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Abstract: In this paper, concepts of information entropy and information granuldtased uncertainty measures are introduced in
incomplete information/decision systems, and based on maximal conikiek technique, some variants of information entropy and
information granulation are presented to measure the discernibility ability imc@mplete information system. Then, some important
properties of them are discussed. From these properties, it can \va #hat these proposed measures provide important approaches
to measure the uncertainty ability of different knowledge in incomplete fimdtion/decision systems. And relationships among these
measures are established as well. These results will be very helptuiderstanding the essence of knowledge content and uncertainty
measures in incomplete information systems.
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1 Introduction given in [9,10,19]. Beaubouef et al. 0] addressed
information measures of uncertainty of rough sets and

Rough set theoryl], as one of the important models of rough relation databases. Hernandez and Reca&dhs [
granular computing, is a popular mathematical frameworkpresented the formulae of joint entropy and conditional
to deal with inexact, uncertain or incomplete information entropy. Miao and WangP] applied information entropy
[2,3,4]. The research has recently roused great interest ifinto rough set theory to measure the roughness of
the theoretical and applicable fronts, such as patterrknowledge. However, Shannon’s entropy is not a fuzzy
recognition, data mining, machine learning, decisionentropy, and cannot measure the fuzziness in rough set
support, and so on5[6,7,8]. As one of the most theory. Liang et al. 23] presented a new information
important issues in rough set theory, uncertainty of a seentropy to measure the fuzziness of rough set and rough
and its measures have been widely stud@&dq, 11]. classification. Mi et al.24] gave a new fuzzy entropy and

It is well known that the information entropy and the applied it to measure the fuzziness of a fuzzy-rough
information granulation are two main approaches toset-based partition. For rough sets in complete
measuring the uncertainty of an information systé®, [ information systems, an improved uncertainty measure
13]. The concept of entropy, originally defined by for rough sets was given in2§], which measured
Shannon in 1948 for communication theory, gives auncertainty of rough sets using excess entropy. In general,
measure of the uncertainty about the structure of a systerthe information granulation represents the discernibilit
[14]. It has been a useful mechanism for characterizingability of an information/knowledge in information
uncertainty in a great diversity of modes and applicationssystems. As a powerful mechanism, granulation was first
[15,16,17,18]. Shannon’s entropy and its variants have introduced by Zadeh2f]. It presents a more visual and
been used to measure the uncertainty in rough set theorgasily understandable description for a partition on the
and information interpretation of rough set theory was universe. With regard to granular computing, many pieces
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of nice work were accomplishe®T,28,29]. Especially, Qian et al. fi0] proposed combination entropy and
closely associated with granular computing, severalcombination granulation with intuitionistic knowledge
measures on knowledge in an information system werecontent characteristic in incomplete information systems
proposed and the relationships among these measuraghich can be used to measure the uncertainty of an
were discussed in30]. Wierman B1] introduced the incomplete information system, however, this measure
concept of granulation measure to measure theéhas a complex mathematical form. Unfortunately, it
uncertainty of information. Liang and L1[] investigated  should be noted that all the above mentioned measures of
information granulation in complete information systems, knowledge are not applicable for incomplete decision
which has been effectively applied in measuring attributesystems, and there are still several problems with these
significance, feature selection, and decision-ruleapproaches from theoretical and practical viewpoint that
extracting, etc. To characterize the average measure ahotivate further developments in this issue. Therefore, it
information granules, Liang and Qiatd presented the is desirable to present some uncertainty measures of
definition of information granulation, and established theknowledge to deal with incomplete data based on
relationship between the information entropy and theextended rough set models, and a further study on
information granulation. Therefore, it is mentioned that uncertainty measures suitable for an incomplete decision
all these studies are dedicated to evaluating thesystem is of both theoretical and practical importance. In
uncertainty of a set in terms of the partition ability of this paper, the main objective is to construct some
knowledge. However, since the equivalence classes armformation entropy-based uncertainty measures and their
only regarded as the unit of information granule of a corresponding information granulation in incomplete
complete information system, these measures abovenformation/decision systems, and discuss their importan
cannot be used to deal with incomplete information properties. Furthermore, these proposed measures can
systems. In other words, the information systemsprovide important approaches to measure the uncertainty
considered in the above works are assumed to bebility of different knowledge in incomplete decision
complete. Researchers know well that the classical rougisystems, and then these results will be very helpful for
set theory is also presented for complete informationunderstanding the essence of uncertainty measures in
systems. It is difficult to generalize the results in complet incomplete information systems.
information systems to incomplete information systems.  The rest of this paper is organized as follows. Some
Therefore, it is necessary to extend and hybridize thesgreliminary concepts are briefly recalled in Section 2. In
measures to deal with incomplete data at present. Section 3, concepts of information entropy, mutual
An incomplete information system, of which an information and conditional entropy in incomplete
incomplete decision system (sometimes called aninformation/decision systems are introduced, and then
incomplete decision table) can be considered as a speciflased on maximal consistent block technique, a variant of
case, is an information system where some objects araformation entropy is presented to an incomplete
missing data (null values)3p,33. However, classical information system. Some of their important properties
rough set theory is unsuitable for measuring theare induced, and then relationships among these measures
uncertainty and attribute reduction of incomplete are investigated. In Section 4, information granulation
information systems and incomplete decision systems. Tand conditional information granulation are introduced to
address this issue, several interesting and meaningfuheasure the uncertainty of incomplete information/
extensions to equivalence relation have been proposediecision systems, and a variant of information granulation
such as tolerance relations 9,11,12 30,3233, with maximal consistent block is proposed to measure the
neighborhood operator84,35], others B6,37]. In recent  discernibility ability of an information/knowledge in
years, some new uncertainty measure theories anthcomplete information systems. Then, several useful
reduction methods have been developed, which arg@roperties are derived, and relationships among them are
capable of reducing the attributes in incomplete established. Finally, Section 5 concludes the paper.
information systems without preprocessing, and do not
require changing the size of the original system. However,
these methods are usually considered as extensions ¢ Preliminaries
classical rough set theory. These extended models are
further analyzed and categorized according to theln this section, we briefly review several basic concepts
relations they employ. But until now, few studies have that are relevant to this paper. The detailed description of
addressed the issue of measuring the uncertainty ofhese theories can be found i 10,12].
knowledge in an incomplete decision system. For The notion of information systeml$) has been
example, Huang et al3f] introduced an informational studied by many authors as a simple knowledge
entropy-based rough entropy measure to describe theepresentation method. Formally, an information system
uncertainty of knowledge roughness in incompleteis a quadruplelS = (U,AV, f), whereU is a finite
information systems. Another rough entropy measurenonempty set of objects indicating a given universés a
based on a generalized rough set covering reduction wafinite nonempty set of attribute¥, is a union of attribute
also presented to incomplete information syste®@.[ domains such that = UcaV, for V, denoting the value

© 2014 NSP
Natural Sciences Publishing Cor.



16

Appl. Math. Inf. Sci.8, No. 4, 2073-2083 (2014)www.naturalspublishing.com/Journals.asp NS 2 2075

domain of attributex, andf: U x A—V is an information  if and only if So(ui) € So(u) for anyi € {1,2,---,|U|}.
function which associates a unique value of each attributén fact, P < Q < it follows that So(uj) € So(u;) for any
with every object belonging td, such that for anya € A ie{1,2,---,|U|}, and there existpc {1,2,---,|U|} such
andu e U, f(u,a) € Va. Also, U,A)V, f) can be written  thatS(uj) C S(u;).
more simply asW,A). With any subseP C A, there is an An incomplete information systethS= (U,CUD) is
associated indiscernibility relation as followEND(P) called an incomplete decision systeh§) if condition
= {(u,v) e U xUVae P, f(u,a) = f(v,a)}. Since the attributes and decision attributes are distinguished revhe
indiscernibility relationIND(P) is also an equivalence C is the condition attribute set anD is the decision
relation on set, it partitionsU into disjoint subsets (or attribute set withC N D = 0. That is, an incomplete
equivalence classes). L8t/IND(P) denote the family of  decision system is a special case of an incomplete
all equivalence classes ®ND(P). For simplicity, U/P  information system.
will be written instead ofU /IND(P). For every object As we know, tolerance classes are not the minimal
u € U, let [ulp denote the equivalence class of relation units for describing knowledge or information in an
IND(P) that contains elemeni, called the equivalence incomplete information system or an incomplete decision
class ofu under relatiofND(P), i.e. [u]p = {v € U|(u,V) system. LetllIS be an incomplete information system,
€ IND(P)}. Each equivalence clagg|p may be viewed P C A an attribute set an C U a subset of objects. We
as an information granule consisting of indistinguishablesay that X is consistent with respect toP if
elements. The granulation structure induced by an(u,v) € SM(P) for anyu, v € X. If there does not exist a
equivalence relation is a partition of the universe. subsetY C U such thatX C Y, andY is consistent with

It may happen that some of the attribute values ofrespect tdP, thenX is called a maximal consistent block
objects are missing, then these values are called missingf P. Obviously, in a maximal consistent block, all objects
values (or null values). These missing values can beare not indiscernible with available information provided
represented by the set of all possible values for theby a similarity relation 32). Thus, the set of all maximal
attribute or equivalence by the domain of the attribute. Toconsistent blocks determined ByC A is denoted b\Cp,
indicate such a situation, a distinguished value, theand the set of all maximal consistent blocksPfvhich
so-called null value is usually assigned to those attribute includes some objeal € U is denoted asCp(u). It is
If V; contains a null value for at least one attribate A, obvious thatX € Cp if and only if X = NyexSp(u). Note
then the information systemhS = (U,A) is called an that the set of all maximal consistent blockGe
incomplete information system ), otherwise it is a degenerates into the partitidh/P induced by attribute
complete information systemC(S). Further on, the setPin acomplete information system, i.€; =U/P.
symbol * denotes the missing value. If the value of an
attributea is missing, then the real value must be from the

setVa — {*}. Any domain value different from * will be 3 |nformation entropy-based uncertainty

called regular. Thus, an incomplete information system P : ;
can be expressed 6S— (U, A), * € UacaVa. FOr any measures In mcomplete information systems

P C A, the subseP determines a binary relation, denoted
by SIM(P) = {(u,v) e U xU|Vae P, f(u,a) = f(v,a) or
f(u,a) == or f(v,a) = x}. In fact, it is easy to prove that
SM(P) is reflexive and symmetric, so it is a tolerance
relation onU. The concept of a tolerance relation has a
wide variety of applications in classification, which can
be shown tha8lM(P) = NaepSIM({a}).

Let S(u) denote the sefv € U|(u,v) € SSM(P)}.
Generally, So(u) denotes the maximal set of objects
which are possibly indistinguishable B/with objectu.
LetU/SM(P) denote the family set§Ss(u)|u € U}, the
classification or the knowledge induced By A member . -,
S(u) from U /SIM(P) will be called a tolerance class or 3-1 Information entropy and conditional entropy
a granule of information. It should be noted that the in incomplete information systems
tolerance classes iJ/SM(P) do not constitute a
partition of U in general. They constitute a cover 0f, Entropy is always used to measure the out-of-order
i.e., Sp(u) # 0 for everyu € U, andUycy Sp(u) = U. In degree of a system, then Shannon introduced the concept
particular, ifU/SIM(P) = w = {S(u) = {u}juc U}, it  of entropy in physics to information entropy for
is called an identity relation, and I /SM(P) = 6 = measuring uncertainty of the structure of a systém2,
{S(u) =U|ue U}, itis called a universal relation. 14]. However, Shannon’s entropy cannot measure the

Letll1Sbe an incomplete information system. Now, we fuzziness in rough set theory. To address this issue, Liang
define a partial relatiorx on 2* as follows: we say tha® et al. 23] proposed the new information entropy to
is finer thanQ (or Q is coarser thaP), denoted byP < Q, measure uncertainty in complete information systems,

In this section, the concept of information entropy has
been introduced in complete information systems, and it
is extended to measure the uncertainty of knowledge in
incomplete information systems. Then, some information
entropy-based uncertainty measures are presented to
incomplete information systems and incomplete decision
systems. The properties of these uncertainty measures are
discussed respectively, and the relationships among them
are established as well.
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which can be used to measure both uncertainty andystems. Mi et al.24] and Yu et al. #1] investigated how

fuzziness in rough set theory. The following definition
gives the depiction of the information entropy in a
complete information system.

Let Cl Sbe a complete information system dddA =
{R1,Rz, - ,Rm}. Information entropy of knowledga for
rough set theory is denoted by

" RI R _ 2RI,

_ 2RI, RI
PAVINVRPATT]

|U|)7

E(A) = @)

whereR’ is the complement oR;, i.e.,, R* =U — R, ‘
represents the probability of equivalence cl&swithin

the universdJ, and% represents the probability of the

complement set d®; within the universeJ.

Proposition 3.1. Let CIS be a complete information
system andP, Q C A. If Q C P, thenE(Q) < E(P).

Proof. SinceQ C P, it follows thatP < Q, i.e.,P < Q and
P=0Q. If P<Q, from Theorem 12 in12], one has that
E(Q) < E(P). If P=Q, it is obvious thatE(Q) = E(P).
Hence, ifQ C P, E(Q) < E(P). This completes the proof.
When we do not need to distinguish complete
information systems from incomplete information
systems, an information in di$ can be represented as the

vector K(A) = {Sa(un). Sa(tz). - Sa(uy))} [10]. Let

CIS be a complete |nformat|on system and
U/A = {Xi,X, -, Xm}- If the set
X = {Ui1, Uiz, - , Uis }, Where|X| = s, andy ", 5 = |U],

then the relationship betweeK(A) and U/A is as

follows: X = Sa(ui1) = SA(u,z) = = S\(usg), i.e.,
IXi] = [Sa(uin)| = [Sa(ui2)| = ISL\(uus>| Therefore,
we have thatE(A) = 5™, H( - B = sma(da-
sAlglun)SA +oda - m )\) L ey
B2 25 = 3% (1 S

Definition 3.1. Let 11S be an incomplete information
system withP C A, U/SIM(P) = {Se(u1),Sp(u2),-- -,
Sp(Uy))}- Information entropy of knowledge is defined
as

V4 Ul
=20 5

Property 3.1. Let IIS be an incomplete information
system withP C A. The minimum of information entropy
of knowledgeP is 0. This value is achieved only by the

)- )

U/SM(P) = 4. The maximum of information entropy of
knowledgeP is 1— 1 ‘ This value is achieved only by the
U/SM(P) = w Obviously, for anllS we have that &
IE(A) <1-g;.

It is noted that Shannon’s entropy and its variants3.1 thatSe(u;) =

to measure the uncertainty of a partition-based fuzzy
rough set and that of a fuzzy information system
respectively. However, these measures only deal with the
fuzziness and also cannot be used for incomplete
information systems. Unlike Shannon’s entropy, the
proposed information entropy of knowledge can measure
not only randomness and fuzziness in an incomplete
information system, but also fuzziness of a rough set and
a rough classification 12]. Therefore, the above
information entropy of knowledge may be better for
calculating the uncertainty in incomplete information
systems.

Proposition 3.2. Let IIS be an incomplete information
system andP, Q C A. If P < Q, thenlE(Q) < IE(P).
Proof. Let U/SM(P) = {Sp(U1),Sp(U2),--+,Sp(uy))}

andU/SIM(Q) = {Sy(u1),Sq(U2),---,Sq(uy)) }- Since
P < Q, it follows thatSp(u;) € So(u) for anyu; € U, i.e.,

1Se(up)| < \SQ(ui)\, and there existq’ € {1,2,---,|U[}
such that S(uj) C So(uj), i.e., |Se(uj)] < |So(uj)l-
Hence, it is obvious that=, U LT' < |st1‘1. ‘U‘(l—
i i u !
lsﬁ()[\])‘) > W1|(1* ‘STUU\ ) = Zgz‘l,ui;éu o] (1- lSQ U )+
- U
- ‘S?SJ\J)‘) <3 ‘1u|¢ujﬁ(1 ‘S\D(\)l) + \U\(l
S i i
) o 5 g1 B0 < 59 g s

i.e.,,IE(Q) < IE(P). This completes the proof.

Proposition 3.2 states that the information entropy of
knowledge monotonically increases as tolerance classes
become smaller through finer classification with the
increase of attributes in knowledge, which is consistent
with the situation of information entropy in complete
information systems from Proposition 3.1.

Proposition 3.3. Let IIS be an incomplete information
systemP,Q C A. If IM(P) = SM(Q), IE(P) = IE(Q).

Proof. Suppose thatl = {uy, U, --- Uy}, andP,Q C A.

If SM(P) = SM(Q), it follows that Sq(u;) = Sp(u;) for
any u € U. Thus, one has thay|’) (1 Sl =
i‘L:”lUl‘(lf ‘S“{(JL‘")‘), i.e.,|IE(P) = IE(Q). Therefore, the

proof is completed.

Proposition 3.3 shows that the information entropy of
two knowledge having the same tolerance relations is
equal in incomplete information systems. Note that the
reverse relation of Proposition 3.3 cannot be established.

Proposition 3.4. Let I1S be an incomplete information
system and® C Q C A. If IE(P) = 1E(Q), thenSIM(P)
=3M(Q).

Proof. Suppose that) = {uy,uz, -, Uy}, andP C Q C
A, itfollows that foranyi € {1,2,---, |U|}, we haveSy(u;)
C S(u). If IE(P) =1E(Q), it is obvious from Definition
So(u;) for anyu; € U. Hence SM(P) =

have been applied to measure the uncertainty in complet& M(Q) holds. This completes the proof.

information systems 39. However, some of these

entropies cannot be used in incomplete informationconclusion relation,

Proposition 3.4 states that for two knowledge having a
if their information entropies in
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incomplete information systems are equal, then they hav®efinition 3.4. Let IIS be an incomplete information
the same tolerance relations. system withP,Q C A. Mutual information betweeR and

Proposition 3.5. Let IS be an incomplete information Qis defined as

system andP C A. IE(P) = IE(A) if and only if
U/SIM(P) =U/SIM(A). IE(P;Q) = IE(P)+1E(Q)—IE(PUQ).  (5)

Proof. = Suppose thaP C A, and IE(P) ( A), it Here. the followin . ; ;

s , g propositions will establish the
forl]lows frolm_Pro.pOS|t|on. 3.4 th‘;SM( P) M(A). relationships among the information entropy, the joint
Thus, Sp(ui) = {uj € U|(u;,uj) € SM(P)} = {Uk €Ul information entropy, the conditional entropy and the

(U, u) € SM(A)} = Sa(ui) for anyi, j andk € {1,2,-- -, tual inf tion i ; lete inf ti t

U]} One has that{Se(u)[u & U} = U{Sa()]uh & U] mutua _m ormation in an mcomp_e ein orma_|on sys _em.
: : _ Proposition 3.7. Let IIS be an incomplete information

foranyi € {1,2,---,|U|},i.e,U/SM(P) =U/SIM(A). tHP O C A IE(OIP) — IE(P IE(P

< IFU/SIM(P) =U/SIM(A), thatis, one has thih(u) system with?, Q C A IE(Q|P) = IE(PUQ) —IE(P).

= Sa(u) for anyi € {1,2,---,|U|} such thatSM(P) = Proof. It follows immediately from Definition 3.3 that
SIM(A). Thus, it follows from Proposition 3.3 thaE(P)
= |E(A). This completes the proof. IE(QIP)

To investigate the information entropy of new U U Ul U]
knowledge composed of two given knowledge with the _ < [SP(U)| < [Sp(u) NSo(ui)| 1 1
same universe in an incomplete information system, we Izl U2 ,Z |U|2 Z U] Z U]
introduce Lemma 1 ing] as follows.

U1 su)nsu)l, 1 [Se(w))

Lemma 3.1.Let1Sbe an incomplete information system =y (— - ——————)— Y (—— )

andP,Q C A. Then the following properties hold Zl VI uf? Z‘ VI ‘U|2

(1) SM(P)NSIM(Q) = SM(PUQ); U1 iswnsoml Y1

(2) So(u) N So(u) = Spug(u) for anyu € U; = Z |U| U] Z |U\ U )

(3)U/SIM(P)NU/SIM(Q) =U/IM(PUQ);

@UL U S0} U Sowy - = 1EEDQ-IER) ©
U= ‘U‘{SP(UI)QSQ(UI)} Proposition 3.8. Let IS be an incomplete information

Def|n|t|on 3.2.Let 11§ = (U,P), 1S = (U,Q) be two S:yféla(g)zﬁ]?;%‘gpﬁ ThenlE(P:Q) =1E(P) ~1E(PIQ)

incomplete information systems. Joint information

entropy ofP andQ is defined as Proof. From Definition 3.4 and Proposition 3.7, we have

that IE(P;Q) = IE(P) + 1E(Q) — IE(PUQ) = IE(Q)—
(IE(PUQ) —IE(P)) = IE(Q) — IE(QIP). Similarly, the
Ul U A . equationE(P;Q) = IE(P) — IE(P|Q) can be proved.
E(PUQ) = ZZ i(l_ M) This completes the proof.
1= U] U] Note that these equations cannot be satisfied by some
Ul existing measures in incomplete information systems.
— i(l_ [Sp(ui) N So(ui))| ). (3)  Furthermore, these relationships will be helpful for
Z\ U] U] understanding the essence of the knowledge content and
the uncertainty in incomplete information systems.
Definition 3.2 denotes the joint information entropy of Proposition 3.9. Let 1S be an incomplete information
new information system composed of two given system and®,Q C A. IE(Q|P) =0if and only ifP < Q.
information systems with the same universe in incompletep,gof. — Supposd E(Q|P) = 0, we need to prove <
information systems. Q. If P < Q does not hold, then there exists somes U
Proposition 3.6. Let 11S be an incomplete information such thaB(uj) C S(u;) does nothold, i.e., ¥ |Sp(uj)N
system and®,Q C A. Then the following properties hold ~ So(uj)| < |Sp(uj)|. Therefore, we have that
(1) 1E(P) <IE(PUQ), IE(Q) <IE(PUQ);

2)IfP thenlE(P =I1E(P).
Proof. Itis achieved by Definition 3.2 and Proposition 3.2. - 1b U2
1G4y,
Definition 3.3. Let 1IS be an incomplete information N ) )
system withP,Q C A. Conditional entropy ofQ with [Sp(ui)l |S:(gj)mSQ(uJ)|
respect tP is defined as Ul
_ 15p(u)| = 1Sp(ug) N So(wy)]
U - U2
[Se(ui)[ — [Se(ui) N So(ui)| 1S (ui)| — [Se(uy)|
E(QIP (@) j Dl _ g 7
( | ) I; |U|2 > |U|2 ) ()
@© 2014 NSP
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i.e.,,|[E(Q|P) > 0. This yields a contradiction. Thu8,< Q

holds.

< SupposeP < Q, then, for anyy; € U, it follows that
Sp(u) € (i), i.e.,Sp(u) NSo(ui) = Se(u). Hence, we
can obtain thatE(Q|P) = !iaw = 0. This
completes the proof.

Proposition 3.9 illustrates that in the same universe, a

knowledge cannot provide the system any additional
uncertainty (classification information) if it is coarser
than the original knowledge in incomplete information
systems. It is noted that in a given decision information
system,
corresponding partition or covering. Thus, to reveal the

Table 1: An incomplete decision system about cars

car P M S X D
1 High Low Full Low Good
2 Low * Full Low Good
3 * * Compact Low Poor
4  High * Full High Good
5 * * Full High  Excellent
6 Low High Full * Good

{Price,Mileage, Sze,Max — Speed} = {P,M,S X} and

= {{1,3,4,3,{2,3,5.,6,

this decision attribute usually generates theéD = {Acceleration}.

Assume that) /SSM({P,M})

relationship between the condition attributes and the{1,2,3,4,5,6,{1,3,4,%,{1,2,3,4,5,6,{2,3,5,6},

decision attribute, we present following definitions and
relative properties.

Definition 3.5. Let IDSbe an incomplete decision system
with P C C, U/SIM(P) = {Sp(u1), Sp(U2), -+, Se(uy)) }

and U/SIM(D) = {Sp(u1),So(U2), -+ ,So(uy|)}. The
conditional entropy oD with respect td® is defined as

U]
EOP)= 3

Property 3.2. Let IDS be an incomplete decision system
with P C C. If U/SIM(P) = w, thenl E(D|P) achieves the
minimum value 0. U /S M(P) = d andU /M (D) = w,

thenl E(D|P) achieves the maximum valu&l‘j‘ When

SM(C) is a tolerance relation, 8 IE(D|C) < 1— \UI

Proposition 3.10. Let IDS be an incomplete decision
systemP,Q CC. If P < Q, thenlE(Q|D) < IE(P|D).
Proof. Since P < Q, it follows that S(ui) € Sy(u),
Sp(u)] < [So(w)], and [Sp(u) N Se(u)| < [So(u)N
So(u)| for any u € U and Sp(ui) € U/SIM(D). From
Definition 3.3, we can obtain that

[Se(u)| —[Se(ui) N Sp(u)|
Uz

(8)

V| N . .
V| _
i.e.,|IE(Q|D) < IE(P|D). This completes the proof.

Proposition 3.10 indicates that the finer the condition
knowledge is, the more classification information it can
provide to an apriori knowledge (target decision) in

U/SM({SX}) = {{1,2,6},{1,2,6},{3},{4,5,6},{4,5,6},
{1,2,4,5,6}, and U/SIM(D) = {{1,2,4,6,{1,2,4,6,
{3},{1,2,4,8, {5} {1,2,4,8}. Itis easily computed that

IE({P,M}|D) = 4=2¢4=2+1-144-2+1-1+4-2 _ and
IE({S X}|D) = 4=3+4-3+1- 134 241-1+4-4 ;
e, IE({PM}|D) > |E({S,X}|D) However, {P M1 <

{S X} cannot be satisfied in fact.

As we know, conditional entropy can be usually used
to define the significance of an attribute set of decision
systems in practice. In what follows, we further discuss
the relationship between two conditional entropies in
incomplete decision systems.

Proposition 3.11. Let IDS be an incomplete decision
system withP,Q CC. If P < Q, IE(D|P) < I1E(D|Q).
Proof. Since P < Q, it follows that Sp(ui) € Sy(ui),

1Se ()] < |So(ui)|, and thenSp(ui) N So(Ui) € So(ui)N
S(up) for any y; € U, and (y;) € U/SIM(D). From
Definition 3.5, we have that

IE(D|Q) —1E(DIP)
U]

)| — [Se(w)]
-3 (g
|So(u) N So ()] — [Se(u) NSo(w)|
P ’
_ gﬁg(um— So(th) | =10 (4) 1 (So(t) = ()
2 U]
> 0, (10)

i.e.,|IE(D|P) < IE(D|Q). Thus, itis obvious thatE (D|P)
=1E(D|Q) if and only if {So(ui) — Sp(ui)} € Sp(ui) for
anyu; € U. This completes the proof.

Proposition 3.11 shows that the coarser the condition

incomplete decision systems. However, it is noted that theknowledge is, the more classification information it can
reverse relation of Proposition 3.10 cannot be establishegreserve with respect to a target decision. In other words,

in general. In the following, the performance of this
relation in an incomplete decision system is shown
through an illustrative example.

Example 3.1.Consider an incomplete decision system
about several cars shown in Table 1, whete=

in the IDS, if 1E(D|P) < IE(D|Q), one says that the
attribute seP is more significant than the attribute gt
with respect to the target decisién

Proposition 3.12. Let IDS be an incomplete decision
systemP,QCC.IfP=<Q=D,|E(D|P)=IE(D|Q) =
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Proof. SinceP < Q < D, it follows thatSp(ui) € So(ui) IE(Cp) = 0. If Cp = w, then the information entropy of
C S(W), Se(u)NSo(u) = Sp(ui), and So(ui) N S(ui) knowledge P achieves the maximum valu¢E(Cp)
= S(u) for anyu; e U, andS(ui) € U/SSIM(D). From  =1-— ﬁ Obviously, for anl|S, we have that 6< | E(Cp)
Definition 3.5, we havéE (D|P) = I“i‘l w =0. <1- ﬁ holds.
Similarly, the equatiohE(D|Q) = 0 can be proved easily. Letl1Sbe an incomplete information systeR)Q C A,
This completes the proof. Cp={PL,P%-.. ,P™, andCq = {Q',@Q?,---,Q"}. Then
Until now, most of the existing uncertainty measures we define a partial ordex’ (or =’) in the view of maximal
cannot be used in incomplete decision systemsconsistent block nature of knowledge bnas follows:P
According to the properties mentioned and the aboveis finer thanQ (or Q is coarser tha®), denoted byP <’ Q
corresponding discussions, it is known that the(or Q >’ P), if and only if for everyP' € Cp, there exists
conditional entropy proposed above can well characteriz&)! € Cq such that?' C Q!. Thus,P <’ Q, for everyP' €
the uncertainty of knowledge in incomplete decision Cp, there exist®Q) € Cq such that' C QJ, and for some
systems. So far, however, these uncertainty measures ansio c c, there exist©I° ¢ Co such thaP® c QI°.
the relationships among them above have not bee
reported in incomplete information systems and ol o2 m AL
incomplete decision systems. In fact, given any binaryS%Stem'Ran A C,P = {P*,P% - ,PT}, andCq = {Q,
relation, one can induce a cover of the universe and?: Q' 1 P <" Q, thenlE(Co) < 1E(Cp). _
determine a particular information system. Furthermore,Proof. SinceP <" Q, it follows that for everyP' < Cp,
through using the idea of information view, we may usethere existsQ! € Cq such thatP' C Q!, and for some
the information entropy or its variants to measure theP® € Cp, there exist®QI° € Cq such thatP’® ¢ QI° and
uncertainty of the information systems induced by a givenm > n. Then, forQI° e Co, there existg{pi{ p2... ’pis}
binary relation. Thus, the information entropy and the ipik ¢ c, k = {1,2,---,s}) such that eactP’x C QI°,
conditional entropy can not only characterize theynerepl0 ¢ (P1,P2,... P} Thus, it can be obtained
uncertainty of an incomplete information system, but alsothat|pik‘ < |QI% and|P°| < [QI%|. Hence, we have that
measure those of other kinds of information systems. -

r&’roposition 3.13.Let I1S be an incomplete information

12 |Q
. N IEC) =1~ 3 5

3.2 Information entropy with maximal In|i& U]
consistent block in incomplete information .1 ( Q) |Qi°|)
systems o O] U]
Because the maximal consistent block technique can 12 Q) 1E Py

; o . . . <1 ( Z +2> o)
describe the minimal units for knowledge or information [n| =740 Ul s & U|
in incomplete information systems3%,40], we now m i
introduce a variant of the proposed information entropy _1 B
with maximal consistent block to measure the uncertainty - m4 U]
of incomplete information systems. moq P

Let I1Sbe an incomplete information system, then the = Z—(l— v) =1E(Cp), (12)

maximal consistent blocks are denoted I§y = & mi U]

{AL,AZ ... AM} induced byA. Of particular interest is e IE < IE(Cp). This completes the proof.

the discrete classificatios = w = {{u}|u € U} and the Pro(ggs)ition 3(,1?2 shows tha?t the information entropy
discrete classificatiofa = 6 = {Ujuc U}, orjustd and  \ith maximal consistent block nature of knowledge
w if there is no confusion as to the domain s&][ increases as the maximal consistent blocks become
Definition 3.6. Let I1IS be an incomplete information smaller through finer classification in incomplete
system,P C A, andCp = {P%,P%--- ,P™}. Information  information systems.

entropy of knowledgeP for the maximal consistent pyonosition 3.14.Let 11S be an incomplete information

blocksCe is defined as system withP,Q C A. If P <’ Q, thenl E(Q) < IE(P).
moq P Proof. SinceP <’ Q, it follows that for everyP' € Cp,
IECp) =) —(1— 1) (11)  there exist®! € Cq such thatP' C Q. Supposess(u) =
& m* U

{v e Ul(uv) € SIM(P)} and S(u) = {v e U|(u,v) €
P SM(Q)}, it follows from Property 4 in 32] that Sp(u)
U =t _ =U{Xc € Cp|X C Sp(u)} = U{X €Cp(u)} (k<m) and
block P' within the universeéJ. So(u) = UY € ColY € So(u)} = UfY: € Co(w)} (t < n)
Property 3.3. Let IIS be an incomplete information in the view of maximal consistent block nature of
system withP C A. If Cp = 9, then the information knowledge. Then, it can be obtained thet Cp(u), u €
entropy of knowledgeP achieves the minimum value Cg(u), u ¢ Cp —Cp(u) and u ¢ Co — Co(u). Hence, it

where i represents the probability of maximal consistent
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follows from P <’ Q that for anyXy € Cp(u), there exists  granulation of knowledgd achieves the maximum value
Y; € Co(u) such thatX, C ¥%;. Thus, for anyu e U, we  IG(A) = 1— ﬁ Clearly, for anllS, we have that 0<
obtain thatS(u) = U{Xx € Cp|Xk C Sp(U)} = UrL1 % C IG(A) < 1— 2

UL Y = UY € Col% € So(u)} = So(u), that is to say, o ) | f
Ul 1 Proposition 4.1. Let |IS be an incomplete information

[Se ()] S So(u)| for any u € U. Therefore, 3~ U] system. The relationship between the information
(1- ‘S‘fS"')‘) < 2!5‘1@1\(1— ‘STST)‘), i.e,IE(Q) <IE(P). granulationlG(A) and the information entropyE(A) is
This completes the proof. as follows:IG(A) +1E(A) = 1.

Proposition 3.14 states that the information entropy ofProof. It follows immediately from Definition 3.1 that
knowledge increases as the maximal consistent blocks
become smaller through finer classification in incomplete

information systems. Then, in &hS, it can be seen easily IE(A) = il 1 b [Sa(ui)| 1_ bl |Sa(up)]

from the above proof thep(u) C So(u) for anyu e U if 40 i; up 7 4 |up

P <’ Q, that is, the partial relatio® < Q can be induced 1 1G(A 14
by the partial relationP <’ Q. Therefore, it can be =1-1G(A), (14)

concluded that the partial relatiot is a special instance o IG(A) + 1E(A) = 1. This completes the proof
of the partial relation=< in incomplete information ) ' '
part 'on= In hcomplete | N Definition 4.1. Let 1S, = (U,P), 1S = (U,Q) be two

systems in fact. : ; : ) . .
incomplete information systems. Joint information
granulation ofP andQ is defined as

4 Information granulation-based uncertainty v

measures in incomplete information systems IG(PUQ) = ZWSQ(U')'

U )

Information granulation is mainly used to study the
uncertainty in rough set theory. In some sense, ther
exists a complement relation between entropy an
information granulation 1. In such a case, firstly information entropy E(PU Q) is as follows:IG(PU Q)+
information granulation and conditional information E _

: : : (PUQ) =1.
granulation are introduced to measure the uncertainty o* o N
incomplete information systems and incomplete decisionPr00f. The proof is similar to that of Proposition 4.1.
systems respectively, secondly the complement Propositions 4.1 and 4.2 show the relationship
relationships between information granulation and Petween the information granulation and the information
information entropy are investigated, thirdly a variant of €ntropy is the strict complement relationship, that isythe
the information granulation with maximal consistent POssess the same capability on depicting the uncertainty
block is presented to measure the uncertainty ofofanincomplete information system.
incomplete information systems, and then some of theirCorollary 4.1. Let IIS be an incomplete information
important properties are deduced. system withP,Q C A. ThenIG(PUQ) +IE(PUQ) =
IG(P) +1E(P).
Proof. It can be achieved by Propositions 4.1 and 4.2.
Definition 4.2. Let 11S be an incomplete information

Proposition 4.2. Let I1S be an incomplete information
ystem withP,Q C A. The relationship between the joint
nformation granulation IG(P U Q) and the joint

4.1 Information granulation and conditional

information granulation in incomplete system with PQ C A. Conditional information
information systems granulation ofQ with respect tdP is defined as
Let I1Sbe an incomplete information systel/SM(A)
={Sa(u1),S(U2),- - ,Sa(uy))}. Information granulation 1G(QIP) = 2 s (u)] — | Sp (i) N So(w)] (16)
of knowledgeA in [10] is denoted by @l )_iz\ U2 :
u
IG(A)—l ||S“(ui)|7 (13) Property 4.2. Let 1IS be an incomplete information
.Zi Uz system withP, Q C A. ThenI G(Q|P) = IE(Q|P).
1S ()| - In what follows, the proposition will establish the
where =7~ represents the probability of tolerance class reationship between the information granulation and the
Sa(u;) within the universéJ. conditional information granulation in an incomplete

Property 4.1. Let IS be an incomplete information decision system.

system. If U/SSM(A) = 9, then the information Proposition 4.3. Let IDS be an incomplete decision
granulation of knowledgé achieves the minimum value system withP C C. ThenIG(D|P) = IG(P) — IG(PUD)
IG(A) = 0. If U/SM(A) = w, then the information =I1E(PUD)—IE(P)=I1E(D|P).
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Proof. It follows immediately from Definition 4.2 that

1 n Qj Q]O
16Ce) = (> 1FH
Gofp) — 3 1SS IS S (w) =L
= — n j S i
2P & P SEVEE IS Yt
= 1G(P) — IG(PUD). (17) N0 VI 55 U
1 2P
Then, from Property 4.2 and Proposition 3.7, it can be > m m =1G(Cp), (19)
obtained that G(D|P) = IE(D|P) = IE(PUD) — IE(P). =
This completes the proof. i.e.,IG(Cp) < IG(Cq). This completes the proof.

According to Proposition 4.3, it is known that the Proposition 4.4 shows that the information
conditional information granulation is a special instancegranulation with maximal consistent block nature of
of the conditional entropy in incomplete decision knowledge decreases as the maximal consistent blocks
systems. It means that the definition of conditional become smaller through finer classification in an
information granulation is a consistent extension toincomplete information system.
conditional entropy in incomplete decision systems.prgposition 4.5. Let 11S be an incomplete information
Therefore, they have the same capability on representingystem withP,Q C A. If P < Q, thenIG(P) < IG(Q).

the uncertainty of an incomplete decision system. Proof. The proof is similar to that of Proposition 3.14.
Proposition 4.5 shows that the information
granulation decreases with the maximal consistent blocks
4.2 Information granulation with maximal becoming smaller through finer classification in

consistent block in incompl ete information incomplete information systems. In the following, we can
establish the relationship between the information

systems granulation and the information entropy with maximal
consistent block in incomplete information systems.

Definition 4.3. Let 11S be an incomplete information Proposition 4.6.Let 11S be an incomplete information
system,P C A, andCp = {Pl P2 ... P™}. Information system with P C A. The relationship between the

granulation of knowledgd for the maximal consistent Information granulationIG(Cp) and the information
blocksCp is defined as entropyl E(Cp) is as follows:1 G(Cp) +IE(Cp) = 1.

Proof. It follows from Definitions 3.6 and 4.3 that

[e(-n e gud} (18) -
|m‘i= |U‘ |E(CP):mi,imﬂ:1,imﬂ
_ 20m WA WA
where% represents the probability of maximal consistent =1-1G(Cp), (20)

block P within the universeJ. i.e.,,1G(Cp) +1E(Cp) = 1. This completes the proof.

Property 4.3. Let IIS be an incomplete information Proposition 4.6 states that in an incomplete
system withP C A. If Cp = w, then the information information system, the relationship between the
granulation of knowledg® achieves the minimum value information granulationlG(Ca) and the information
IG(Cp) = ﬁ If Cp = &, then the information granulation entropy IE(Ca) is the strict complement relationship.
of knowledgeP achieves the maximum valu6(Cp) =1.  Thatis, they possess the same capability on depicting the
Clearly, for anllS, 2 < 1G(Ca) < 1 holds. uncertainty .of mcomlplete information systems in th_e
Wl view of maximal consistent block nature of knowledge in
Proposition 4.4. Let 1S be an incomplete information incomplete information systems.
systemP Q C A, Cp = {PLP? ... P™}, andCq = {Q%, Remark. Unlike most of the existing measures for the
Q?,---,Q"}. If P <’ Q, thenl G(Cp) <1G(Cp). uncertainty in incomplete information systems and
A i incomplete decision systems, the relationships among
Proof. SupposeP < Q, it follows ithat for evenP' € Ce,  these concepts (information entropy, conditional entropy
there existsQ! € Cq such thatP' € Q!, and for some 431 information, information granulation, and
P'% € Cp, there exist®Q!® € Cq such thatP'® c Q1® and  ¢onditional information granulation) can be established,
m > n. It follows that for QI € Cq, there exists{P',  which are formally expressed 4&(Q|P) = IE(PUQ)—
P2,... P'S} (P e Cp, k={1,2---,s}) such that each IE(P),|IE(P;Q)=IE(P)—IE(P|Q)=IE(Q)—IE(Q|P),
Pk C QI%, whereP® ¢ {P'' P2 ... P'S}. Then,itcanbe IG(A)+IE(A) =1,IG(PUQ)+IE(PUQ) =1, IG(PU
obtained thatP'| < |QI°| and |P°| < |QI°|. Therefore, Q)+ IE(PUQ) = IG(P)+IE(P), IG(Q|P) = IE(Q|P),
we can obtain that IG(Cp) + IE(Cp) = 1 in an IIS with PQ C A, and
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IG(DIP) = IG(P) —IG(PUD) = IE(PUD) — IE(P) = Key Teachers of Henan Normal University, and the

IE(D|P) in an IDS with P C C. These relationships are Postgraduate Science and Technology Program of Beijing
very significant for reasonably applying an uncertainty University of Technology (No. ykj-2012-6765).

measure to incomplete information systems andThe authors are grateful to the anonymous referee for a
incomplete decision systems. However, most of thecareful checking of the details and for helpful comments
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