
Appl. Math. Inf. Sci.8, No. 4, 2055-2061 (2014) 2055

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080464

Quantitative Robust Declassification
Hao Zhu1,2,∗, Yi Zhuang2 and Xiang Chen1

1 School of Computer Science and Technology, Nantong University, Nantong, 226019, P. R. China
2 School of Computer Science and Technology, Nanjing University of Aeronautics Astronautics, Nanjing, 210016, P. R. China

Received: 2 Sep. 2013, Revised: 5 Dec. 2013, Accepted: 6 Dec. 2013
Published online: 1 Jul. 2014

Abstract: The previous declassification policies focus on qualitative analysis of security properties along different dimensions, lacking
quantitative analysis of them. As a step in this direction, we relax restrictiveness of robustness of declassification from the quantitative
aspect, and propose a definition of robustness rate of declassification,based on Shannon’s measure method of information lattice.
We show our definition is equivalent to robust declassification when the value of robustness rate is equal to 1. Moreover, we make a
theoretical and experimental analysis of robust rate about the laundering attack on average salary, respectively. The experimental results
are consistent with the theoretical results completely.

Keywords: Declassification, quantitative information flow, non-interference, robustness

1 Introduction

Language-based information-flow security holds the
promise of automatically and efficiently analyzing the
information flow within a program so that end-to-end
security policies may be enforced [1]. The baseline policy
of information-flow is non-interference, which prohibits
secret inputs from leaking to public outputs [2]. However,
non-interference is too restrictive to write useful
programs in the real world. The programs often
deliberately release certain secret information, e.g.
password authentication. Declassification policies relax
the restrictiveness of noninterference and allow deliberate
release of secret information to public outputs.

Sabelfeld and Sands [3] surveyed declassification
policies by classifying the basic goals according to what
information is released, who releases information, where
information is released and when information can be
released. The different dimensions of policies tend to
address different aspects of declassification, so
declassification policies trend to combine different
dimensions to offer enhanced security. However,
declassification policies proposed so far are limited to
qualitative analysis [4–6].

On the other hand, quantifying information flow
research aims to measure the amount of leaked
information that can be gained by observations on the
running of programs. In the past years a number of works

have provided a solid background for this area [7,8]. The
theory is mainly based on information theoretical terms,
the main being Shannon’s entropy, Renyi’s entropy and so
on. More recently, Malacaria and Heusser [9] presented
the algebraic view of quantifying information flow, based
on lattice theory, and this brings quantifying information
flow research closer to existing qualitative works. These
theoretical approaches have been shown to be powerful,
providing precise reasoning techniques for program
constructs including loops [15]. As for the enforcement
mechanism, some works have investigated automation of
such theory, and verification techniques like abstract
interpretation, bounded model checkers and SAT solvers
have been applied in this area, but there remains a number
of challenges [16].

With this article, we close the gap between the
qualitative policies and quantitative analysis by
integrating quantifying information flow with the robust
declassification policy [5, 11, 12]. Our idea is that the
program is secure if the amount of information flow from
secret to public, excluding information flow of legal
declassification, is not too much from a quantitative point
of view. Based on this idea, we propose a definition of
robustness rate of declassification and present the
enforcement mechanism of model checking.

The rest of the paper is organized as follows. Section
2 presents the information lattice. Section 3 states the
model of programs based on the transition system.

∗ Corresponding author e-mail:searain@nuaa.edu.cn

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080464

2056 H. Zhu et. al. : Quantitative Robust Declassification

Section 4 describes quantitative measure of
declassification. Section 5 depicts model checking
experiments. Finally, Section 6 concludes this paper.

2 Information Lattice

Landauer and Redmond [10] showed that information can
be represented as a lattice. LetΣ be a state space of a
system. Information lattice can be defined in two
equivalent manners as follows.

Firstly, information lattice can be defined in terms of
equivalence relations. The equivalence classes represent
sets of states whose information is indistinguishable. Let
I(Σ) be the set of all equivalence relation on the setΣ .
The ordering⊑ on I(Σ) is defined as

∀ ≈1,≈2∈ I(Σ) (≈1⊑≈2) ⇔

∀σ1,σ2 ∈ Σ (σ1 ≈2 σ2 ⇒ σ1 ≈1 σ2)
(1)

It easily follows from (1) that 〈I(Σ),⊑〉 is a complete
lattice, which induces an algebraic system〈I(Σ),⊔,⊓〉,
where⊔ and⊓ denote join and meet operations standing
for the intersection of elements and the transitive closure
union of elements inI(Σ) respectively. Higher elements
in the information lattice can distinguish more states.

Secondly, information lattice can be defined in terms
of functions from the setΣ . The functions express the
information extracted from a state. For any functionf
whose domain isΣ , let ‖ f‖ to be the element ofI(Σ) for
which

∀σ1,σ2 ∈ Σ (σ1‖ f‖σ2 ⇔ f (σ1) = f (σ2)) (2)

The ordering relationship (1) is translated into

∀‖g‖,‖ f‖ ∈ I(Σ) (‖g‖ ⊑ ‖ f‖) ⇔

∃Φ ,∀σ ∈ Σ (g(σ) = Φ(f (σ)))
(3)

A random variableX can be seen as a mappingΣ →R,
whereΣ is a state space with a probability distribution and
R is the set of real numbers. According to (2), let ‖X‖ be
equivalence relation

∀σ1,σ2 ∈ Σ ,σ1‖X‖σ2 ⇔ X(σ1) = X(σ2) (4)

The notion of semivaluation can be used to quantify the
amount of information provided by an element in the
lattice. Formally a semivaluationν on I(Σ) is a mapping
I(Σ) → R satisfying order-preserving property and
weakened inclusion-exclusion principle. Malacaria and
Heusser [9] showed the semivaluation of the join of two
lattice elements is the joint entropy, formally

ν(‖X‖⊔‖Y‖) = H(X ,Y) (5)

Thus, the following basic properties hold:

ν(‖X‖) = H(X) (6)

X ⊑ Y ⇒ ν(‖X‖)≤ ν(‖Y‖) (7)

3 Model of Programs

We consider sequential imperative programs in this paper.
Following [11], a programP is modeled by a transition
system〈M, 7→〉, whereM is a set of memories (A memory
m is a finite mapping from variables to values.) and7→ is
a transition relation between memories. A traces of
program P is any finite transition sequence
m0 7→ m1 7→ · · · 7→ mn−1, where n ≥ 1 and
mi (0≤ i ≤ n−1) is any memory. We writes(i) for theith

memory in the traces. We use notationTrcm(P) for the
set of traces ofP starting at the memorym. The set of all
traces ofP is denoted byTrc(P) =

⋃

m∈M Trcm(P). We
write s ≡ s′ if the traces s and s′ satisfy the
stutter-equivalence relation, which ignores empty
transition such as m 7→ m, for example,
(m0 7→ m1 7→ m1 7→ m2) ≡ (m0 7→ m1 7→ m2 7→ m2). Let
T1 and T2 be sets of traces.T1 ≡ T2 if and only if they
contain the same traces with respect to≡, formally:

(∀s ∈ T1,∃s′ ∈ T2,s ≡ s′)∧ (∀s′ ∈ T2,∃s ∈ T1,s ≡ s′) (8)

A view of the programP is an equivalence relation onM.
Let I(M) be the set of all views of the system. By (1),
〈I(M),⊑〉 forms a complete lattice. Given a trace
s ∈ Trc(P), a viewr ∈ I(M), written s/r, is the sequence
of equivalence classes of memories ins, formally:

∀i ∈ {0· · · len(s)},(s/r)(i) = [s(i)]r (9)

All possible sequences of equivalence classes under the
view r whenever the programP starts in the memorym is
the following set:

Trcm(P,r) = {s/r | s ∈ Trcm(P)} (10)

We use the viewr to denote an ability to distinguish
memories which can be directly accessible to an observer
for his/her clearance level, and the viewP[r] to express an
ability to distinguish memories by watching the trace of
program P through the view r. Two memories are
equivalent under the viewP[r] only if the possible traces
leading from these memories are indistinguishable with
respect to the viewr, formally:

∀m1,m2 ∈ M,〈m1,m2〉 ∈ P[r]⇔

Trcm1(P,r)≡ Trcm2(P,r)
(11)

Given deterministic programP, the initial memory as
an input of programP determines a trace; that is,P can
be seen as a function from set of initial memories to set
of traces. By (2), the corresponding equivalence relation is
‖P‖.

∀m1,m2 ∈ M,〈m1,m2〉 ∈ ‖P‖⇔

Trcm1(P,r)≡ Trcm2(P,r)
(12)

According to the definition of information lattice,P[r]
and‖P‖ are equivalent in essence. By (6), the amount of

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2055-2061 (2014) /www.naturalspublishing.com/Journals.asp 2057

information provided by‖P‖ is H(‖P‖) (i.e. H(P[r])). To
illustrate, consider the programP1 containing a secret
variableh and a public variablel:

if (h == 0) then l = 0 elsel = 1

If we assume thath is a uniformly-distributed 2-bit
unsigned integer, with range 0≤ h < 3, then the program
P1 partitionsh into two equivalence classes:

{

l=0
︷︸︸︷

{0} ,

l=1
︷ ︸︸ ︷

{1,2,3}}

Hence we get

H(‖P1‖) = 1/4× log24+3/4× log2(4/3) = 0.81

But if the two equivalence classes is uniformly
distributed, then we haveH(‖P1‖) = 1/2× log22×2= 1,
which is the channel capacity of‖P1‖, and this case is the
most favorable for the attacker. The following result
establishes basic relationships between channel capacity
and number of equivalence classes [14]:
Theorem 1 If P is deterministic andN is the number of
equivalence classes of‖P‖, then the maximum possible
information leaked where we consider all possible
probability distributions on the inputs is log2(N) bits,
which is the channel capacity of‖P‖ (i.e.C(‖P‖)).

4 Quantitative Robustness

An active attacker can both change and observe program
execution. LetA be the attacking code fragments injected
into the programP, and PA be the attacked program.
Hence view ‖PA‖ express an ability to distinguish
memories by watching the trace ofPA. The attack
considered in this paper is an information laundering
attack which satisfies‖A‖ ⊑ r, i.e., the execution of
attacking code fragments themselves can not distinguish
more memories than the viewr [11].

As mentioned before, our starting point for this paper
is the robust declassification policy [11, 12], which says
that observing attacked program reveals no more
information than watching the original program. Here, we
restate the definition of this policy and present how our
definition improves it.
Definition 1 The programP is robust with respect toA if
and only if(‖P‖⊔‖PA‖)⊑ ‖P‖.

According to the basic principles of lattice theory, we
have ‖P‖ ⊑ (‖P‖ ⊔ ‖PA‖) always holds. Therefore, the
condition in Definition 1 can also be(‖P‖⊔‖PA‖) = ‖P‖.
Indeed, if this condition is not satisfied, but the difference
in information leaked between views‖P‖⊔‖PA‖ and‖P‖
is small enough, the programP is robust with respect toA
to some extent. This extent of robustness with respect to
the attackA can be expressed with the notion of robust
rate:

Definition 2 Let Num expresses the number of bits of
secret information in programP , the robust rate of
programP with respect toA, denotedRbt Rate, is given
by

Rbt Rate =
Num−C(‖P‖⊔‖PA‖)

Num−C(‖P‖)
(13)

whereNum−C(‖P‖) 6= 0.
Note that if Num − C(‖P‖) = 0, then secret

information is totally leaked by the view‖P‖. Hence
there is no need to inject the attacking codeA into the
programP, and the discussion on robust rate of program
P to A is meaningless.

Obviously‖P‖ ⊑ (‖P‖⊔ ‖PA‖) always holds, and by
(7) we get C(‖P‖) ≤ C(‖P‖ ⊔ ‖PA‖). Additionally,
information leaked is less than secret information in the
memory, i.e.Num−C(‖P‖⊔‖PA‖) ≥ 0. Hence, we have
Rbt Rate ∈ [0,1]. If Num − C(‖P‖ ⊔ ‖PA‖) = 0, then
Rbt Rate = 0, which implies that secret information is
totally leaked by the view ‖P‖ ⊔ ‖PA‖. If
C(‖P‖ ⊔ ‖PA‖) = C(‖P‖), which indicates the condition
of Definition 1 holds, then the programP is completely
robust with respect toA, and by (13) we have
Rbt Rate = 1.

For example, consider the programP2, which is the
example of averaging salaries [4]: suppose secret
variablesh1, · · · ,hn store the salaries ofn employees. The
average salary computation intentionally declassifies the
average but no other information abouth1, · · · ,hn to a
public variableavg:

avg = declassify((h1+ · · ·+hn)/n)

Consider an information laundering attackA1:

h2 = h1;h3 = h1; · · · ;hn = h1

We injectA1 into P2 to form the attacked programP2A1:

h2 = h1;h3 = h1; · · · ;hn = h1;

avg = declassify((h1+ · · ·+hn)/n)

This program leaks all the information ofh1 to avg.
Consider another information laundering attackA2:
h2 = h1. The attacked programP2A2 is:

h2 = h1;avg = declassify((h1+ · · ·+hn)/n)

Intuitively, this program leaks partial information ofh1 to
avg (assumingn > 2) excluding the information allowed
to be declassified. Formally, we can make qualitative
analysis of this program by the transition system〈M, 7→〉
mentioned above. The setM consists of a 3-tuple
〈t,〈h1, · · · ,hn〉,avg〉. The componentt ∈ {0,1} is a public
variable representing the time roughly—the value 0
indicates the program has not run yet, and the value 1
denotes the program has completed. The viewr
mentioned in Section 3 is given by:

〈t,〈h1, · · · ,hn〉,avg〉r〈t ′,〈h′1, · · · ,h
′
n〉,avg′〉

⇔

(t = t ′)∧ (avg = avg′)

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2058 H. Zhu et. al. : Quantitative Robust Declassification

The view‖P2‖ (i.e.P2[r]) can be described as:

〈t,〈h1, · · · ,hn〉,avg〉‖P2‖〈t
′,〈h′1, · · · ,h

′
n〉,avg′〉

⇔

(t = t ′)∧ (avg = avg′)∧

(t = 0⇒ (h1+ · · ·+hn = h′1+ · · ·+h′n))

The transition7→A2 induced by the attackA2 is represented
as:

〈0,〈h1,h2,h3, · · · ,hn〉,avg〉 7→A2

〈0,〈h1,h1,h3, · · · ,hn〉,avg〉

The view‖P2A2‖ is depicted as:

〈t,〈h1, · · · ,hn〉,avg〉‖P2A2‖〈t
′,〈h′1, · · · ,h

′
n〉,avg′〉

⇔

(t = t ′)∧ (avg = avg′)∧

(t = 0⇒ (2h1+h3+ · · ·+hn = 2h′1+h′3+ · · ·+h′n))

The view‖P2‖⊔‖P2A2‖ is denoted as:

〈t,〈h1,h2,h3, · · · ,hn〉,avg〉(‖P2‖⊔‖PA2‖)

〈t ′,〈h′1,h
′
2,h

′
3, · · · ,h

′
n〉,avg′〉

⇔

(t = t ′)∧ (avg = avg′)∧ (t = 0⇒

((h1+h2+h3+ · · ·+hn = h′1+h′2+h′3+ · · ·+h′n)

∨(2h1+h3+ · · ·+hn = 2h′1+h′3+ · · ·+h′n)

∨(h1+h2+h3+ · · ·+hn = 2h′1+h′3+ · · ·+h′n)

∨(2h1+h3+ · · ·+hn = h′1+h′2+h′3+ · · ·+h′n)))

From the above analysis we can see that(‖P2‖⊔‖P2A2‖)⊑
‖P2‖ does not hold, so the programP2 is not robust with
respect toA2 by Definition 1. On the other hand, we will
make quantitative analysis of these programs by Definition
2 as follows.

To simplify the calculation of robust rate, we restrict
the value of the secret variablehi (1≤ i ≤ n) to integers 0
and 1, while the public variable can take real numbers.
Here we illustrate this calculation with the above
programs whenn = 3. In this case, the secret information
can be represented by a triple〈h1,h2,h3〉 which contains
3 bits of information (i.e.Num = 3), and the observable
trace of programs have only one memory status needing
consideration, which is variableavg. The equivalence
classes of view‖P2‖ is listed in Table 1, where the first
column gives the possible values ofavg, and the second
column contains the equivalence classes corresponding to
the different values ofavg. Similarly, Table 2 shows the
equivalence classes of view‖P2A2‖. The equivalence
classes of view‖P2‖⊔‖P2A2‖ is given in Table 3, but the
first column of this table has the form of tuple
〈avg1,avg2〉, where the elementsavg1 and avg2 denote

the variableavg in the programP2 andP2A2 respectively;
the values of second column in Table 3 is the intersection
of the second columns in Table 1 and 2 based on the value
of first column in the corresponding line. According to
Table 1 and 3, we can haveC(‖P2‖) = log24 = 2 and
C(‖P2‖ ⊔ ‖P2A2‖) = log28 = 3. Thus, by (13) in

Definition 2 we haveRbt Rate =
Num−C(‖P2‖⊔‖P2A2

‖)

Num−C(‖P2‖)
= 0.

Similarly, the equivalence classes of these views when
n is equal to 4 is illustrated in Table 4, 5 and 6. According
to them, we haveRbt Rate = 0.322137.

Table 1: ‖P2‖ whenn = 3

avg 〈h1,h2,h3〉

0 〈0,0,0〉
1/3 〈0,1,0〉,〈1,0,0〉,〈0,0,1〉
2/3 〈1,1,0〉,〈0,1,1〉,〈1,0,1〉

Table 2: ‖P2A2‖ whenn = 3

avg 〈h1,h2,h3〉

0 〈0,0,0〉,〈0,1,0〉
1/3 〈0,0,1〉,〈0,1,1〉
2/3 〈1,1,0〉,〈1,0,0〉
1 〈1,1,1〉,〈1,0,1〉

Table 3: ‖P2‖⊔‖P2A2‖ whenn = 3

〈avg1,avg2〉 〈h1,h2,h3〉

〈0,0〉 〈0,0,0〉
〈1/3,0〉 〈0,1,0〉
〈1/3,1/3〉 〈0,0,1〉
〈1/3,2/3〉 〈1,0,0〉
〈2/3,1/3〉 〈0,1,1〉
〈2/3,2/3〉 〈1,1,0〉
〈2/3,1〉 〈1,0,1〉
〈1,1〉 〈1,1,1〉

5 Model Checking Experiments

It is a heavy work that manual calculating the equivalence
classes of each view when the number of employees is
large. Therefore, we introduce the bounded model
checking tool CBMC [13] to find the number of
equivalence classes of a view, borrowed ideas of
quantitative information flow from [14].

A policy for model checking defines the assumed
number of equivalence classes of a view. The tool CBMC
is used to verify or falsify this policy. A view violates a

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2055-2061 (2014) /www.naturalspublishing.com/Journals.asp 2059

Table 4: ‖P2‖ whenn = 4

avg 〈h1,h2,h3,h4〉

0 〈0,0,0,0〉
1/4 〈0,0,0,1〉,〈0,0,1,0〉,〈0,1,0,0〉,〈1,0,0,0〉

2/4
〈0,0,1,1〉,〈0,1,0,1〉,〈0,1,1,0〉
〈1,0,0,1〉,〈1,0,1,0〉,〈1,1,0,0〉

3/4
〈1,1,1,0〉,〈1,0,1,1〉
〈1,1,0,1〉,〈0,1,1,1〉

1 〈1,1,1,1〉

Table 5: ‖P2A2‖ whenn = 4

avg 〈h1,h2,h3,h4〉

0 〈0,0,0,0〉,〈0,1,0,0〉
1/4 〈0,0,0,1〉,〈0,0,1,0〉,〈0,1,0,1〉,〈0,1,1,0〉
2/4 〈0,0,1,1〉,〈1,0,0,0〉,〈1,1,0,0〉,〈0,1,1,1〉
3/4 〈1,1,1,0〉,〈1,0,1,0〉,〈1,1,0,1〉,〈1,0,0,1〉
1 〈1,1,1,1〉,〈1,0,1,1〉

Table 6: ‖P2‖⊔‖P2A2‖ whenn = 4

〈avg1,avg2〉 〈h1,h2,h3〉

〈0,0〉 〈0,0,0,0〉
〈1/4,0〉 〈0,1,0,0〉
〈1/4,1/4〉 〈0,0,0,1〉,〈0,0,1,0〉
〈1/4,2/4〉 〈1,0,0,0〉
〈2/4,1/4〉 〈0,1,0,1〉,〈0,1,1,0〉
〈2/4,2/4〉 〈0,0,1,1〉,〈1,1,0,0〉
〈2/4,3/4〉 〈1,0,1,0〉,〈1,0,0,1〉
〈3/4,2/4〉 〈0,1,1,1〉
〈3/4,3/4〉 〈1,1,1,0〉,〈1,1,0,1〉
〈3/4,1〉 〈1,0,1,1〉
〈1,1〉 〈1,1,1,1〉

policy if it makes more equivalence classes than what is
assumed in the policy. We aim to find a successfully
verified policy, whose assumed number of equivalence
classes of a view is minimal in all successfully verified
policies, and this minimal number is the true number of
equivalence classes of the view. To illustrate, we consider
the policy for the view‖P2‖ ⊔ ‖P2A2‖ when assumed
number of equivalence classes is 3 and the number of
employees is also 3. In the policy, the input of programP2
or P2A2 can be modeled as follows:

i n t i n p u t () {
i n t tmp= n o n d e t i n t () ; / / (A)

CPROVER assume (tmp==0 | | / / (B)
tmp ==1) ;

re turn tmp ;
}

In line (A), functionnondet int() provided by CBMC
is used to model nondeterministic integer values, which is
restricted to the range from 0 to 1 by the function

CPROV ER assume() of CBMC in line (B). The main
function of the policy is illustrated as follows:

s t r u c t OUT PA { / / (C)
f l o a t o P ;
f l o a t o A ;
} ;

i n t main () {
i n t s [4] [3] ; / / (D)
s t r u c t OUT PA o PA [4] ;
f o r (i n t j =0 ; j <4; j ++) / / i n i t i a l i z i n g

f o r (i n t k =0; k<3;k++)
s [j] [k]= i n p u t () ;

f o r (i n t i =0 ; i <4; i ++) {
o PA [i] . o P= func P (s , i) ; / / (E)
o PA [i] . o A=func A (s , i) ; / / (F)
}

CPROVER assume (
(o PA [0] ! = o PA[1])&& / / (G)
(o PA [0] ! = o PA[2])&&
(o PA [1] ! = o PA [2])) ;

a s s e r t ((oPA [3]== o PA [0]) | | / / (H)
(o PA [3]== o PA [1]) | |
(o PA [3]== o PA [2])) ;

}

In line (C), the structureOUT PA models the tuple
〈avg1,avg2〉. The two-dimension array in line (D) is used
to store 4 groups of inputs, and each group contains
salaries of 3 employees. The lines (E) and (F) show that
the programsP2 andP2A2 is called 4 times with 4 group of
inputs respectively, where the functionsf unc P and
f unc A model the the programsP2 andP2A2 respectively.
We omit the details of the two functions for reasons of
space. The lines (G) and (H) are used to capture the
policy’s intent, which implies the assumed number of
equivalence classes is 3.

We have implemented the function of generating
policy files automatically according to the number of
equivalence classes and of employees. The experimental
results with different parameter values are shown in Table
7, where the first column denotes the number of
employees, the following two columns indicate the
number of equivalence classes of the views‖P2‖ and
‖P2‖⊔ ‖P2A2‖ respectively, and the last column gives the
value ofRbt Rate, which is trending up with the growth
in the number of employees.

6 Conclusions

Declassification policies relax noninterference policy
such that a deliberate release of some secret information
becomes possible, and in this paper we further relax
declassification policies from the quantitative aspect,

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2060 H. Zhu et. al. : Quantitative Robust Declassification

Table 7: Experimental results

n ‖P‖ ‖P‖⊔‖P2A2‖ Rbt Rate

2 3 4 0
3 4 8 0
4 5 11 0.322137
5 6 14 0.493841

providing more flexible controls of robust but tolerant
declassification. Concretely, we extend the definition of
robust declassification and propose the notion of robust
rate for declassification; we make an experimental
analysis of robust rate about the laundering attack on
average salary, based on the on-the-shelf symbolic model
checkers CBMC. The experimental results verify the
theoretical results successfully.

Acknowledgements

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61202006.
Thanks for the help.

References

[1] A. Sabelfeld and A. C. Myers, Language-based information
flow security, Selected Areas in Communications,21, 5-19
(2003).

[2] J. A. Goguen and J. Meseguer, Security policies and security
models, Proc. IEEE Symposium on Security and Privacy,
11-20 (1982).

[3] A. Sabelfeld and D. Sands, Declassification: dimensions
and principles, Journal of Computer Security,17, 517-548
(2009).

[4] A. Askarov and A. Sabelfeld, Localized delimited release:
combining the what and where dimensions of information
release, Proc. Programming Languages and Analysis for
Security, 53-60 (2007).

[5] A. Askarov and A. C. Myers, A semantic framework for
declassification and endorsement, Programming Languages
and Systems, LNCS,6012, 64-84 (2010).

[6] A. Almeida Matos and G. Boudol, On declassification and
the non-disclosure policy, Journal of Computer Security,17,
549-597 (2009).

[7] G. Smith, On the foundations of quantitative information
flow, Foundations of Software Science and Computational
Structures, LNCS,5504, 288-302 (2009).

[8] H. Yasuoka and T. Terauchi, On bounding problems
of quantitative information flow, Computer Security-
ESORICS, LNCS,6345, 357-372 (2010).

[9] P. Malacaria and J. Heusser, Information theory and
security: quantitative information flow, Formal Methods for
Quantitative Aspects of Programming Languages, LNCS,
6154, 87-134 (2010).

[10] J. Landauer and T. Redmond, A lattice of information,
Proc. Computer Security Foundations Workshop,VI , 65-70
(1993).

[11] S. Zdancewic and A. C. Myers, Robust declassification.
Proc. IEEE Computer Security Foundations Workshop, 15-
23 (2001).

[12] A. C. Myers, A. Sabelfeld and S. Zdancewic, Enforcing
robust declassification and qualified robustness, Journal of
Computer Security,14, 157-196 (2006).

[13] E. Clarke, D. Kroening and F. Lerda, A tool for
checking ANSI-C programs, Tools and Algorithms for the
Construction and Analysis of Systems, LNCS,2988, 168-
176 (2004).

[14] J. Heusser and P. Malacaria, Quantifying information leaks
in software, Proc. the 26th Annual Computer Security
Applications Conference, 261-269 (2010).

[15] P. Malacaria, Risk assessment of security threats for looping
constructs, Journal Of Computer Security,18, 191-228
(2010).

[16] P. Malacaria, Quantitative information flow: from theory to
practice?, Computer Aided Verification, LNCS,6174, 20-22
(2010).

Hao Zhu
received his M.Sc. degree in
2005 from Jiangsu University.
He is a Ph.D. candidate
in Nanjing University of
Aeronautics and Astronautics.
He is a associate
professor of computer science
and technology in Nantong
university. His research
interests include information

security and intelligent computing.

Yi Zhuang
is a professor
and Ph.D. supervisor
of computer science
and technology in Nanjing
University of Aeronautics and
Astronautics. Her research
interests include information
security, trusted computing,
distributed computing,
computer network and
wireless senor network et al.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2055-2061 (2014) /www.naturalspublishing.com/Journals.asp 2061

Xian Chen
received a Ph.D. degree
in Nanjing University. He is
a lecturer of computer science
and technology in Nantong
university. His research
interests include software
testing and program analysis.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Information Lattice
	Model of Programs
	Quantitative Robustness
	Model Checking Experiments
	Conclusions

