρYX
CY

CX

)2

Ȳ 2C2
X (20)

Where

αopt = 1−ρYX
CY

CX

5 Comparison of mean square errors:

On the basis of expressions of mean square errors of the proposed estimator ¯yET with those of estimators ¯yr , ȳRAT and
ȳCOMP, we can observe the efficiency of the proposed estimator.

5.1

Comparing expressions (12) and (15), we observe that

M(ȳET )min <V (ȳr)

when

k > 1−4ρXY
CY

CX
i f k < 1 (21)
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and

k < 1−4ρXY
CY

CX
i f k > 1 (22)

Further it can be seen thatM(ȳET )min is always smaller than V(ȳr)

5.2

Comparing expression (14) and (17), it is easy to see that

M(ȳET )min < M(ȳRAT )

if

Ȳ 2
[(

1
r
−

1
n

)

(CX −ρYXCY )
2+

(

1
n
−

1
N

)

ρ2
Y XC2

Y

]

> 0 (23)

Which is always true . Hence the estimator ¯yET is always precised than the ratio method of imputation underoptimality
condition (13)

5.3

Finally comparison of the proposed imputation stratagy maybe made with the compromised imputation strategy proposed
by Singh and Horn (2000) . Using expression (14) and (20) we observe that,

M(ȳCOMP)opt −M(ȳET )min = Ȳ 2
(

1
n
−

1
N

)

ρ2
Y XC2

Y (24)

Which is always true .Thus it can be concluded that it is always advisable to prefer exponential-type imputation strategy
over compromised imputation strategy.

6 Empirical Study

For the empirical study of the proposed strategy with other existing imputation strategies we consider the following data.

Population 1. (Source: Mukhopadhyaya (2000)) .The population consists of N=20 jute mills. The data show the
numbers of labourers X (in thousands) and quantity of raw materials required Y (in lakhs of bales).
Here we taken=7 andr=5. Further for the data, we have;

X̄=441.95, Ȳ=41.5, S2
Y =95.7368, S2

X=10215.21, CX=0.2286, CY =0.2358, ρXY =0.6521

Population 2. (Source: Giancarlo Diana and Pier Francesco Perri) . The data are taken from the survey of Household
income and Wealth conducted by The Bank of Italy for the year (2002). The survey covers 8,011. Italian households
composed of 22,148 individuals and 13,536 income-earners .In the analysis, we assume the 8,011 households as the
target population on which the household net disposal income (Y) and the number of household income earners (X) are
investigated . The following values are obtained for the considered variables.
N=8011,
we take n = 400, r = 250, Ȳ=28229.43, X̄=1.69, SY =22216.56, SX=0.78, ρY X=0.46

The following tables depicts the bias and mean square errorsof different imputation strategies for the two
populations.

In both the tables, MSEs of ¯yET andȳCOMP are minimum MSEs.
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Table 1: Bias and Mean square errors (for Population. 1)

Estimators Bias MSE
ȳr 0 14.361

ȳRAT 0.0406 12.586
ȳCOMP 0.1394 12.034

ȳET 0.0169 8.2521

Table 2: Bias and Mean square errors (for Population.2)

Estimators Bias MSE
ȳr 0 1912690.2

ȳRAT 1.9449 1767867.7
ȳCOMP 2.499 1756029.1

ȳET 3.1236 1507964.7

7 Conclusions

The tables show that for both the populations, it is advisible to prefer the proposed estimator over other estimators under
consideration. Further it is certainly better than the estimator proposed by Singh and Horn (2000).
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