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Abstract: In this paper we study the motion of curves in 3-dimensiomdlesical spac&2. We derive the evolution equations of
the orthonormal frame and evolution equations for cunestuMoreover, we give some explicit examples of motions ektensible
curves inS® and we determine the curves from their intrinsic equatiousvature and torsion). Then we determine the surfaces that
are generated by the motion of these curves. To visualizetharfaces i3, we use the stereographic projectiorfif.
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1 Introduction string of fixed length inR3 through consideration of the
motion of an arbitrary rigid body along it. Langer and
(Ferline fL7] showed that the dynamics of a non-stretching

The relationships between integrable systems an tex filament inR3 gives the NLS hierarchy.

. . . . r
geometric motions of curves in spaces has been studiet’ Recently, Schief and Rogers2] obtained an

for a long time. Many integrable equations have been ; .
9 Y g 9 xtended Harry Dym equation and the classical

shown to describe the evolution invariants associated Withgine Gordon equation from binormal motions of curves of
certain movements of curves in particular geometric d

: . ; : : tant curvature or torsion.
settings. The dynamics of shapes in physics, chemistr ons ) ;
and biology are modeled in terms of motion of surfaces Goldstein and Petrichd] showed that the celebrated

and interfaces, and some dynamics of shapes are reduc KdV equ'ation ngturally arises from inextensible motion

to motion of plane curves. These models are specified b curves in Euclidean geometry. Nakayama, Segur and
velocity fields, which are local or nonlocal functionals of .adatl RO set up a correspond(_ance between the mKd_V
the intrinsic quantities of curves. In physics, it is very Nierarchy and inextensible motions of plane curves in
interesting to describe motions of patterns such a uclidean geometry. Later, it was also shown that the

interfaces, wave fronts and defect®3]. Applications de dh|e|r<artchy %_4]’ B#r%ers htleralrlchy E.[’6] ?nd
include deformations of thin vortex filaments in inviscid >3Wada-rotera hierarchy I[ natural y arise from
fluids [8,11,24], kinematics of interfaces in crystal inextensible motions of plane curves In centro-affine
growth [1,16] and viscous fingering in a HeleShaw cell geome:ry,l S|r¥£arlty gegmetry %n% affine gef[)metfr;.y,
[25]. The evolution of curves and surfaces has significamreSpec Ively. €y can be regarded as a centro-afliné

applications in computer vision and image processingver3|0n, similarity version and affine version of the

[26] mKdV hierarchy, respectively. Motions of curves &

3 . . . .
In [11], Hasimoto discovered the remarkable fact that‘limol S V\{erle constldgreg tr?y Dotllwa ?ndeS\?ntmﬂt]_.[
the binormal motion of a nonstretching vortex filament anger et al 1§ obtained the system of m eguations

with speed equal to its curvature produces the CubiCfrom inextensible motions of space curves in Euclidean
nonlinear Schrodinger equation via the so-calleg9e0metries. Ngkayama %I".ZZ] showgd that ~ the
Hasimoto transformation. Considering other binormaldemCusmg nonlinear .Schrodlngerlequanon qnd a coupled
motions, Lamb 15] obtained the sine-Gordon and mKdV system qf Kdv equations and the|r'hyperb'ol|c type arise
equatioﬁs by using the Hasimoto transformation.from motions of curves in hyperboloids in4limensional

. . 371
Lakshmanan4] interpreted the dynamics of a nonlinear Minkowski spacer™".
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Recently, the study of motion of inextensible curves Lemma 1.The inner product and the vector product are
has arisen in a number of diverse engineeringgiven by:
applications: Kwon et all2,13] studied the inextensible o V=7 )= (7. B\=(T.N) = (T. B N.B) =0
flows of curves and developable surfaces R’ :-%-y’x %X%’ :>)~,<y’)~,>>< l\f ><78>: -|-< ’V :> '
Moreover, Latifi et al 19] studied inextensible flows of ’ ’
curves in Minkowski 3-space. Definition 5.The curvaturé(8) of the curvey(3) is defined
Gopal and Lakshmanad() considered the dynamics -
of moving curves in three-dimensional Minkowski space o PO — v
R21, k®=/[{(T"+7T'+9 [= T +7I.
This paper is outlined as follows: In section 2, we give

an introduction to curves in spherical spagé. In Definition 6.The unit normal vector to the curvg$) is

sections 3 and 4, we study the motion of curve§irby defined by: S
computing the evolution equations for the Serret-Frenet N = T+ V
frame and the evolution equations of curvature and k
torsion of these curves. In section 5, we study the motion s yyma 2 The curvaturé<(§) of the curvey(3) satisfies the
of inextensible curves if°. following
Finally, in section 6, we give some explicit examples R(S) = (T +7,N). 1)

of the motion of inextensible curves 8% and we get the

curvature and torsion of these curves. Then we determin®efinition 7.The torsion7($) of the curvey($) is defined
and draw the surfaces that are generated by the motion dfy: o

these curves. 7(8) = (N',B). 2

Lemma 3The torsionT(8) of the curvey($) satisfies the

2 Preliminaries following

» | . | (9 = 7 de7,7.7.7"). 3)
Definition 1.Spherical 3-space S° is the unique
simply-connected 3-dimensional complete R'erm‘r‘”'a'[emma 4The Frenet Frame for the curve P satisfies

manifold with constant sectional curvaturel. S3 the following:
defined by =M -E, (4)
4 -
y 0 1 0
§% = {(qxexa %) R S ¢ =1} - [T ~10 ko0
=1 whereF = N and M= 0 —R 07
Definition 2.Consider the8—dimensional spherical space B 0 -70

S%inR%. Lety: 1 — S® be a regular parametrized curve in
R*. The arc-length of the curvgwith arbitrary parameter
G e lis defined as

ProofThe vectors {y/,T/,N',B'} can be uniquely
decomposed as follows:

o V=T,
/ ” V | 9 T = 51111: + éj_zN + 5113§—|— 5114?, (5)
Sincey is regular, then we defing> 0by & = ||| = /3. N’ = 81T + 8poN + 838 + 8247,
N N . B = &31T + 83N + 8338 + &z4.
Definition 3.If ||y|| = 1 for all i I, theny = (3) is said to Sa11 + Baoll + daaBS + Sy
be an arc-length parametrized or unit speed parametrizedWe will compute the coefficien@;; wherei = 1,2,3 and
curve. j=1234. o
Since(T,T) =1, then(T’, T) = 0. By the inner product of

Assume that the curvgis parametrized by arc-length and the second equation di(with T, we have

assume thaty’’(9),7'(9)) # 1, where = &. o

Let{y, T,N,B} be the Serret Frenet frame of the curve (T',T) = &,
¥, wherey($) is the position vector of the cunjeandT, N
andB are respectively, unit tangent, unit principal normal
and unit binormal vector field to the curyés).

Definition 4.The Frenet frame i8° is defined by aa=—1, d24=0, d34=0, dp1 = —di2,
o(y.7) = 1, since the curve is if3. 31— —813,  Bgp— —&p3.
T,T) N N B,B) = 1.

.i )= (B,B) = SinceB' L B, and alsc® L T, henceajz = 0. Using @),

B is chosen so that{y,T,N,B is an oriented
orthonormal basis OR“{VSOB y}x T« N. then we havea;s = k. Using (), sodys = T. Hence, the
lemma holds.

thendy; = 0. Similarly, @, = 833 =0.
Using the first property of Lemmad), then we have
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Lemma 5Consider the curvey(§(0)) with arbitrary  where
parameter u= |. Then the Serret-Frenet frame satisfies

v 0 W UV
Fi=/GM-E, 6 =_ [T 5| W 0 ff

o i=1/0 (6) F=lx] - Q|00 ]
whereM andF are given as in4). B -V -f,-¢0

andﬂ: kVV-f—Ug—N, ]FZ =\7§+TU,

. H 3 ~ ~ f £ o~
3 Motions of curves inS £ %( L% fif).
Letjo: | — S®be aregular curve if3. Consider the family The time evolution of the curvature and torsion of the

t
of curvesG; = #(&1) : | x [0,00) — S8, with initial curve ~ curvey(§t) can be given by
o = ¥(§,0). The position vector of a point on the curve at . § ~ L
timet and an arc-length parameteis denoted byy(5,t). K\ _ (25 —fz k n U+ fig (10)
The time parametédris the parameter for the deformation . T &s '
y(5,t) of the curve.

The arc-length of the curvg§,t) is defined as ProofTake theuderivative of {7), then
] ~ = ~ . ~ ~ o~ o~ ~~ ~ o~
§(0,t) = §(6.1)d8&, Wa = \/é((—W)V—F (Ws—kU)T + (TU +Vs)B
(@1 = [ VaE.
where /g = ||V(&,t)||. Thus the element of arc-length is + (kW -+ Us— TV)N>-
ds=/§(0,t)dd, and

PutkW + Us — TV = f; andVs+ TU = f,, so
9 10 o
98~ /g au’

~ /B

=]
il

o = \/§<—v”v;7+ (Wg—KO)T + fiN+ f~2§> . (11

Consider the curve flow (the time evolution of the curve) sincej; = /gjs = /3T, then
specified by the velocity field

0 e e o o= /BT + ). (12)
5t = WT +UN+VB, (7) Y
Since the derivatives with respecti@ridt commute, then

where{y,T,N,B} is the orthonormal Frenet frame to the

curve y(5t), andW,U andV are the velocity vectors in Vit = Ka- (13)
the direction of T,N and B respectively, and they are gypstitute from11) and (L2) into (13), then
functions of the curvatur& and torsiont of the curve, B
and they are also functions of the derivativeskaind T o9 26\ — k)
(including higher order derivatives). ot > ’ (14)
Remark oT .
o —Wy+ fiN + f2B.
eThe derivatives with respect toahdt commute, To compute the time evolution equations for the curvature
9 d d g k and the unit normal vectdy, we take theu derivative of
27 the second equation of4), then
oGdt dtdi JF
eThe derivatives with respect tg f in general do not Tia = \/5((— M)y — (W -+ kf)T + (d_él — LHN
commute,
od dad G o ofr - . =
95dt  dtas 2§ a% ® +tlgst flT)B) (15)
Since . . .
4 Main results Ta = /GTs = \/§(-7+kN).

Taking thet derivative of this equation, then we have
Theorem 1The time evolution of the Serret-Frenet frame

can be written in matrix form as follows: T AN 2y W L (k ~Q_ TN /B
S Tut—\/§<th zgy WT+(kt+k2g U)N-VB).
R=QF, 9) (16)
(@© 2014 NSP
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Since . . Differentiating @) with respect tay, then
Tea = Tat- (17)
Substitute from15) and (L6) in (17), and put Ra= \/§(Q§+Q' M) -F (27)
i(v+ of2 + flf) :E Substitute from 26) and @7) into (25), then the theorem
k 0§ ’ holds.
then Lemma 6If the integrability condition 24) is satisfied,
~ ~ - then we have the PDE systef®).
K_Gg 0N g Gy
Fr g 27 o™ ProofSince
;I\:tl 0§ 2G (18) o
=0y fif + &8 0 10 0 W UV
ot ~ -10 ko]l s |-W O f1f
- - - i o M lo ko] 97| -0-fo0&] ¥
The time evolution equation for the unit binormal vedsor K ur B ¢
to the curvey(5;t) is given as follows: 0 0-70 -V -f,-¢ 0
SinceB=yxT x N, so Then
Bi=% xTXxN+yxTix N+ yxTxN. (19) 00 0 ) ik gg :g
Substitute from ) and the second equation of bothd) N, = 00 k O Qs = —We 0 fis Tos
and (L8) into (19), then 0-k 0 % —Us —f1s 0 &5
3 00-%0 —Vs —fas =& 0
0B 4. & 2o (29)
o = VYT —¢N 20 The Lie brackefM, Q] is given by:
Take theuderivative of €0), then b1, b13 51 4
. . ~ 0f, rn 4 A —b12 0 ba3 b24
B = _\/§<_(TU)V+ Vit —g — k)T M.QlI = —b13 —b2s 0 a4 | (30)
—bya —bps —b3s 0
+ (kfo+ §)N + (Ef)é) (21) where
Since . . . Blzzm, 6132 ]Fl—RW-F f\7, 6142 fz—fu,
Bi=+/§Bs=—+/GTN. . - . - o e o
’ \/_ ° \/— bos=—-U+Tf, bos=kE—-Tf1—V, bzs=—kf,.

Taking thet derivative of this equation, then we have
s Y S
Bt = —/§ (2—gr+ TN+ TR ).

Since By = By, using @1) and @2), then the time
evolution equation for the torsiohof the curvey(§t) is

(22)

(23)

Theorem 2Consider the Serret-Frenet matri§ that
satisfies §) and ). Then we have the integrability
condition:

i — Qs+ M, Q] = (24)
where[M,Q] =M -Q— Q- M is the Lie bracket.
ProofSince . .

Fit = ha. (25)
Differentiating @) with respect td, then
ﬁatZ\/§<Mt+ M-Q+ % )"E- (26)

Substitute from28), (29) and @0) into (24), then we get
the PDE systeml1(0).

5 Motions of inextensible curves irS3

Definition 8.The curvey($t) is said to be inextensible if
FIvs@)| =0, ied=0.

Lemma 7If the curve y(5t) is inextensible, then the
arclength of the curvg(5,t) is preserved.

Lemma 8If the curve y(5t) is inextensible, then the
derivatives with respect t§and t commute.

Lemma 9.The curvey(5t) is inextensible if and only if
Ws == kU .

Lemma 10If the curvey(§t) is inextensible, then the
evolution equations for the curvature and torsiobO),
take the following formula

(0),-(0) () ("&")

(31)
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6 Examples of motions of inextensible curves Example 2f
N Q3 L -
in'S W=U=0 and V =const=a. (35)

We consider the motion of inextensible curve§thThen  Then @2) takes the form:
the system 31) of PDE can be written explicitly in the k — _afs
following form: = —als,

C
—

~ N . e . . _9/(1 1_ 32
k= (1+ K- 2)0 + Ug+ kel — 77 — 27V, =s&lgd-1a).
f = k(Vs+TU) %(%(1—fz>\7+%<m+20§> One solution of this system is

ac ~
(§t) = —C—l (—1+ Cs+ c4tanh(c S+ cot + 03)) ,
2

C
N——— _|_
=

1~ T
+ Vgt —
k™ k #(§1) = G5+ Catanh(cy+ Cat + C3),
(32) (36)
wherec;y, Cp, 3, C4 andcs are constants. Substitute from
Example 1If (35) and @36) into the systems4) and @), and solve them

. - . numerically. Then we can get the family of curn@s=

W=constant=b#0, U=0 and V=constant=a.  {§t), so we can determine the surface that is generated
(33) by this family of curves (Fig2).

Then @2) takes the form:

bl §— afg,

0 (1. . -
_0§<R(1 r)a+br>.

=
I

N

One solution of this system is
. acy

n ij_ —C2
7(§t) = c5+ catanh(c18+ cot +c3),

=
A

51)

<—1+ Cs+ Catanh(ci S+ cot + Cg)) ,

(34)  Fig. 2: The surface that is generated by motion of the family of
curvesC; for §€ [0,2.5),t € [0,2],a=18,¢c1 =1, cp =C3 =
wherecy, ¢, C3, ¢4 andcs are constants. Substitute from 0.1, ¢, = 0.001 andcs = 1. The bold black curves in the surface
(33 and @4) into the systems4) and @), and solve them  represent the family of curves fort = 0,0.4,1,1.8,1.96.
numerically. Then we can get the family of curv@s=
¥(51), so we can determine the surface that is generated
by this family of curves. To visualize this surfaceSi#, we

E le 3f
use the stereographic projection®f (Fig. 1). xample 3 o L
W=U0=0 and V=Kk@&1). (37)
Then @2) takes the form:
R[ = —2fR§ — ng,
~ T 7} ~2 R%
t—ks+a§<(1 )+ R)

One solution of this system is

k(5 t) = 2c;sech{ci 8+ cot +c3),
_ 38
(51) = 22 (39)

Fig. 1: The surface that is generated by motion of the family of 261

curvesG; for§€ [0,2],t €[0,1.5,a=3,b=0.1,c; =c = 0.1, wherec,, ¢y, andcs are constants. Substitute fror@7j

€3 =0,¢4 = 1 andcs = 0. The bold black curves in the surface and @8) into the systems4) and @), and solve them

represent the family of curves; fort =0,0.6,0.9,1.2. numerically. Then we can get the family of curves
G = ¥(5t), so we can determine the surface that is
generated by this family of curves (Fig).

~
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Example 3f
W=const=a, U=0 and V=k+a  (41)
Then @2) takes the form:

k = (a—2f)ks— (a+k)Ts,

~ o 5 1 ~2N /T ~ 1~
Tt = kks+ a_g(ﬁ(l_ °)(k+a)+al+ Ekss).

One solution of this system is
Fig. 3: The surface that is generated by motion of the family of Y

curvesG; for§€[0,2],t €[0,3], ¢; = 1, = 0.2 andcz = 0. The R(§,t) = —2c;sechci§+ cot + ¢3),
bold black curves in the surface represent the family of esGy (5t =-1
fort =0,0.6,1.5,2.8. ’ CZ’ (42)
C1=——,
1T at2
wherecy, ¢; andcz are constants. Substitute frorm1j
Example 4f and @2) into the systems4) and @), and solve them
L numerically. Then we can get the family of curves
W=k J—ke and V=0 39 G = ¥(5t), so we can determine the surface that is
27 ° (39) generated by this family of curves (Fig).

Then @2) takes the form:
- 3 o\ -
k = <1+(§)k -1 >k§+ 5
T A ~ T~
1 = TK S+d_§<ﬁ(§k3+2k$)+?ks)

One solution of this system is

~ o 1. 3
k(st) = —\/§seclﬁﬁsjL 2—\/§t —c),
3 1 3 (40) Fig. 5: The surface that is generated by motion of the family
f(5t) = —\/jsecf(—§+ t—cy), of curvesC; for §€ [0,7], t € [Q,O.S}, a=15,¢c, =001 and .
2 V2§ 22 ¢z = 1. The bold black curves in the surface represent the family

_ _ _ of curvesC; fort = 0,0.12,0.27,0.45.
wherec; is constant. Substitute fron89) and @0) into

the systems4) and @), and solve them numerically. Then
we can get the family of curves; = ¥(§t), so we can Example f
determine the surface that is generated by this family of

curves (Fig4). W=const=a, U=0 and V= g. (43)
Then @2) takes the form:
~ 01 5, L~ 1s,
= =(a"—2T)ks— —kTs
7 ke a(a T)ks 2<%
1. 9 /(1 1
T = —kiks+ == =(1—72 T+ ks .
B T a S+d§<a( T )+ar+ak >
- / One solution of this system is
k(1) = —2c;sechic 8+ cot + C3),
(44)

(st = zi(acl —C2),
Fig. 4: The surface that is generated by motion of the family “ )
of curvesG; for € [0,6], t € [0,3] andcy = 3. The bold black ~ Wherecy, ¢; andcz are constants. Substitute from3j
curves in the surface represent the family of curegor t =  and @4) into the systems4) and @), and solve them
0,0.57,1.47,2.67,2.97. numerically. Then we can get the family of curves
C = ¥(51), so we can determine the surface that is
generated by this family of curves (Fig).
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