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Abstract: The previous declassification policies focus on qualitative analysis ofiseproperties along different dimensions, lacking
guantitative analysis of them. As a step in this direction, we relax restrietsgeof robustness of declassification from the quantitative
aspect, and propose a definition of robustness rate of declassifidagioegd on Shannon’s measure method of information lattice.
We show our definition is equivalent to robust declassification when thue vd robustness rate is equal to 1. Moreover, we make a
theoretical and experimental analysis of robust rate about the langdgtack on average salary, respectively. The experimental results
are consistent with the theoretical results completely.
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1 Introduction have provided a solid background for this ar@g8]. The
theory is mainly based on information theoretical terms,
the main being Shannon’s entropy, Renyi's entropy and so
on. More recently, Malacaria and Heussg} presented
the algebraic view of quantifying information flow, based
on lattice theory, and this brings quantifying information
flow research closer to existing qualitative works. These
theoretical approaches have been shown to be powerful,
providing precise reasoning techniques for program
constructs including loopslp]. As for the enforcement

Language-based information-flow security holds the
promise of automatically and efficiently analyzing the
information flow within a program so that end-to-end
security policies may be enforcet] [ The baseline policy

of information-flow is non-interference, which prohibits
secret inputs from leaking to public outpu8.[However,

non-interference is too restrictive to write useful

programs in the real world. The programs often : . . .
deliberately release certain secret information, e_g_mechanlsm, some works have investigated automation of

password authentication. Declassification policies reIaxS'LiCh thte(t)_ry, %nd \éer(;f'cat:?r} tﬁchlr(uques dllkSeA?bstlract
the restrictiveness of noninterference and allow delilgera "'€'Pretation, bounded modei Checkers an Solvers

release of secret information to public outputs. have been applied in this area, but there remains a number

Sabelfeld and Sands3][ surveyed declassification of chélleng('a516].'
policies by classifying the basic goals according to what ~ With this article, we close the gap between the
information is released, who releases information, wheredualitative  policies and quantitative analysis by
information is released and when information can beintegrating quantifying information flow with the robust
released. The different dimensions of policies tend todeclassification policy §, 11, 12). Our idea is that the
address different aspects of declassification, sdProgram is secure if the amount of information flow from
declassification policies trend to combine different Secret to public, excluding information flow of legal
dimensions to offer enhanced Security_ However,decllassmca“on, IS nOF tOO much from a quant|tat.|v-e. pOInt
declassification policies proposed so far are limited toOf view. Based on this idea, we propose a definition of
qualitative analysis4-6]. robustness rate of_ declassification and present the

On the other hand, quantifying information flow €nforcementmechanism of model checking.
research aims to measure the amount of leaked The rest of the paper is organized as follows. Section
information that can be gained by observations on the2 presents the information lattice. Section 3 states the
running of programs. In the past years a number of workamodel of programs based on the transition system.
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Section 4 describes quantitatve measure of3 Model of Programs

declassification. Section 5 depicts model checking

experiments. Finally, Section 6 concludes this paper. We consider sequential imperative programs in this paper.
Following [11], a programP is modeled by a transition
system(M,—), whereM is a set of memories (A memory

2 Information Lattice mis a finite mapping from variables to values.) andis
a transition relation between memories. A trageof

Landauer and Redmond(] showed that information can program P is any finite transition sequence

be represented as a lattice. LEtbe a state space of a mg — M — --- — my_1, where n > 1 and
system. Information lattice can be defined in two m (0<i<n-1)isany memory. We writg(i) for theit"
equivalent manners as follows. memory in the traces. We use notatiorTrcy(P) for the

Firstly, information lattice can be defined in terms of set of traces oP starting at the memorgn. The set of all
equivalence relations. The equivalence classes represetraces ofP is denoted byTrc(P) = Umem Trem(P). We
sets of states whose information is indistinguishable. Letwrite s = s if the traces s and § satisfy the
[(X) be the set of all equivalence relation on the et stutter-equivalence relation, which ignores empty

The ordering= on| (%) is defined as transiton such as m — m, for example,
I — (Mo — My = My = Mp) = (Mo — My — N — ). Let
V226 1(2) (R1EA2) & 1) T, and T, be sets of tracesl; = T, if and only if they

Vo1,00 € X (01 72 02 = 01 =1 02) contain the same traces with respecttdormally:

It easily follows from () that (I(X),C) is a complete  (Vse T;,38 € To,s=9)A (VS € T, Is€ Ty,s=¢) (8)

lattice, which induces an algebraic systéhiX),L, M),

whereLl andr1 denote join and meet operations standing A view of the progran® is an equivalence relation dvi.

for the intersection of elements and the transitive closurd-et | (M) be the set of all views of the system. By (1),

union of elements in(X) respectively. Higher elements (I(M),C) forms a complete lattice. Given a trace

in the information lattice can distinguish more states. se Trc(P), aviewr € I (M), written s/r, is the sequence
Secondly, information lattice can be defined in termsof equivalence classes of memoriesjfiormally:

of functions from the sef. The functions express the

information extracted from a state. For any functién Vi€ {0---len(s)}, (s/r)(i) = [s(i)]r ©)
whose domain ig, let || f|| to be the element df(X) for . .
which All possible sequences of equivalence classes under the
view r whenever the progra starts in the memorynis
Vo1,02 € Z (01| f||02 < f(01) = f(02)) 2 the following set:
The ordering relationshigl] is translated into Trem(Pr) ={s/r | se Trcm(P)} (10)

viigll [ fll € 1(Z) (gl E1[f]) < 3) We use the view to denote an ability to distinguish
do,vo e Z (g(o) = @(f(0))) memories which can be directly accessible to an observer
_ _ for his/her clearance level, and the vi&jr] to express an
Arandom variableX can be seen as amappiiig-> R,  ability to distinguish memories by watching the trace of
whereZ is a state space with a probability distribution and program P through the viewr. Two memories are
R is the set of real numbers. According @) (let [ X|| be  equivalent under the vieR[r] only if the possible traces
equivalence relation leading from these memories are indistinguishable with

respect to the view, formally:
Yo1,00 € X, 01||X| 02 & X(01) = X(02) 4) P y

The notion of semivaluation can be used to quantify the vmy, mp € M, (my, mp) € Plr] <
amount of information provided by an element in the Trem (Pr) = Trem, (Pr)
lattice. Formally a semivaluation on | (X) is a mapping . L o
I(Z) — R satisfying order-preserving property and leen deterministic progrgrﬁ, the initial memory as
weakened inclusion-exclusion principle. Malacaria and@" input of progranP determines a trace; that i, can
Heusser §] showed the semivaluation of the join of two be seen as a function from set of initial memories to set

(11)

lattice elements is the joint entropy, formally ﬁf tHraces. By 2), the corresponding equivalence relation is
P||.
vIX[TuYl) = H(X,Y) Q)
' . . - VYmy,mp € M, <ml,m2> € ”P” A (12)
Thus, the following basic properties hold: Trem (Pr) = Trem, (Pr)
v(lIX[l) =H(X) (6)

According to the definition of information lattice?[r]
XTY = v(|IX[)) < v(Yl) (") and IP|| are equivalent in essence. By (6), the amount of
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information provided by|P|| is H(||P||) (i.,e. H(P[r])). To  Definition 2 Let Num expresses the number of bits of
illustrate, consider the program, containing a secret secret information in progran® , the robust rate of
variableh and a public variablé& programP with respect toA, denotedRbt_Rate, is given
by
if (h==0)thenl =0elsel =1 Num— C(||P]| Lt ||Pal|)
Num—C(|[P|))

whereNum—C(||P||) # 0.

Note that if Num — C(||P||) = 0, then secret

information is totally leaked by the vieWP|. Hence

=0  I=1 there is no need to inject the attacking coélento the
AN S programP, and the discussion on robust rate of program
{{0},{1,2,3}} P to Ais meaningless.

Obviously ||P|| C (||P]| U ||Pall) always holds, and by
(7) we get C(||P||) < C(||P|| U ||Pall). Additionally,
HIPD = 1/4 % 100,44 3/4 % l0a-(4/3) — 0.81 information leaked is less than secret information in the

(IPall) = /4 logy 4+3/4 > logy(4/3) memory, i.eNum— C(||P|| U [|Pa||) > 0. Hence, we have

But if the two equivalence classes is uniformly Rbt-Rate € [0,1]. If Num—C(||P|| U |[Fall) = O, then
distributed, then we have (||Py||) = 1/2 x log,2 x 2 =1, Rbt_Rate = 0, which implies that secret information is
which is the channel capacity P ||, and this case is the totally leaked by the view [[P|| U [[Fal. If
most favorable for the attacker. The following result CUIPI U[[Pall) = C([|Pl|), which indicates the condition
establishes basic relationships between channel capacifff Definition 1 holds, then the program is completely

Rbt_Rate =

(13)
If we assume thath is a uniformly-distributed 2-bit
unsigned integer, with range<0h < 3, then the program
P, partitionsh into two equivalence classes:

Hence we get

and number of equivalence class&d]] robust with respect toA, and by (3) we have
Theorem 11f P is deterministic andN is the number of ~Rbt-Rate=1. ) o
equivalence classes ¢P||, then the maximum possible For example, consider the prografh, which is the

information leaked where we consider all possible €x@mple of averaging salariesd]{ suppose secret

probability distributions on the inputs is lgg\) bits, ~ variablesny, - h, store the salaries afemployees. The

which is the channel capacity §P|| (i.e.C(||P||)). average salary computation intentionally declassifies the
average but no other information abou,---,hy to a
public variableavg:

4 Quantitative Robustness avg = declassify((hy +--- +hp)/n)

An active attacker can both change and observe prograr% onsider an information laundering attak

execution. LetA be the attacking code fragments injected hy =hy;hg =hy;--- hp=hy

into the programP, and Pa be the attacked program. \ua iniectAq into P> to form the attacked proarafa. -

Hence view ||Pa|| express an ability to distinguish InjectAy into P2 prografs,:

memories by watching the trace d#. The attack hy = hy;hg =hy; - fhy = hy;

considered in this paper is an information laundering avg = declassify((hy + - -- +hyp) /n)

attack which satisfiegA|| C r, i.e., the execution of

attacking code fragments themselves can not distinguis ! : . . :

more memories than the view11]. onsider another information .Iaunderlng attacls:

As mentioned before, our starting point for this paper N2 = 1. The attacked progras, is:
is the robust declassification policg, 12], which says hy = hy;avg = declassify((h1 +-- -+ hp)/n)
that observing attacked program reveals no more

information than watching the original program. Here, we Intuitively, this program IeaKs partia! informa}tion bf to
restate the definition of this policy and present how ourdd (assummg_1 = 2) excluding the information aIIov_veq
definition improves it. to be declassified. Formally, we can make qualitative

Definition 1 The progran® is robust with respect té if analygs of this program by the transition Systeh, —)

and only if (|P|| U [|Pa]l) C [|P]]- mentioned above. The se&¥l consists of_ a 3—tuple
(t,(h,---,hn),avg). The componertt€ {0, 1} is a public

variable representing the time roughly—the value 0

indicates the program has not run yet, and the value 1

denotes the program has completed. The view

mentioned in Section 3 is given by:

his program leaks all the information df; to avg.

According to the basic principles of lattice theory, we
have ||P|| C (||P|| L ||Pal|) always holds. Therefore, the
condition in Definition 1 can also biglP|| LU ||Pall) = ||P||-
Indeed, if this condition is not satisfied, but the differenc
in information leaked between view®|| L ||Pal| and||P||

is small enough, the programis robust with respect ta {t,(he,--- ,hn),avg)r(t’, (hy,--- h),avg)
to some extent. This extent of robustness with respect to N
the attackA can be expressed with the notion of robust , ,
rate: t=t")A(avg=avd)
© 2014 NSP
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The view||P|| (i.e.P:[r]) can be described as: the variableavg in the programP andPa, respectively;
the values of second column in Table 3 is the intersection
(t,(he,---,hn),avg) [P (', (hY,- -, hr),avg’) of the second columns in Table 1 and 2 based on the value
o of first column in the corresponding line. According to

Table 1 and 3, we can haw(||P,||) = log,4 = 2 and

CllIP2ll U [[Poapll) = log,8 = 3. Thus, by (3) in
Num—C(|| P lL[Pon, )

(t=t)A(avg=avg)A
(t=0= (hy+--+hy=hj+---+h))

Definition 2 we haveRbt_Rate = Nam—C(B) = 0.
The transition—, induced by the attack; is represented Similarly, the equivalence classes of these views when
as: nis equal to 4 is illustrated in Table 4, 5 and 6. According

to them, we hav&bt_Rate = 0.322137

<0; <h17 h25 h3; e »hn>7an> '_>A2

Table 1: ||P,|| whenn=3
(0,(hy,hy,hg, -+, hy),avg) el

The view||Poa, || is depicted as: [avg [ {hy1,hp, hg) |
/ / / / 0 <07070>
<t7<h1""’hn>7an>HP2A2||<t’< 1, hh), avg’) 1/3 || (0,1,0),(1,0,0),(0,0,1)
< 2/3 || (1,1,0),(0,1,1),(1,0,1)
(t=t")A(avg=avg)A
(t=0= (2hy+hg+---+hy =20, +H+---+h))) Table 2: ||Poa, || whenn =3
The view||P,||U ||Pa, || is denoted as:
P U P | T
(t, (h1, 2, h, -+ hn), avg) (||Pa[| L [[Pa, 1) 1(/)3 Egvgv%végv 1%
!/ / / / / / )y ) ) =y
<t 7< 15,1125 37"'7hn>aan> 2/3 <1,1,0>,<1,0,0>
A 1 (1,1,1),(1,0,1)
t=t)A(avg=avg)A (t=0=
(h+hp+h3+--+hy=h +h,+hy+---+H) Table 3: ||Py[| U ||Poa, || whenn =3
V(2hy+hg+---+hy=2h, +h3+---+hp)
V(hg+ha+hg+ - +hy =20 +hg+---+h) | (avgy,avgz) || (hy,hp,h3) l
V(2hy +hg+ - +hy=h, +hy+hy+ -+ H (0.0) (0,0,0
(s TR ) /3.0 0.1,0
From the above analysis we can see t&|| LI || P, ||) C (1/3,1/3) (0,0.1)
|P>|| does not hold, so the prograRa is not robust with (1/3,2/3) (1,0,0)
respect toA, by Definition 1. On the other hand, we will (2/3,1/3) (0,1,1)
make quantitative analysis of these programs by Definition (2/3,2/3) (1,1,0)
2 as follows. (2/3,1) (1,0,1)
To simplify the calculation of robust rate, we restrict (1,1 (1L11)

the value of the secret varialie (1 <i < n) to integers 0

and 1, while the public variable can take real numbers.

Here we illustrate this calculation with the above

programs whem = 3. In this case, the secret information

can be represented by a triplle;, hy, h3) which contains ) )

3 bits of information (i.eNum = 3), and the observable 5 Model Checking Experiments

trace of programs have only one memory status needing

consideration, which is variablavg. The equivalence Itis a heavy work that manual calculating the equivalence
classes of view|P,| is listed in Table 1, where the first classes of each view when the number of employees is
column gives the possible values afg, and the second large. Therefore, we introduce the bounded model
column contains the equivalence classes corresponding tchecking tool CBMC 13 to find the number of
the different values ofivg. Similarly, Table 2 shows the equivalence classes of a view, borrowed ideas of
equivalence classes of vieWP.,,|. The equivalence quantitative information flow from14].

classes of view|P; || LI ||Poa, || is given in Table 3, but the A policy for model checking defines the assumed
first column of this table has the form of tuple number of equivalence classes of a view. The tool CBMC
(avgp,avgp), where the elementavg; and avg, denote  is used to verify or falsify this policy. A view violates a

© 2014 NSP
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Table 4: ||P;|| whenn=4

[avg [ (hy,ho,h3, hg) |
O <070’O'0>
1/4 <O' 07 07 1>7 <07 07 17 0>7 <07 17 07 0>7 <17 O', 07 0>
2/4 <07 07 17 1>7 <07 17 07 1>* <07 17 17 O>
<1707O’ 1>7<1707 1’0>7<17 17O7O>
(1,1,1,0),(1,0,1,1)
3 (1.1,0,1),(0,1,1,1)
1 (L1,1,1)
Table 5: ||Poa, || whenn =4
[avg | (hy,hp, hg, hy) |

{0,0,0,0), (0.1,0,0)
174 |[ {0,0,0,1),(0,0,1,0),(0,1,0,1), (0,1,1,0)
2/4 || (0,0,1,1),(1,0,0,0), (1,1,0,0), (0,1,1,1)
3/4 || (1,1,1,0),(1,0,1,0),(1,1,0,1), (1,0,0,1)

(1,1,1,1),(1,0,1,1)

Table 6: ||P>|| L||Pp,|| whenn= 4

l <8.Vg;|_7 anz> H <h]_7 hz7 h3> ‘
(0,0) (0,0,0,0)
(1/4,0) (0,1,0,0)

(1/4,1/4) |/ (0,0,0,1),(0,0,1,0)
(1/4,2/4) (1,0,0,0)

(2/4,1/4) | (0,1,0,1),(0,1,1,0)
(2/4,2/4) ] (0,0,1,1),(1,1,0,0)
{
{
{

2/4,3/4) (1,0,1,0),(1,0,0,1)

3/4,2/4) 0,1,1,1)

3/4,3/4) || (1,1,1,0),(1,1,0.1)

(3/4.1) (1,0,1,1)
1,1 1,1,1,1)

In line (A), functionnondet__int() provided by CBMC
is used to model nondeterministic integer values, which is
restricted to the range from 0 to 1 by the function
_CPROVER assume() of CBMC in line (B). The main
function of the policy is illustrated as follows:

struct OUT.PA { //(C)
float o_P;

float o0.A;

}

int main() {

int s[4][3]; // (D)

struct OUT.PA o PA[4];

for (int j=0;j<4;j++) /linitializing
for (int k=0;k<3;k++)

s[jl[k]=input();

for (int i=0;i<4;i++) {
o PA[i].o_P=funcP(s,i); /l(E)
o_PA[i].0o_A=func_A(s,i); I/ (F)

}

__CPROVERassume (
(0_-PA[O]!=0_PA[1])&& /] (G)
(o_PA[O]!=0_PA[2])&&
(0_PA[1]!=0_PA[2]));

assert ((oPA[3]==0.PA[O0])]|| //(H)

(0-PA[3]==0PA[1])|
(0-PA[3]==0.PA[2]));

In line (C), the structuréDUT _PA models the tuple
(avgs,avgyp). The two-dimension array in line (D) is used
to store 4 groups of inputs, and each group contains
salaries of 3 employees. The lines (E) and (F) show that
the program$» andP.y, is called 4 times with 4 group of
inputs respectively, where the functionfunc_P and
func_A model the the progrant® andP»p, respectively.
We omit the details of the two functions for reasons of
space. The lines (G) and (H) are used to capture the
policy’s intent, which implies the assumed number of
equivalence classes is 3.

policy if it makes more equivalence classes than what is e have implemented the function of generating
assumed in the policy. We aim to find a successfullyPolicy files automatically according to the number of
verified policy, whose assumed number of equivalencefduivalence classes and of employees. The experimental
classes of a view is minimal in all successfully verified results with different parameter values are shown in Table

policies, and this minimal number is the true number of /» Where the first column denotes the number of

equivalence classes of the view. To illustrate, we considefMPloyees, the following two columns ‘indicate the
the policy for the view||Py|| LI ||Poa,|| When assumed number of equivalence classes of the viej\| and

number of equivalence classes is 3 and the number of P2/l U 1P, || respectively, and the last column gives the
employees is also 3. In the policy, the input of prog@m value of Rbt_Rate, which is trending up with the growth

or P,a, can be modeled as follows: in the number of employees.

int input() {
int tmp=nondetint(); //(A)
__CPROVERassume (tmp==0]|| //(B)
tmp==1);

6 Conclusions

_ Declassification policies relax noninterference policy
return tmp; such that a deliberate release of some secret information
} becomes possible, and in this paper we further relax

declassification policies from the quantitative aspect,
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Table 7: Experimental results

[10]J. Landauer and T. Redmond, A lattice of information,
Proc. Computer Security Foundations Workshéh, 65-70

[ L TPT ] TPT0 P | RO Rate | (1993).
2] 3 4 0 [11] S. Zdancewic and A. C. Myers, Robust declassification.
3 4 8 0 Proc. IEEE Computer Security Foundations Workshop, 15-
4 5 11 0.322137 23 (2001).
5 6 14 0.493841 [12] A. C. Myers, A. Sabelfeld and S. Zdancewic, Enforcing

robust declassification and qualified robustness, Journal of
Computer Securityl4, 157-196 (2006).
[13]E. Clarke, D. Kroening and F. Lerda, A tool for

checking ANSI-C programs, Tools and Algorithms for the
providing more flexible controls of robust but tolerant Construction and Analysis of Systems, LNC88 168-
declassification. Concretely, we extend the definition of 176 (2004).
robust declassification and propose the notion of robus{14] J. Heusser and P. Malacaria, Quantifying information leaks
rate for declassification; we make an experimental in software, Proc. the 26th Annual Computer Security
analysis of robust rate about the laundering attack on  Applications Conference, 261-269 (2010).
average salary, based on the on-the-shelf symbolic moddlLl5] P. Malacaria, Risk assessment of security threats for looping
checkers CBMC. The experimental results verify the  constructs, Journal Of Computer Securityg, 191-228

theoretical results successfully. (2010).
[16] P. Malacaria, Quantitative information flow: from theory to
practice?, Computer Aided Verification, LNC&L74 20-22
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