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Abstract: In this paper, concepts of information entropy and information granulation-based uncertainty measures are introduced in
incomplete information/decision systems, and based on maximal consistent block technique, some variants of information entropy and
information granulation are presented to measure the discernibility ability of an incomplete information system. Then, some important
properties of them are discussed. From these properties, it can be shown that these proposed measures provide important approaches
to measure the uncertainty ability of different knowledge in incomplete information/decision systems. And relationships among these
measures are established as well. These results will be very helpful forunderstanding the essence of knowledge content and uncertainty
measures in incomplete information systems.
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1 Introduction

Rough set theory [1], as one of the important models of
granular computing, is a popular mathematical framework
to deal with inexact, uncertain or incomplete information
[2,3,4]. The research has recently roused great interest in
the theoretical and applicable fronts, such as pattern
recognition, data mining, machine learning, decision
support, and so on [5,6,7,8]. As one of the most
important issues in rough set theory, uncertainty of a set
and its measures have been widely studied [9,10,11].

It is well known that the information entropy and the
information granulation are two main approaches to
measuring the uncertainty of an information system [12,
13]. The concept of entropy, originally defined by
Shannon in 1948 for communication theory, gives a
measure of the uncertainty about the structure of a system
[14]. It has been a useful mechanism for characterizing
uncertainty in a great diversity of modes and applications
[15,16,17,18]. Shannon’s entropy and its variants have
been used to measure the uncertainty in rough set theory,
and information interpretation of rough set theory was

given in [9,10,19]. Beaubouef et al. [20] addressed
information measures of uncertainty of rough sets and
rough relation databases. Hernandez and Recasens [21]
presented the formulae of joint entropy and conditional
entropy. Miao and Wang [22] applied information entropy
into rough set theory to measure the roughness of
knowledge. However, Shannon’s entropy is not a fuzzy
entropy, and cannot measure the fuzziness in rough set
theory. Liang et al. [23] presented a new information
entropy to measure the fuzziness of rough set and rough
classification. Mi et al. [24] gave a new fuzzy entropy and
applied it to measure the fuzziness of a fuzzy-rough
set-based partition. For rough sets in complete
information systems, an improved uncertainty measure
for rough sets was given in [25], which measured
uncertainty of rough sets using excess entropy. In general,
the information granulation represents the discernibility
ability of an information/knowledge in information
systems. As a powerful mechanism, granulation was first
introduced by Zadeh [26]. It presents a more visual and
easily understandable description for a partition on the
universe. With regard to granular computing, many pieces
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of nice work were accomplished [27,28,29]. Especially,
closely associated with granular computing, several
measures on knowledge in an information system were
proposed and the relationships among these measures
were discussed in [30]. Wierman [31] introduced the
concept of granulation measure to measure the
uncertainty of information. Liang and Li [10] investigated
information granulation in complete information systems,
which has been effectively applied in measuring attribute
significance, feature selection, and decision-rule
extracting, etc. To characterize the average measure of
information granules, Liang and Qian [12] presented the
definition of information granulation, and established the
relationship between the information entropy and the
information granulation. Therefore, it is mentioned that
all these studies are dedicated to evaluating the
uncertainty of a set in terms of the partition ability of
knowledge. However, since the equivalence classes are
only regarded as the unit of information granule of a
complete information system, these measures above
cannot be used to deal with incomplete information
systems. In other words, the information systems
considered in the above works are assumed to be
complete. Researchers know well that the classical rough
set theory is also presented for complete information
systems. It is difficult to generalize the results in complete
information systems to incomplete information systems.
Therefore, it is necessary to extend and hybridize these
measures to deal with incomplete data at present.

An incomplete information system, of which an
incomplete decision system (sometimes called an
incomplete decision table) can be considered as a special
case, is an information system where some objects are
missing data (null values) [32,33]. However, classical
rough set theory is unsuitable for measuring the
uncertainty and attribute reduction of incomplete
information systems and incomplete decision systems. To
address this issue, several interesting and meaningful
extensions to equivalence relation have been proposed,
such as tolerance relations [9,11,12,30,32,33],
neighborhood operators [34,35], others [36,37]. In recent
years, some new uncertainty measure theories and
reduction methods have been developed, which are
capable of reducing the attributes in incomplete
information systems without preprocessing, and do not
require changing the size of the original system. However,
these methods are usually considered as extensions of
classical rough set theory. These extended models are
further analyzed and categorized according to the
relations they employ. But until now, few studies have
addressed the issue of measuring the uncertainty of
knowledge in an incomplete decision system. For
example, Huang et al. [38] introduced an informational
entropy-based rough entropy measure to describe the
uncertainty of knowledge roughness in incomplete
information systems. Another rough entropy measure
based on a generalized rough set covering reduction was
also presented to incomplete information systems [39].

Qian et al. [40] proposed combination entropy and
combination granulation with intuitionistic knowledge
content characteristic in incomplete information systems,
which can be used to measure the uncertainty of an
incomplete information system, however, this measure
has a complex mathematical form. Unfortunately, it
should be noted that all the above mentioned measures of
knowledge are not applicable for incomplete decision
systems, and there are still several problems with these
approaches from theoretical and practical viewpoint that
motivate further developments in this issue. Therefore, it
is desirable to present some uncertainty measures of
knowledge to deal with incomplete data based on
extended rough set models, and a further study on
uncertainty measures suitable for an incomplete decision
system is of both theoretical and practical importance. In
this paper, the main objective is to construct some
information entropy-based uncertainty measures and their
corresponding information granulation in incomplete
information/decision systems, and discuss their important
properties. Furthermore, these proposed measures can
provide important approaches to measure the uncertainty
ability of different knowledge in incomplete decision
systems, and then these results will be very helpful for
understanding the essence of uncertainty measures in
incomplete information systems.

The rest of this paper is organized as follows. Some
preliminary concepts are briefly recalled in Section 2. In
Section 3, concepts of information entropy, mutual
information and conditional entropy in incomplete
information/decision systems are introduced, and then
based on maximal consistent block technique, a variant of
information entropy is presented to an incomplete
information system. Some of their important properties
are induced, and then relationships among these measures
are investigated. In Section 4, information granulation
and conditional information granulation are introduced to
measure the uncertainty of incomplete information/
decision systems, and a variant of information granulation
with maximal consistent block is proposed to measure the
discernibility ability of an information/knowledge in
incomplete information systems. Then, several useful
properties are derived, and relationships among them are
established. Finally, Section 5 concludes the paper.

2 Preliminaries

In this section, we briefly review several basic concepts
that are relevant to this paper. The detailed description of
these theories can be found in [1,10,12].

The notion of information system (IS) has been
studied by many authors as a simple knowledge
representation method. Formally, an information system
is a quadrupleIS = (U,A,V, f ), where U is a finite
nonempty set of objects indicating a given universe,A is a
finite nonempty set of attributes,V is a union of attribute
domains such thatV = ∪a∈AVa for Va denoting the value
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domain of attributea, and f : U ×A →V is an information
function which associates a unique value of each attribute
with every object belonging toU , such that for anya ∈ A
andu ∈ U , f (u,a) ∈ Va. Also, (U,A,V, f ) can be written
more simply as (U,A). With any subsetP ⊆ A, there is an
associated indiscernibility relation as follows:IND(P)
= {(u,v) ∈ U ×U |∀a ∈ P, f (u,a) = f (v,a)}. Since the
indiscernibility relationIND(P) is also an equivalence
relation on setU , it partitionsU into disjoint subsets (or
equivalence classes). LetU/IND(P) denote the family of
all equivalence classes ofIND(P). For simplicity, U/P
will be written instead ofU/IND(P). For every object
u ∈ U , let [u]P denote the equivalence class of relation
IND(P) that contains elementu, called the equivalence
class ofu under relationIND(P), i.e. [u]P = {v ∈U |(u,v)
∈ IND(P)}. Each equivalence class[u]P may be viewed
as an information granule consisting of indistinguishable
elements. The granulation structure induced by an
equivalence relation is a partition of the universe.

It may happen that some of the attribute values of
objects are missing, then these values are called missing
values (or null values). These missing values can be
represented by the set of all possible values for the
attribute or equivalence by the domain of the attribute. To
indicate such a situation, a distinguished value, the
so-called null value is usually assigned to those attributes.
If Va contains a null value for at least one attributea ∈ A,
then the information systemIS = (U,A) is called an
incomplete information system (IIS), otherwise it is a
complete information system (CIS). Further on, the
symbol * denotes the missing value. If the value of an
attributea is missing, then the real value must be from the
setVa −{∗}. Any domain value different from * will be
called regular. Thus, an incomplete information system
can be expressed asIIS = (U,A), ∗ ∈ ∪a∈AVa. For any
P ⊆ A, the subsetP determines a binary relation, denoted
by SIM(P) = {(u,v) ∈ U ×U |∀a ∈ P, f (u,a) = f (v,a) or
f (u,a) = ∗ or f (v,a) = ∗}. In fact, it is easy to prove that
SIM(P) is reflexive and symmetric, so it is a tolerance
relation onU . The concept of a tolerance relation has a
wide variety of applications in classification, which can
be shown thatSIM(P) = ∩a∈PSIM({a}).

Let SP(u) denote the set{v ∈ U |(u,v) ∈ SIM(P)}.
Generally, SP(u) denotes the maximal set of objects
which are possibly indistinguishable byP with objectu.
Let U/SIM(P) denote the family sets{SP(u)|u ∈ U}, the
classification or the knowledge induced byP. A member
SP(u) from U/SIM(P) will be called a tolerance class or
a granule of information. It should be noted that the
tolerance classes inU/SIM(P) do not constitute a
partition of U in general. They constitute a cover ofU ,
i.e., SP(u) 6= /0 for everyu ∈ U , and∪u∈U SP(u) = U. In
particular, ifU/SIM(P) = ω = {SP(u) = {u}|u ∈ U}, it
is called an identity relation, and ifU/SIM(P) = δ =
{SP(u) =U |u ∈U}, it is called a universal relation.

Let IIS be an incomplete information system. Now, we
define a partial relation� on 2A as follows: we say thatP
is finer thanQ (or Q is coarser thanP), denoted byP � Q,

if and only if SP(ui) ⊆ SQ(ui) for any i ∈ {1,2, · · · , |U |}.
In fact, P ≺ Q ⇔ it follows that SP(ui) ⊆ SQ(ui) for any
i ∈ {1,2, · · · , |U |}, and there existsj ∈ {1,2, · · · , |U |} such
thatSP(u j)⊂ SQ(u j).

An incomplete information systemIIS = (U,C∪D) is
called an incomplete decision system (IDS) if condition
attributes and decision attributes are distinguished, where
C is the condition attribute set andD is the decision
attribute set withC ∩ D = /0. That is, an incomplete
decision system is a special case of an incomplete
information system.

As we know, tolerance classes are not the minimal
units for describing knowledge or information in an
incomplete information system or an incomplete decision
system. LetIIS be an incomplete information system,
P ⊆ A an attribute set andX ⊆ U a subset of objects. We
say that X is consistent with respect toP if
(u,v) ∈ SIM(P) for anyu, v ∈ X . If there does not exist a
subsetY ⊆ U such thatX ⊂ Y , andY is consistent with
respect toP, thenX is called a maximal consistent block
of P. Obviously, in a maximal consistent block, all objects
are not indiscernible with available information provided
by a similarity relation [32]. Thus, the set of all maximal
consistent blocks determined byP ⊆ A is denoted byCP,
and the set of all maximal consistent blocks ofP which
includes some objectu ∈ U is denoted asCP(u). It is
obvious thatX ∈ CP if and only if X = ∩u∈X Sp(u). Note
that the set of all maximal consistent blocksCP
degenerates into the partitionU/P induced by attribute
setP in a complete information system, i.e.,CP =U/P.

3 Information entropy-based uncertainty
measures in incomplete information systems

In this section, the concept of information entropy has
been introduced in complete information systems, and it
is extended to measure the uncertainty of knowledge in
incomplete information systems. Then, some information
entropy-based uncertainty measures are presented to
incomplete information systems and incomplete decision
systems. The properties of these uncertainty measures are
discussed respectively, and the relationships among them
are established as well.

3.1 Information entropy and conditional entropy
in incomplete information systems

Entropy is always used to measure the out-of-order
degree of a system, then Shannon introduced the concept
of entropy in physics to information entropy for
measuring uncertainty of the structure of a system [9,12,
14]. However, Shannon’s entropy cannot measure the
fuzziness in rough set theory. To address this issue, Liang
et al. [23] proposed the new information entropy to
measure uncertainty in complete information systems,
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which can be used to measure both uncertainty and
fuzziness in rough set theory. The following definition
gives the depiction of the information entropy in a
complete information system.

Let CIS be a complete information system andU/A =
{R1,R2, · · · ,Rm}. Information entropy of knowledgeA for
rough set theory is denoted by

E(A) =
m

∑
i=1

|Ri|

|U |

|Rc
i |

|U |
=

m

∑
i=1

|Ri|

|U |
(1−

|Ri|

|U |
), (1)

whereRc
i is the complement ofRi, i.e., Rc

i = U −Ri,
|Ri|
|U |

represents the probability of equivalence classRi within

the universeU , and
|Rc

i |
|U | represents the probability of the

complement set ofRi within the universeU .

Proposition 3.1. Let CIS be a complete information
system andP, Q ⊆ A. If Q ⊆ P, thenE(Q)≤ E(P).

Proof. SinceQ ⊆ P, it follows thatP � Q, i.e.,P ≺ Q and
P = Q. If P ≺ Q, from Theorem 12 in [12], one has that
E(Q) < E(P). If P = Q, it is obvious thatE(Q) = E(P).
Hence, ifQ ⊆ P, E(Q)≤ E(P). This completes the proof.

When we do not need to distinguish complete
information systems from incomplete information
systems, an information in anIS can be represented as the
vector K(A) = {SA(u1),SA(u2), · · · ,SA(u|U |)} [10]. Let
CIS be a complete information system and
U/A = {X1,X2, · · · ,Xm}. If the set
Xi = {ui1,ui2, · · · ,uisi}, where|Xi|= si, and∑m

i=1 si = |U |,
then the relationship betweenK(A) and U/A is as
follows: Xi = SA(ui1) = SA(ui2) = · · · = SA(uisi), i.e.,
|Xi| = |SA(ui1)| = |SA(ui2)| = · · · = |SA(uisi)|. Therefore,

we have thatE(A) = ∑m
i=1

|Xi|
|U | (1−

|Xi|
|U | ) = ∑m

i=1(
1
|U | (1−

|SA(ui1)|
|U | ) + 1

|U | (1 − |SA(ui2)|
|U | ) + · · ·+

1
|U | (1−

|SA(uisi )|

|U | )) = ∑|U |
i=1

1
|U | (1−

|SA(ui)|
|U | ).

Definition 3.1. Let IIS be an incomplete information
system withP ⊆ A, U/SIM(P) = {SP(u1),SP(u2), · · · ,
SP(u|U |)}. Information entropy of knowledgeP is defined
as

IE(P) =
|U |

∑
i=1

1
|U |

(1−
|SP(ui)|

|U |
). (2)

Property 3.1. Let IIS be an incomplete information
system withP ⊆ A. The minimum of information entropy
of knowledgeP is 0. This value is achieved only by the
U/SIM(P) = δ . The maximum of information entropy of
knowledgeP is 1− 1

|U | . This value is achieved only by the
U/SIM(P) = ω. Obviously, for anIIS, we have that 0≤
IE(A)≤ 1− 1

|U | .
It is noted that Shannon’s entropy and its variants

have been applied to measure the uncertainty in complete
information systems [39]. However, some of these
entropies cannot be used in incomplete information

systems. Mi et al. [24] and Yu et al. [41] investigated how
to measure the uncertainty of a partition-based fuzzy
rough set and that of a fuzzy information system
respectively. However, these measures only deal with the
fuzziness and also cannot be used for incomplete
information systems. Unlike Shannon’s entropy, the
proposed information entropy of knowledge can measure
not only randomness and fuzziness in an incomplete
information system, but also fuzziness of a rough set and
a rough classification [12]. Therefore, the above
information entropy of knowledge may be better for
calculating the uncertainty in incomplete information
systems.

Proposition 3.2. Let IIS be an incomplete information
system andP, Q ⊆ A. If P ≺ Q, thenIE(Q)< IE(P).

Proof. Let U/SIM(P) = {SP(u1),SP(u2), · · · ,SP(u|U |)}
and U/SIM(Q) = {SQ(u1),SQ(u2), · · · ,SQ(u|U |)}. Since
P ≺ Q, it follows thatSP(ui)⊆ SQ(ui) for anyui ∈U , i.e.,
|SP(ui)| ≤ |SQ(ui)|, and there existsj ∈ {1,2, · · · , |U |}
such that SP(u j) ⊂ SQ(u j), i.e., |SP(u j)| < |SQ(u j)|.

Hence, it is obvious that|SP(ui)|
|U | ≤

|SQ(ui)|

|U | ⇒ 1
|U | (1−

|SQ(ui)|

|U | ) ≤ 1
|U | (1−

|SP(ui)|
|U | ) ⇒ ∑|U |

i=1,ui 6=u j

1
|U | (1−

|SQ(ui)|

|U | )+

1
|U | (1 −

|SQ(u j)|

|U | ) < ∑|U |
i=1,ui 6=u j

1
|U | (1−

|SP(ui)|
|U | ) + 1

|U | (1−
|SP(u j)|

|U | ) ⇒ ∑|U |
i=1

1
|U | (1−

|SQ(ui)|

|U | ) < ∑|U |
i=1

1
|U | (1−

|SP(ui)|
|U | ),

i.e., IE(Q)< IE(P). This completes the proof.
Proposition 3.2 states that the information entropy of

knowledge monotonically increases as tolerance classes
become smaller through finer classification with the
increase of attributes in knowledge, which is consistent
with the situation of information entropy in complete
information systems from Proposition 3.1.

Proposition 3.3. Let IIS be an incomplete information
system,P,Q ⊆ A. If SIM(P) = SIM(Q), IE(P) = IE(Q).

Proof. Suppose thatU = {u1,u2, · · · ,u|U |}, andP,Q ⊆ A.
If SIM(P) = SIM(Q), it follows thatSQ(ui) = SP(ui) for

any ui ∈ U . Thus, one has that∑|U |
i=1

1
|U | (1−

|SP(ui)|
|U | ) =

∑|U |
i=1

1
|U | (1−

|SQ(ui)|

|U | ), i.e., IE(P) = IE(Q). Therefore, the
proof is completed.

Proposition 3.3 shows that the information entropy of
two knowledge having the same tolerance relations is
equal in incomplete information systems. Note that the
reverse relation of Proposition 3.3 cannot be established.

Proposition 3.4. Let IIS be an incomplete information
system andP ⊆ Q ⊆ A. If IE(P) = IE(Q), thenSIM(P)
= SIM(Q).

Proof. Suppose thatU = {u1,u2, · · · ,u|U |}, andP ⊆ Q ⊆
A, it follows that for anyi∈ {1,2, · · · , |U |}, we haveSQ(ui)
⊆ SP(ui). If IE(P) = IE(Q), it is obvious from Definition
3.1 thatSP(ui) = SQ(ui) for anyui ∈U . Hence,SIM(P) =
SIM(Q) holds. This completes the proof.

Proposition 3.4 states that for two knowledge having a
conclusion relation, if their information entropies in

c© 2014 NSP
Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 2073-2083 (2014) /www.naturalspublishing.com/Journals.asp 2077

incomplete information systems are equal, then they have
the same tolerance relations.

Proposition 3.5. Let IIS be an incomplete information
system andP ⊆ A. IE(P) = IE(A) if and only if
U/SIM(P) =U/SIM(A).

Proof. ⇒ Suppose thatP ⊆ A, and IE(P) = IE(A), it
follows from Proposition 3.4 thatSIM(P) = SIM(A).
Thus, SP(ui) = {u j ∈ U |(ui,u j) ∈ SIM(P)} = {uk ∈ U |
(ui,uk) ∈ SIM(A)}= SA(ui) for any i, j andk ∈ {1,2, · · · ,
|U |}. One has that∪{SP(ui)|ui ∈ U} = ∪{SA(ui)|ui ∈ U}
for anyi ∈ {1,2, · · · , |U |}, i.e.,U/SIM(P) = U/SIM(A).
⇐ If U/SIM(P) =U/SIM(A), that is, one has thatSP(ui)
= SA(ui) for any i ∈ {1,2, · · · , |U |} such thatSIM(P) =
SIM(A). Thus, it follows from Proposition 3.3 thatIE(P)
= IE(A). This completes the proof.

To investigate the information entropy of new
knowledge composed of two given knowledge with the
same universe in an incomplete information system, we
introduce Lemma 1 in [9] as follows.

Lemma 3.1.Let IIS be an incomplete information system
andP,Q ⊆ A. Then the following properties hold
(1) SIM(P)∩SIM(Q) = SIM(P∪Q);
(2) SP(u)∩SQ(u) = SP∪Q(u) for anyu ∈U ;
(3) U/SIM(P)∩U/SIM(Q) =U/SIM(P∪Q);

(4)
⋃i=|U |

i=1
⋃ j=|U |

j=1 {SP(ui)∩SQ(u j)}=
⋃i=|U |

i=1 {SP∪Q(ui)}

=
⋃i=|U |

i=1 {SP(ui)∩SQ(ui)}.

Definition 3.2. Let IIS1 = (U,P), IIS2 = (U,Q) be two
incomplete information systems. Joint information
entropy ofP andQ is defined as

IE(P∪Q) =
|U |

∑
i=1

|U |

∑
j=1

1
|U |

(1−
|SP(ui)∩SQ(u j)|

|U |
)

=
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SQ(ui)|

|U |
). (3)

Definition 3.2 denotes the joint information entropy of
new information system composed of two given
information systems with the same universe in incomplete
information systems.

Proposition 3.6. Let IIS be an incomplete information
system andP,Q ⊆ A. Then the following properties hold
(1) IE(P)≤ IE(P∪Q), IE(Q)≤ IE(P∪Q);
(2) If P ≺ Q, thenIE(P∪Q) = IE(P).

Proof. It is achieved by Definition 3.2 and Proposition 3.2.

Definition 3.3. Let IIS be an incomplete information
system withP,Q ⊆ A. Conditional entropy ofQ with
respect toP is defined as

IE(Q|P) =
|U |

∑
i=1

|SP(ui)|− |SP(ui)∩SQ(ui)|

|U |2
. (4)

Definition 3.4. Let IIS be an incomplete information
system withP,Q ⊆ A. Mutual information betweenP and
Q is defined as

IE(P;Q) = IE(P)+ IE(Q)− IE(P∪Q). (5)

Here, the following propositions will establish the
relationships among the information entropy, the joint
information entropy, the conditional entropy and the
mutual information in an incomplete information system.
Proposition 3.7. Let IIS be an incomplete information
system withP,Q ⊆ A. IE(Q|P) = IE(P∪Q)− IE(P).
Proof. It follows immediately from Definition 3.3 that

IE(Q|P)

=
|U |

∑
i=1

|SP(ui)|

|U |2
−

|U |

∑
i=1

|SP(ui)∩SQ(ui)|

|U |2
+

|U |

∑
i=1

1
|U |

−
|U |

∑
i=1

1
|U |

=
|U |

∑
i=1

(
1
|U |

−
|SP(ui)∩SQ(ui)|

|U |2
)−

|U |

∑
i=1

(
1
|U |

−
|SP(ui)|

|U |2
)

=
|U |

∑
i=1

1
|U |

(1−
|SP(ui)∩SQ(ui)|

|U |
)−

|U |

∑
i=1

1
|U |

(1−
|SP(ui)|

|U |
)

= IE(P∪Q)− IE(P). (6)

Proposition 3.8. Let IIS be an incomplete information
system andP,Q ⊆ A. ThenIE(P;Q) = IE(P)− IE(P|Q)
= IE(Q)− IE(Q|P).
Proof. From Definition 3.4 and Proposition 3.7, we have
that IE(P;Q) = IE(P) + IE(Q)− IE(P ∪ Q) = IE(Q)−
(IE(P∪Q)− IE(P)) = IE(Q)− IE(Q|P). Similarly, the
equation IE(P;Q) = IE(P) − IE(P|Q) can be proved.
This completes the proof.

Note that these equations cannot be satisfied by some
existing measures in incomplete information systems.
Furthermore, these relationships will be helpful for
understanding the essence of the knowledge content and
the uncertainty in incomplete information systems.
Proposition 3.9. Let IIS be an incomplete information
system andP,Q ⊆ A. IE(Q|P) = 0 if and only ifP � Q.
Proof. ⇒ SupposeIE(Q|P) = 0, we need to proveP �
Q. If P � Q does not hold, then there exists someu j ∈ U
such thatSP(u j)⊆ SQ(u j) does not hold, i.e., 1≤ |SP(u j)∩
SQ(u j)|< |SP(u j)|. Therefore, we have that

IE(Q|P) =
|U |

∑
i=1,ui 6=u j

|SP(ui)|− |SP(ui)∩SQ(ui)|

|U |2
+

|SP(u j)|− |SP(u j)∩SQ(u j)|

|U |2

≥
|SP(u j)|− |SP(u j)∩SQ(u j)|

|U |2

>
|SP(u j)|− |SP(u j)|

|U |2
= 0, (7)
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i.e.,IE(Q|P)> 0. This yields a contradiction. Thus,P � Q
holds.
⇐ SupposeP � Q, then, for anyui ∈ U , it follows that
SP(ui)⊆ SQ(ui), i.e.,SP(ui)∩SQ(ui) = SP(ui). Hence, we

can obtain thatIE(Q|P) = ∑|U |
i=1

|SP(ui)|−|SP(ui)|
|U |2

= 0. This
completes the proof.

Proposition 3.9 illustrates that in the same universe, a
knowledge cannot provide the system any additional
uncertainty (classification information) if it is coarser
than the original knowledge in incomplete information
systems. It is noted that in a given decision information
system, this decision attribute usually generates the
corresponding partition or covering. Thus, to reveal the
relationship between the condition attributes and the
decision attribute, we present following definitions and
relative properties.

Definition 3.5. Let IDS be an incomplete decision system
with P ⊆ C, U/SIM(P) = {SP(u1),SP(u2), · · · ,SP(u|U |)},
and U/SIM(D) = {SD(u1),SD(u2), · · · ,SD(u|U |)}. The
conditional entropy ofD with respect toP is defined as

IE(D|P) =
|U |

∑
i=1

|SP(ui)|− |SP(ui)∩SD(ui)|

|U |2
. (8)

Property 3.2. Let IDS be an incomplete decision system
with P ⊆C. If U/SIM(P) = ω, thenIE(D|P) achieves the
minimum value 0. IfU/SIM(P) = δ andU/SIM(D) = ω,
thenIE(D|P) achieves the maximum value 1− 1

|U | . When

SIM(C) is a tolerance relation, 0≤ IE(D|C)≤ 1− 1
|U | .

Proposition 3.10. Let IDS be an incomplete decision
system,P,Q ⊆C. If P � Q, thenIE(Q|D)≤ IE(P|D).

Proof. Since P � Q, it follows that SP(ui) ⊆ SQ(ui),
|SP(ui)| ≤ |SQ(ui)|, and |SD(ui) ∩ SP(ui)| ≤ |SD(ui)∩
SQ(ui)| for any ui ∈ U and SD(ui) ∈ U/SIM(D). From
Definition 3.3, we can obtain that

IE(Q|D) =
|U |

∑
i=1

|SD(ui)|− |SD(ui)∩SQ(ui)|

|U |2

≤
|U |

∑
i=1

|SD(ui)|− |SD(ui)∩SP(ui)|

|U |2
= IE(P|D),(9)

i.e., IE(Q|D)≤ IE(P|D). This completes the proof.
Proposition 3.10 indicates that the finer the condition

knowledge is, the more classification information it can
provide to an apriori knowledge (target decision) in
incomplete decision systems. However, it is noted that the
reverse relation of Proposition 3.10 cannot be established
in general. In the following, the performance of this
relation in an incomplete decision system is shown
through an illustrative example.

Example 3.1. Consider an incomplete decision system
about several cars shown in Table 1, whereC =

Table 1: An incomplete decision system about cars
car P M S X D
1 High Low Full Low Good
2 Low * Full Low Good
3 * * Compact Low Poor
4 High * Full High Good
5 * * Full High Excellent
6 Low High Full * Good

{Price,Mileage,Size,Max − Speed} = {P,M,S,X} and
D = {Acceleration}.

Assume thatU/SIM({P,M}) = {{1,3,4,5},{2,3,5,6},
{1,2,3,4,5,6},{1,3,4,5},{1,2,3,4,5,6},{2,3,5,6}},
U/SIM({S,X}) = {{1,2,6},{1,2,6},{3},{4,5,6},{4,5,6},
{1,2,4,5,6}}, and U/SIM(D) = {{1,2,4,6},{1,2,4,6},
{3},{1,2,4,6},{5},{1,2,4,6}}. It is easily computed that
IE({P,M}|D) = 4−2+4−2+1−1+4−2+1−1+4−2

62 = 2
9, and

IE({S,X}|D) = 4−3+4−3+1−1+4−2+1−1+4−4
62 = 1

9,
i.e., IE({P,M}|D) > IE({S,X}|D). However,{P,M} �
{S,X} cannot be satisfied in fact.

As we know, conditional entropy can be usually used
to define the significance of an attribute set of decision
systems in practice. In what follows, we further discuss
the relationship between two conditional entropies in
incomplete decision systems.

Proposition 3.11. Let IDS be an incomplete decision
system withP,Q ⊆C. If P � Q, IE(D|P)≤ IE(D|Q).

Proof. Since P � Q, it follows that SP(ui) ⊆ SQ(ui),
|SP(ui)| ≤ |SQ(ui)|, and thenSP(ui) ∩ SD(ui) ⊆ SQ(ui)∩
SD(ui) for any ui ∈ U , and SD(ui) ∈ U/SIM(D). From
Definition 3.5, we have that

IE(D|Q)− IE(D|P)

=
|U |

∑
i=1

(
|SQ(ui)|− |SP(ui)|

|U |2
−

|SQ(ui)∩SD(ui)|− |SP(ui)∩SD(ui)|

|U |2
)

=
|U |

∑
i=1

|SQ(ui)|− |SP(ui)|− |SD(ui)∩ (SQ(ui)−SP(ui))|

|U |2

≥ 0, (10)

i.e., IE(D|P)≤ IE(D|Q). Thus, it is obvious thatIE(D|P)
= IE(D|Q) if and only if {SQ(ui)− SP(ui)} ⊆ SD(ui) for
anyui ∈U . This completes the proof.

Proposition 3.11 shows that the coarser the condition
knowledge is, the more classification information it can
preserve with respect to a target decision. In other words,
in the IDS, if IE(D|P) ≤ IE(D|Q), one says that the
attribute setP is more significant than the attribute setQ
with respect to the target decisionD.

Proposition 3.12. Let IDS be an incomplete decision
system,P,Q ⊆C. If P � Q � D, IE(D|P) = IE(D|Q) = 0.
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Proof. SinceP � Q � D, it follows that SP(ui) ⊆ SQ(ui)
⊆ SD(ui), SP(ui)∩ SD(ui) = SP(ui), and SQ(ui)∩ SD(ui)
= SQ(ui) for any ui ∈ U , andSD(ui) ∈ U/SIM(D). From

Definition 3.5, we haveIE(D|P) =∑|U |
i=1

|SP(ui)|−|SP(ui)|
|U |2

= 0.

Similarly, the equationIE(D|Q) = 0 can be proved easily.
This completes the proof.

Until now, most of the existing uncertainty measures
cannot be used in incomplete decision systems.
According to the properties mentioned and the above
corresponding discussions, it is known that the
conditional entropy proposed above can well characterize
the uncertainty of knowledge in incomplete decision
systems. So far, however, these uncertainty measures and
the relationships among them above have not been
reported in incomplete information systems and
incomplete decision systems. In fact, given any binary
relation, one can induce a cover of the universe and
determine a particular information system. Furthermore,
through using the idea of information view, we may use
the information entropy or its variants to measure the
uncertainty of the information systems induced by a given
binary relation. Thus, the information entropy and the
conditional entropy can not only characterize the
uncertainty of an incomplete information system, but also
measure those of other kinds of information systems.

3.2 Information entropy with maximal
consistent block in incomplete information
systems

Because the maximal consistent block technique can
describe the minimal units for knowledge or information
in incomplete information systems [32,40], we now
introduce a variant of the proposed information entropy
with maximal consistent block to measure the uncertainty
of incomplete information systems.

Let IIS be an incomplete information system, then the
maximal consistent blocks are denoted byCA =
{A1,A2, · · · ,Am} induced byA. Of particular interest is
the discrete classificationCA = ω = {{u}|u ∈ U} and the
discrete classificationCA = δ = {U |u ∈U}, or justδ and
ω if there is no confusion as to the domain set [40].

Definition 3.6. Let IIS be an incomplete information
system,P ⊆ A, andCP = {P1,P2, · · · ,Pm}. Information
entropy of knowledgeP for the maximal consistent
blocksCP is defined as

IE(CP) =
m

∑
i=1

1
|m|

(1−
|Pi|

|U |
), (11)

where|Pi|
|U | represents the probability of maximal consistent

block Pi within the universeU .

Property 3.3. Let IIS be an incomplete information
system with P ⊆ A. If CP = δ , then the information
entropy of knowledgeP achieves the minimum value

IE(CP) = 0. If CP = ω, then the information entropy of
knowledge P achieves the maximum valueIE(CP)
= 1− 1

|U | . Obviously, for anIIS, we have that 0≤ IE(CA)

≤ 1− 1
|U | holds.

Let IIS be an incomplete information system,P,Q⊆A,
CP = {P1,P2, · · · ,Pm}, andCQ = {Q1,Q2, · · · ,Qn}. Then
we define a partial order�′ (or�′) in the view of maximal
consistent block nature of knowledge onU as follows:P
is finer thanQ (or Q is coarser thanP), denoted byP �′ Q
(or Q �′ P), if and only if for everyPi ∈ CP, there exists
Q j ∈ CQ such thatPi ⊆ Q j. Thus,P ≺′ Q, for everyPi ∈
CP, there existsQ j ∈ CQ such thatPi ⊆ Q j, and for some
Pi0 ∈CP, there existsQ j0 ∈CQ such thatPi0 ⊂ Q j0.

Proposition 3.13.Let IIS be an incomplete information
system,P,Q ⊆ A, CP = {P1,P2, · · · ,Pm}, andCQ = {Q1,
Q2, · · · ,Qn}. If P ≺′ Q, thenIE(CQ)< IE(CP).

Proof. Since P ≺′ Q, it follows that for everyPi ∈ CP,
there existsQ j ∈ CQ such thatPi ⊆ Q j, and for some
Pi0 ∈ CP, there existsQ j0 ∈ CQ such thatPi0 ⊂ Q j0 and
m > n. Then, forQ j0 ∈CQ, there exists{Pi1,Pi2, · · · ,Pis}

(Pik ∈ CP, k = {1,2, · · · ,s}) such that eachPik ⊆ Q j0,
wherePi0 ∈ {Pi1,Pi2, · · · ,Pis}. Thus, it can be obtained
that|Pik| ≤ |Q j0| and|Pi0|< |Q j0|. Hence, we have that

IE(CQ) = 1−
1
|n|

n

∑
i=1

|Qi|

|U |

= 1−
1
|n|

(
n

∑
j=1, j 6= j0

|Q j|

|U |
+

|Q j0|

|U |
)

< 1−
1
|n|

(
n

∑
j=1, j 6= j0

|Q j|

|U |
+

1
s

s

∑
k=1

|Pik |

|U |
)

≤ 1−
1
|m|

m

∑
i=1

|Pi|

|U |

=
m

∑
i=1

1
|m|

(1−
|Pi|

|U |
) = IE(CP), (12)

i.e., IE(CQ)< IE(CP). This completes the proof.
Proposition 3.13 shows that the information entropy

with maximal consistent block nature of knowledge
increases as the maximal consistent blocks become
smaller through finer classification in incomplete
information systems.

Proposition 3.14.Let IIS be an incomplete information
system withP,Q ⊆ A. If P �′ Q, thenIE(Q)≤ IE(P).

Proof. Since P �′ Q, it follows that for everyPi ∈ CP,
there existsQ j ∈ CQ such thatPi ⊆ Q j. SupposeSP(u) =
{v ∈ U |(u,v) ∈ SIM(P)} and SQ(u) = {v ∈ U |(u,v) ∈
SIM(Q)}, it follows from Property 4 in [32] that SP(u)
= ∪{Xk ∈CP|Xk ⊆ SP(u)}= ∪{Xk ∈CP(u)} (k ≤ m) and
SQ(u) = ∪{Yt ∈CQ|Yt ⊆ SQ(u)}= ∪{Yt ∈CQ(u)} (t ≤ n)
in the view of maximal consistent block nature of
knowledge. Then, it can be obtained thatu ∈ CP(u), u ∈
CQ(u), u /∈ CP −CP(u) and u /∈ CQ −CQ(u). Hence, it
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follows from P �′ Q that for anyXk ∈ CP(u), there exists
Yt ∈ CQ(u) such thatXk ⊆ Yt . Thus, for anyu ∈ U , we
obtain thatSP(u) = ∪{Xk ∈ CP|Xk ⊆ SP(u)} =

⋃m
k=1 Xk ⊆⋃n

t=1Yt = ∪{Yt ∈ CQ|Yt ⊆ SQ(u)} = SQ(u), that is to say,

|SP(u)| ≤ |SQ(u)| for any u ∈ U . Therefore,∑|U |
i=1

1
|U |

(1−
|SQ(ui)|

|U | ) ≤ ∑|U |
i=1

1
|U | (1−

|SP(ui)|
|U | ), i.e., IE(Q) ≤ IE(P).

This completes the proof.
Proposition 3.14 states that the information entropy of

knowledge increases as the maximal consistent blocks
become smaller through finer classification in incomplete
information systems. Then, in anIIS, it can be seen easily
from the above proof thatSP(u) ⊆ SQ(u) for anyu ∈ U if
P �′ Q, that is, the partial relationP � Q can be induced
by the partial relationP �′ Q. Therefore, it can be
concluded that the partial relation�′ is a special instance
of the partial relation� in incomplete information
systems in fact.

4 Information granulation-based uncertainty
measures in incomplete information systems

Information granulation is mainly used to study the
uncertainty in rough set theory. In some sense, there
exists a complement relation between entropy and
information granulation [12]. In such a case, firstly
information granulation and conditional information
granulation are introduced to measure the uncertainty of
incomplete information systems and incomplete decision
systems respectively, secondly the complement
relationships between information granulation and
information entropy are investigated, thirdly a variant of
the information granulation with maximal consistent
block is presented to measure the uncertainty of
incomplete information systems, and then some of their
important properties are deduced.

4.1 Information granulation and conditional
information granulation in incomplete
information systems

Let IIS be an incomplete information system,U/SIM(A)
= {SA(u1),SA(u2), · · · ,SA(u|U |)}. Information granulation
of knowledgeA in [10] is denoted by

IG(A) =
|U |

∑
i=1

|SA(ui)|

|U |2
, (13)

where |SA(ui)|
|U | represents the probability of tolerance class

SA(ui) within the universeU .

Property 4.1. Let IIS be an incomplete information
system. If U/SIM(A) = δ , then the information
granulation of knowledgeA achieves the minimum value
IG(A) = 0. If U/SIM(A) = ω, then the information

granulation of knowledgeA achieves the maximum value
IG(A) = 1− 1

|U | . Clearly, for anIIS, we have that 0≤

IG(A)≤ 1− 1
|U | .

Proposition 4.1. Let IIS be an incomplete information
system. The relationship between the information
granulationIG(A) and the information entropyIE(A) is
as follows:IG(A) +IE(A) = 1.

Proof. It follows immediately from Definition 3.1 that

IE(A) =
|U |

∑
i=1

1
|U |

−
|U |

∑
i=1

|SA(ui)|

|U |2
= 1−

|U |

∑
i=1

|SA(ui)|

|U |2

= 1− IG(A), (14)

i.e., IG(A)+ IE(A) = 1. This completes the proof.

Definition 4.1. Let IIS1 = (U,P), IIS2 = (U,Q) be two
incomplete information systems. Joint information
granulation ofP andQ is defined as

IG(P∪Q) =
|U |

∑
i=1

|SP(ui)∩SQ(ui)|

|U |2
. (15)

Proposition 4.2. Let IIS be an incomplete information
system withP,Q ⊆ A. The relationship between the joint
information granulation IG(P ∪ Q) and the joint
information entropyIE(P∪Q) is as follows:IG(P∪Q)+
IE(P∪Q) = 1.

Proof. The proof is similar to that of Proposition 4.1.
Propositions 4.1 and 4.2 show the relationship

between the information granulation and the information
entropy is the strict complement relationship, that is, they
possess the same capability on depicting the uncertainty
of an incomplete information system.

Corollary 4.1. Let IIS be an incomplete information
system withP,Q ⊆ A. Then IG(P ∪ Q) + IE(P ∪ Q) =
IG(P)+ IE(P).

Proof. It can be achieved by Propositions 4.1 and 4.2.

Definition 4.2. Let IIS be an incomplete information
system with P,Q ⊆ A. Conditional information
granulation ofQ with respect toP is defined as

IG(Q|P) =
|U |

∑
i=1

|SP(ui)|− |SP(ui)∩SQ(ui)|

|U |2
. (16)

Property 4.2. Let IIS be an incomplete information
system withP,Q ⊆ A. ThenIG(Q|P) = IE(Q|P).

In what follows, the proposition will establish the
relationship between the information granulation and the
conditional information granulation in an incomplete
decision system.

Proposition 4.3. Let IDS be an incomplete decision
system withP ⊆ C. ThenIG(D|P) = IG(P)− IG(P∪D)
= IE(P∪D)− IE(P) = IE(D|P).
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Proof. It follows immediately from Definition 4.2 that

IG(D|P) =
|U |

∑
i=1

|SP(ui)|

|U |2
−

|U |

∑
i=1

|SP(ui)∩SD(ui)|

|U |2

= IG(P)− IG(P∪D). (17)

Then, from Property 4.2 and Proposition 3.7, it can be
obtained thatIG(D|P) = IE(D|P) = IE(P∪D)− IE(P).
This completes the proof.

According to Proposition 4.3, it is known that the
conditional information granulation is a special instance
of the conditional entropy in incomplete decision
systems. It means that the definition of conditional
information granulation is a consistent extension to
conditional entropy in incomplete decision systems.
Therefore, they have the same capability on representing
the uncertainty of an incomplete decision system.

4.2 Information granulation with maximal
consistent block in incomplete information
systems

Definition 4.3. Let IIS be an incomplete information
system,P ⊆ A, andCP = {P1,P2, · · · ,Pm}. Information
granulation of knowledgeP for the maximal consistent
blocksCP is defined as

IG(CP) =
1
|m|

m

∑
i=1

|Pi|

|U |
, (18)

where|Pi|
|U | represents the probability of maximal consistent

block Pi within the universeU .

Property 4.3. Let IIS be an incomplete information
system with P ⊆ A. If CP = ω, then the information
granulation of knowledgeP achieves the minimum value
IG(CP) =

1
|U | . If CP = δ , then the information granulation

of knowledgeP achieves the maximum valueIG(CP) = 1.
Clearly, for anIIS, 1

|U | ≤ IG(CA)≤ 1 holds.

Proposition 4.4. Let IIS be an incomplete information
system,P,Q ⊆ A, CP = {P1,P2, · · · ,Pm}, andCQ = {Q1,
Q2, · · · ,Qn}. If P ≺′ Q, thenIG(CP)< IG(CQ).

Proof. SupposeP ≺′ Q, it follows that for everyPi ∈ CP,
there existsQ j ∈ CQ such thatPi ⊆ Q j, and for some
Pi0 ∈ CP, there existsQ j0 ∈ CQ such thatPi0 ⊂ Q j0 and
m > n. It follows that for Q j0 ∈ CQ, there exists{Pi1,

Pi2, · · · ,Pis} (Pik ∈ CP, k = {1,2, · · · ,s}) such that each
Pik ⊆ Q j0, wherePi0 ∈ {Pi1,Pi2, · · · ,Pis}. Then, it can be
obtained that|Pik| ≤ |Q j0| and |Pi0| < |Q j0|. Therefore,
we can obtain that

IG(CQ) =
1
|n|

(
n

∑
j=1, j 6= j0

|Q j|

|U |
+

|Q j0|

|U |
)

>
1
|n|

(
n

∑
j=1, j 6= j0

|Q j|

|U |
+

1
s

s

∑
k=1

|Pik |

|U |
)

>
1
|m|

m

∑
i=1

|Pi|

|U |
= IG(CP), (19)

i.e., IG(CP)< IG(CQ). This completes the proof.
Proposition 4.4 shows that the information

granulation with maximal consistent block nature of
knowledge decreases as the maximal consistent blocks
become smaller through finer classification in an
incomplete information system.

Proposition 4.5. Let IIS be an incomplete information
system withP,Q ⊆ A. If P �′ Q, thenIG(P)≤ IG(Q).

Proof. The proof is similar to that of Proposition 3.14.
Proposition 4.5 shows that the information

granulation decreases with the maximal consistent blocks
becoming smaller through finer classification in
incomplete information systems. In the following, we can
establish the relationship between the information
granulation and the information entropy with maximal
consistent block in incomplete information systems.

Proposition 4.6. Let IIS be an incomplete information
system with P ⊆ A. The relationship between the
information granulationIG(CP) and the information
entropyIE(CP) is as follows:IG(CP) +IE(CP) = 1.

Proof. It follows from Definitions 3.6 and 4.3 that

IE(CP) =
m

∑
i=1

1
|m|

−
1
|m|

m

∑
i=1

|Pi|

|U |
= 1−

1
|m|

m

∑
i=1

|Pi|

|U |

= 1− IG(CP), (20)

i.e., IG(CP)+ IE(CP) = 1. This completes the proof.
Proposition 4.6 states that in an incomplete

information system, the relationship between the
information granulationIG(CA) and the information
entropy IE(CA) is the strict complement relationship.
That is, they possess the same capability on depicting the
uncertainty of incomplete information systems in the
view of maximal consistent block nature of knowledge in
incomplete information systems.

Remark. Unlike most of the existing measures for the
uncertainty in incomplete information systems and
incomplete decision systems, the relationships among
these concepts (information entropy, conditional entropy,
mutual information, information granulation, and
conditional information granulation) can be established,
which are formally expressed asIE(Q|P) = IE(P∪Q)−
IE(P), IE(P;Q) = IE(P)− IE(P|Q) = IE(Q)− IE(Q|P),
IG(A) + IE(A) = 1, IG(P∪Q) + IE(P∪Q) = 1, IG(P∪
Q) + IE(P ∪ Q) = IG(P) + IE(P), IG(Q|P) = IE(Q|P),
IG(CP) + IE(CP) = 1 in an IIS with P,Q ⊆ A, and
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IG(D|P) = IG(P)− IG(P ∪ D) = IE(P ∪ D)− IE(P) =
IE(D|P) in an IDS with P ⊆ C. These relationships are
very significant for reasonably applying an uncertainty
measure to incomplete information systems and
incomplete decision systems. However, most of the
existing entropies and their extensions in incomplete
information systems and incomplete decision systems can
not establish the above relationships. Therefore, these
uncertainty measures mentioned above may be a much
better uncertainty measure for measuring the knowledge
content of incomplete information systems and
incomplete decision systems.

5 Conclusions

Real-world data sets are usually incomplete for various
subjective and objective reasons; that is, they contain
some missing (null) values. Rough set theory is a new
mathematical tool for modeling uncertain or incomplete
information. The development of a rough computational
method is one of the most important research tasks. In
this article, we introduce concepts of information entropy
and information granulation-based uncertainty measures
in incomplete information systems and incomplete
decision systems, and based on maximal consistent block
technique, the variants of the information entropy and the
information granulation are presented to measure the
discernibility ability of an information/knowledge in
incomplete information systems. Then, some important
properties of them are discussed. From these properties, it
can be shown that these measures which are proposed
provide important approaches to measuring the
discernibility ability of different knowledge in incomplete
information systems and incomplete decision systems.
Furthermore, the relationships among these proposed
measures are established as well. These results have a
wide variety of applications, such as measuring the
knowledge content and the significance of an attribute set,
constructing a decision tree, and building a heuristic
function in a heuristic reduct algorithm in incomplete
information/decision systems. What’s more, it is noted
that these new measures also can be further extended to
measure the uncertainty and may be helpful for rule
evaluation and knowledge discovery in non-equivalence-
based information systems.
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