
Appl. Math. Inf. Sci.8, No. 4, 2017-2024 (2014) 2017

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080460

Web Service Composition Automation based on Timed
Automata
Hu Jingjing1,∗, Zhu Wei1, Zhao Xing2 and Zhu Dongfeng3

1 School of Software, Beijing Institute of Technology, Beijing 100081 P. R.China
2 School of Mathematics, Capital Normal University, Beijing 100037 P. R.China
3 School of Computer Science & Technology, Beijing Institute of Technology, Beijing 100081 P. R. China

Received: 29 Aug. 2013, Revised: 1 Dec. 2013, Accepted: 2 Dec. 2013
Published online: 1 Jul. 2014

Abstract: Web service composition is a new direction in the research of service computing. To promote the portfolio, the key problem
is to achieve efficient and automatic composition process. We propose theweb service composition model based on timed automata.
In the computing framework, we design the formal model and its construction algorithm; provide a web service interface description
language and composition automation engine. In order to validate its performance, using UPPAAL as the service composition simulator,
realized the automation process from independent web services into composite ones. The experimental results verify the feasibility of
automatic service composition and the effectiveness of the proposed configuration.

Keywords: Web service composition; Timed automata; Automation

1 Introduction

Web services are the most famous implementation of
service oriented architectures allowing the construction
and the sharing of independent and autonomous software.
Web service composition (WSC) consists in combining
web services, developed by different organizations and
offering diverse functional, behavioral and non-functional
properties to offer more complex services. The spreading
of services and WSC increases the difficulty and time for
its applications. And the key technology of WSC is to
provide a solution which can perform more efficient and
automatic composition.

Several web service composition models are put
forward to the research fields. On the one hand, WSC
based on workflow is a common recognized approach [1].
This solution allows creating flows with composed
activities, which models composed workflow with logics
and provides the ability of services calling, data
processing and exceptions checking. BPEL4WS is a
commercial business process execution language
designed for web service, and provides a method to
describe workflow framework [2]. It has become a
standard in web service composition. It is a static
portfolio requiring manual intervention and difficult to

provide a real-time combination with non-functional
requirement [3,4]. On the other hand, WSC based on AI
planning provides another way [5]. OWL-S is used to
model non-functional properties, and every single web
service is built as an action in AI, each of which contains
an initial state, a target and some possible state-transition
paths. Thus, WSC based on AI planning is a dynamical
portfolio supporting complex behavioral and
non-functional properties, but it lacks verification [6].

Although there are lots of methods on WSC, the
approach to automatic composition is urgent because it
can improve the efficiency and correctness of service
composition, while it is also hard to actualize because it is
difficult to perform standard operation for modeling web
service and logical composition.

Timed automata are theories for modeling and
verification of real time systems [7]. A timed automaton
is a finite automaton extended with a set of real-valued
variables modeling clocks. Constraints on the clock
variables are used to restrict the behavior of an
automaton, and accepting conditions are used to enforce
progress properties. The timed automata can describe the
real-time systems formally and provide the
high-efficiency property verification of real-time systems.

∗ Corresponding author e-mail:hujingjing@bit.edu.cn

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080460

2018 H. Jingjing et. al. : Web Service Composition Automation based on Timed Automata

But the state space explosion exists for the clocks reset
[8].

Timed automata can be combined with web service
composition [9]. And the research in the field is mainly
focused on modeling and property verification, which is
the straightforward way to implement the service
composition [10]. However, it is not possible to perform
the whole process from single web services to service
composition with logic flow. That is to say, it couldn’t
achieve WSC directly in these modes.

We propose how to use the timed automata to model
composed web service and implement the web service
composition automation. It provides a formal model built
on timed automata for web service composition, and
constructs the algorithm to implement this model
automatically. The model and algorithm are tested to be
feasible and efficient.

The rest of the chapter is organized as follows: In the
next section, the timed automation model for WSC is
proposed, and the construction algorithm is proposed.
Section 3 presents a web service interface language and
the implementation of automation engine. Section 4
describes the test cases and performance evaluations for
the model and methods. Finally, it gives a brief
conclusion and acknowledgement.

2 WSC model based on Timed Automata

Definition 1 (Timed automata,TA [11]): A timed
automata model is a tuple< N, l0,E, I > where N is a
finite set of locations (or nodes),l0 ∈ N is the initial
location,E ⊆ N ×β (C)×Σ ×2C ×N is the set of edges,
and I : N → β (C) assigns invariants to locations. when

We shall writel
g,a,r
→ l′ when< l,g,a,r, l′ >∈ E. C is a set

of real-value variables or clocks ranged over byx,y,z etc.
Σ is a set of actions ranged over bya,b,c etc. Atom Clock
Constraint is a formula likex ∼ n or x − y ∼ n, where
x,y ∈C,∼∈ {≤,<,=,>,≥} andn ∈ N. Clock Constraint
is a formed-formula of atom clock constraints ranged over
guardg,D etc.β (C) is a set of clock constraints.

The theory is the outstanding work of Alur and Dill
[12]. Many verification tools (like UPPAAL) are built on
it [13].

Definition 2 (Timed Automata for Web Service,TAW)
An atom web service can be modeled as a timed
automaton< N, l0,E, I > whereN is a finite, non- empty
set of states of web service,l0 is the initial state,E is the
set of transition function, which represents the evolution
from a state to another, andI assigns the clock constraints
to the service calling. The clocks indicate the cost in the
current migration routes. Especially, the TAW head model
is the starting of TAC.

Definition 3 (Timed Automata for WSC,TAC): It is an
integration of timed automata describing the whole
composited web service, where the TAW head model is

Table 1: Algorithm A-TAC

01 Extract web service interface for each atom web service
by semantic and build its equivalent graph.
02 Traverse the equivalent graph to generate the equivalent
tree.
03 Identify nodes of the equivalent tree by breadth-first
traversal.
04 Generate the TAW model for each node in equivalent
graph according to the identified order in equivalent tree, as
in section 2.2.
05 Insert TAW head model as the starting model.
06 Remove redundant clock constraints from each TAW
model.
07 Reset global clock as the container of result.

Table 2: Algorithm A-TAW

01 Generate the fission graph for each parameter of nodes in
equivalent graph by semantics.
02 When the parameter is active, set ‘guard’ as clock
constraints, ‘reset’ as local clocks and branch tags which are
set to the corresponding ones for the true value.
03 When the parameter is passive, set ‘guard’ as clock
constraints and the value of its corresponding active branch
tag is true. The ‘reset’ is also set as local clocks.
04 Link ‘l0’ of each fission graph with all branches of its
previous fission in proper order except the first parameter.
05 Insert a TAW head as the first node which points to the
first parameter. Set ‘guard’ as the ending tags of its previous
TAW except the first head.

added to start the TAC, the branch constraints are reduced
and the global clock is reset.

2.1 Algorithm for web service composition

The algorithm is to generate a timed automaton model for
each web service interface and they are synchronized
through branches and end tags. The algorithm of
constructing TAC model for web service composition
(A-TAC) is shown as Tab 1.

The equivalent graph is a topology which connects
each web service interface by equivalence relation. The
equivalent tree is a data structure without loop which is
generated by breadth-first traversing the equivalent graph.

2.2 TAW for single node in equivalence graph

The algorithmA-TAW to get TAW model for a single node
in equivalence graph is shown as Tab.2.

For the parameters of web service interface
represented by the nodes of equivalent tree, their value
intervals can be divided into several parts, which

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2017-2024 (2014) /www.naturalspublishing.com/Journals.asp 2019

corresponds to the jump from one node to several nodes
respectively. This part of TAW is called fission graph.

In algorithm A-TAC, the global clock records the
summary of cost. The minimal cost computed by TAC
model remains into the global clock, and the path
implementing the value of clock will be the best solution
for the WSC.

3 Service composition automation

The automation of WSC is implemented by the web
service composition automation engine, and the
framework of it is shown in Fig.1. The web service

Fig. 1: Framework of web service composition automation

composition automation engine is a pipeline inside and its
final result is a TAC model.

3.1 Web service interface description language

There need to be a simple and specific language to
describe the web service interface in order to implement
the service composition automation. This section presents
the web service interface description language (WSIL)
denoted by context-free grammar which is shown in
Tab.3.

WSIL is a structured language and able to describe
web service interface. It contains the equivalent relations
of parameters. Thus, WSIL provides the input standard
needed to get the equivalent graph for the WSC
automation engine. The engine is essentially a compiler
whose grammar is that of the WSIL itself and the results
of semantic analysis are such data structures as equivalent
graph or equivalent tree for web service interface. The
compiler is constructed by an integrated tool of
Context-free Grammar which wraps Lex and YACC [14].

3.2 Semantics parser of automation engine

The flow of analysis and parsing in web service
composition automation engine is shown as Fig.2. The

Table 3: Web service interface description language

01 <Start> ::= <ObjectList>;
02 <ObjectList> ::= <Object><ObjectList> | null;
03 <Object> ::= <Param> | <Interface>;
04 <Param> ::= “class” Identifier “:” “Param” “{“
<DefinitionList> “}”;
05 <DefinitionList> ::= <Definition><DefinitionList> |
null;
06 <Definition> ::= <Variable> | <Method>;
07 <Variable> ::= <Modifier> <Type> Identifier “;” |
<Type> Identifier “;”;
08 <Method> ::= <Modifier> <Type> Identifer “(“
<FunctionParamList> “)” “ {“ <FunctionBody> “}”
| <Type> Identifer “(“ <FunctionParamList> “)” “ {“
<FunctionBody> “}”;
09 <Modifier> ::= “public” | “private”;
10 <Type> ::= Identifier| <BasicType>;
11 <BasicType> ::= “int” | “float” | “double” | “char” |
“byte” | “string” | “array”;
12 <FunctionParamList> ::= <FunctionParam> |
<FunctionParam> “,” <FunctionParamListRight> | null;
13 <FunctionParam> ::= <type> Identifier;
14 <FunctionParamListRight> ::= “,” <FunctionParam>
<FunctionParamListRight> | null;
15 <FunctionBody> ::= <SentenceList>;
16 <SentenceList> ::= <Sentence> <SentenceList> |
null;
17 <Sentence> ::= <Sequence> | <If> | <For>;
18 <Sequence> ::= <Type> Identifier “;” | <Calculation>
“;”;
19 <Calculation> ::= “Identifier” <SelfCalcu> | Identifier
“=“ <Expression>;
20 <SelfCalcu> ::= “++” | “–“;
21 <If> ::= “if” “(“ <BoolExression> “)” <Block>
<ElseBlock>;
22 <Expression> ::= <Multiply> <PlusOpt>;
23 <PlusOpt> ::= “+” <Multiply> | “-” <Multiply> |
null;
24 <Multiply> ::= <Unit> <MultiplyOpt>;
25 <MultiplyOpt> ::= “*” <Unit> | “/” <Unit> “%” |
null;
26 <Unit> ::= identifier| “(“ <Expression> “)” | number;
27 <BoolExpression> ::= “true” | “false” | <Value>
<CompareOpt> <Value>;
28 <Value> ::= Identifier| “true” | “false”;
29 <CompareOpt> ::= “==” | “!=” | “>” | “<” | “>=” |
“<=”;
30 <Block> ::= “{“ <SentenceList> “}” | Identifier “=”
<Expression>;
31 <ElseBlock> ::= “else”<Block> | null;
32 <For> ::= “for” “(“ < Calculation > “;”
<BoolExpression> “;” <Calculation> “)” <Block>;
33 <Interface> ::= “interface” Identifier “{“
<InterfaceParamList> “}”;
34 <InterfaceParamList> ::= <InterfaceParam>
<InterfaceParamList> | null;
35 <InterfaceParam> ::= <Type> Identifier;

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2020 H. Jingjing et. al. : Web Service Composition Automation based on Timed Automata

semantics parser gets semantic information by traversing
the syntax tree of web service interface language and
takes out the instance of TAC model.

Fig. 2: The flow of semantics parser

In the process of recursive traversal, the keywords
matching (such as the fixed identifiers of class and
interface etc. in grammars) is used to distinguish the
information of parameters and web service interfaces, and
filled into independent data structures. The class diagram
to implement the feature is shown in Fig.3.

The semantics parser analyzes syntax tree and get all
information needed for the NTA. NTA is the model that
can be received and verified by the TA tools. The algorithm
to generate NTA is as Tab.4.

UPPAAL is able to read the NTA model directly after
NTA is generated. The whole process from atomic web
service to composed one is finished automatically.

4 Performance evaluation

The feasibility and effectiveness of the presented WSC
model and its automation engine with UPPAAL are
evaluated in this chapter.

The version of UPPAAL used is 4.0, and JRE6.0 is also
needed. The running environment is CPU: Intel 2.40GHZ,
RAM: 3.0GB.

Fig. 3: Class diagram of getting NTA by traversing syntax tree

Table 4: Algorithm A-NTA

01 Insert the zero interface to NTA model.
02 Generate the fission graph for each parameter of every
web service interface.
03 Link neighbor parameters for each web service interface.
04 Insert a starting node for each tree graph representing a
web service interface and set the launch condition.
05 Insert an ending node for each tree graph representing a
web service interface and set the update event.
06 Set corresponding integer clock variables for each
parameter as branch signals in global declaration.
07 Create the global clock as the container to store total cost
in global declaration.
08 Create an instance for each TAW model in system
configuration, and the instance is set to start with the system.

4.1 Test case design

We propose a solution for test cases based on template,
which meets the validity and integrity of comprehensive
cases running through the model. Different instances for
all kinds of TAC models can be generated by adjusting
the template parameters, and it is also convenient to
implement automatic testing.

The parameters of test cases template are listed
according to the character of TAC model.

(1) The count of TAW
The count of TAW models dominates the scale of test

cases for TAC model, and it is represented by ‘N’.
(2) The count of nodes in TAW
The count of nodes can reflect the number of

parameters in a TAW model, which sets the scale of test
cases indirectly. The count of nodes in a TAW is
represented by ‘L’ and the count of parameters in the

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2017-2024 (2014) /www.naturalspublishing.com/Journals.asp 2021

TAW is ‘x’. Their relation can be denoted by which

L =
x

∑
i=1

Sem(i)+ x+2 (1)

The ‘Sem(i)’ means the number of semantics partition
to corresponding parameteri.

(3) Association strength of TAC
It is not feasible to set all connection relations for

each TAC model one by one for the topology structure of
WSC. On one hand, the automation test will be difficult to
design and implement, and on the other hand, the key
point of feasibility and effectiveness testing is the overall
complexity and association strength of TAC. So, we
propose the association intensity index (Ave) to represent
this norm. For eachAve value, there may be different
corresponding topology graphs. Set ‘P’ as the count of
parameters in a TAC model,CP(i) as the number of
occurrences of parameter ‘i’ in all TAW models of TAC,
and TA(i) as the count of TAW model where there is at
least one parameter after parameter ‘i’ is removed. Then
there is

Ave =
P

∑
i=1

C2
CP(i)

/

P
∑

i=1
CP(i)

∑
i=1

TA(i) (2)

The ‘Ave’ ranges from 0 to 1. It means the association
strength is weaker whenAve is closer to 0 and the
association strength is stronger when it is closer to 1.

(4) Association diversity of TAC
The diversity of parameters’ number in TAC and the

diversity of association strengths of different TAW
models make various test cases. In order to supplement
the deficiency of association strength, we set ‘E ’ as the
association diversity factor of different TAW models, in
which P(i) is set as the count of theith parameters in the
TAW model andPa as the average value of parameters’
number in all TAW models. Then there is

E =

P
∑

i=1
(P(i)−Pa)2

P∗Pa2 (3)

The ‘E ’ ranges from 0 to 1. It means the association
diversity is little whenE is closer to 0 and the association
diversity is large whenE is closer to 1.

In conclusion, the scale of test case is regulated by the
count of TAW models, the complexity is set by the
number of parameters in TAW, the association strength
and diversity adjust the distribution of topology structure.

4.2 The result of tests

The WSC model based on timed automata is capable of
describing composite web service with inner logics and
workflow. However, the state-space explosion problem
restricts its feasibility with the increasing of clocks’

number [15]. Zone automata is a choice. The test result is
shown as follows.

(1) The simulator of zone automata
In the test, the parameters ofN = 1,L = 2,

Ave = 0.5,E = 0.25 were set to shield unrelated
parameters. The results are shown in Fig.4. The
state-space still grows exponentially in zone automata,
but it becomes much slower than region automata.

Fig. 4: The comparision of zone automata and region automata

The results show that it divides less state-space with
zone automata than region automata and they possess the
same ability of describing TAC model. The results
illustrate that time zone performs better than regional
division of equivalence and relieves the state-space
combinatorial explosion problem. So the simulator of
zone automata was adopted.

(2) Integer clock
The parameters ofN = 1,L = 2,Ave = 0.5,E = 0.25

were also set to detect the performance of different clocks.
The calculation time is shown in Fig.5.

Fig. 5: The comparision of integer clock and real value clock

It is not possible to compare the advantage of integer
clocks with real value clocks in isolation. This result shows
an average value of the two clocks.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2022 H. Jingjing et. al. : Web Service Composition Automation based on Timed Automata

It shows that the running time of integer clocks is faster
than real value clocks and it improves the effectiveness of
WSC based on TAC model. Though it is not evident when
the count of clocks is limited, it takes much less time to
finish the simulation with integer clocks than real value
ones with the clocks’ number increasing. The test result
shows an intuitive advantage of computing.

(3) Scale of TAW models
The parameters’ values were set byL ≥ 2,Ave = 0.5,

E = 0.25. The result in Fig.6 shows the tendency of time
as the number of TAW increasing.

Fig. 6: Time tendency ofN

As long as the number of TAW grows, the time
complexity of WSC is basically a linear growth with
slightly accelerated trend. It indicates the composition is
controlled in the linear time and the count of TAW models
does not increase the time complexity of TAC.

(4) Scale of nodes in TAW models
In the test, the values of parameters were set as

N ≥ 2,Ave = 0.5,E = 0.25. The running time of TAC
with different numbers of nodes in TAW models are
shown in Fig.7.

Fig. 7: Time tendency ofL

There is a slow growth as the count of nodes in TAW
models increases. The difference between this test and the

previous one is that only the total count of nodes in TAW
models changes while the count of TAW models may not
changes. The composition time presents the characteristic
of a linear approximation, which indicates that the huge
amounts of nodes of TAW models have little influence with
the feasibility of TAC.

(5) Association strength and diversity of TAC model
The association strength and diversity of TAC are

related to each other. The test results for the two
parameters in various combinations of the TAC are shown
in Fig.8.

Fig. 8: Time tendency of association strength and diversity

It will takes less time for the running of with the
association strength TAC enhancing while slight time
fluctuations exists when the association diversity changes.
That is to say, the stronger the association strength, the
higher the efficiency of the implementation TAC, and the
association diversity has little influences with the
effectiveness of TAC.

In short, the above test case results show that it spends
less state-space with zone automata than region automata
for the same TAC model. The TAC with integer clock
runs faster than that with real value clock for a large
number of clocks. The Computational complexity of TAC
does not reachO(N2) with the increasing of parameters’
value, which verify its effectiveness.

5 Conclusions

In this paper, we presented an automated web service
composition method based on timed automata in which
the composition model and implantation algorithm were
provided. The innovation is mainly reflected in three
aspects.

Firstly, we proposed the TAC model with the
computing framework of timed automata, which is a kind
of construction method for WSC. It provides the
algorithm of building TAW and TAC, implementing the
whole process from independent web services to
composed service automatically.

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 2017-2024 (2014) /www.naturalspublishing.com/Journals.asp 2023

Secondly, ‘zero service’ and ‘integer clock’ were
introduced into the framework model. The former makes
the model easier to convert to a unified form which is
convenient to be generated automatically, and the latter
reduces the complexity of computing for WSC.

Finally, we implemented the web service composition
automation engine, which can receive web service
interface description language (i.e., WSIL) and
automatically generate TAC model for performing
composite service. The engine has strong expansibility
and can be applied to different fields.

The performance evaluation indicates that it spends
less state-space with zone automata than region automata
while they share the same ability of describing TAC
model; the computing time of integer clocks is faster than
real value clocks and it improves the efficiency of WSC
based on TAC model; The complexity of TAC grows
between the linear and quadratic with the parameters’
variety, which verifies its feasibility and effectiveness.

Acknowledgement

This work has been supported by the National Science
Foundation of China (Grant No. 61101214, 61371195),
the Key Project of National Defense Basic Research
Program of China (Grant No. B1120132031) and the
Fundamental Research Funds for the Central Universities
(Grant No. 20120842003, 20110842001).

References

[1] Rao J., Su X.: A Survey of Automated Web Service
Composition Methods: Semantic Web Services and Web
Process Composition. Springer Berlin Heidelberg, 43-54
(2005).

[2] Bichier M., Lin K. J.: Service-oriented Computing.
Computer,39, 99-101 2006.

[3] Wang L. F., Gao W. Q.: A Study of BPEL-Based Framework
for Optimal Composition of Dynamic Web Services:
Advanced Materials Research,457, 856-860 (2012).

[4] Fares E., Bodeveix J. P., Filali M.: Verification of
timed BPEL 2.0 models. Enterprise, Business-Process and
Information Systems Modeling: Springer Berlin Heidelberg,
261-275 (2011).

[5] Li l.Q., Yan C.: QoS Ontology based Efficient Web Services
Selection: International Conference on Management
Science and Engineering, 2009. ICMSE 2009, IEEE, 45-50
(2009).

[6] Dong H., Hussain F. K., Chang E.: Semantic Web Service
Matchmakers: State of the Art and Challenges: Concurrency
and Computation: Practice and Experience, (2012).

[7] Sangiorgi D.: Concurrency Theory: Timed Automata,
Testing, Program Synthesis: Distributed Computing,25, 3-4
(2012).

[8] AbouTrab M. S., Brockway M., Counsell S., et al: Testing
Real-Time Embedded Systems using Timed Automata
based Approaches: Journal of Systems and Software,86,
1209-1223 (2013).

[9] Emilia Cambronero M., Dłaz G., Valero V., et al: Validation
and Verification of Web Services Choreographies by
Using Timed Automata: Journal of Logic and Algebraic
Programming,80, 25-49 (2011).

[10] Dumez C., Bakhouya M., Gaber J., et al. Model-driven
Approach Supporting Formal Verification for Web Service
Composition Protocols: Journal of Network and Computer
Applications,36, 1102-1115 (2013).

[11] Bengtsson J., Yi W.: Timed automata: Semantics,
Algorithms and Tools: Lectures on Concurrency and
Petri Nets. Springer Berlin Heidelberg, 87-124 (2004).

[12] Alur R., Dill D. L.: A Theory of Timed Automata:
Theoretical Computer Science,126, 183-235 (1994).

[13] Gmez R.: Model-checking Timed Automata with Deadlines
with Uppaal: Formal Aspects of Computing,25, 289-318
(2013).

[14] Brown D., Levine J., Mason T.: Lex & yacc: O’Reilly,
(2012).

[15] Srivathsan B.: Better Abstractions for Timed Automata:
IEEE Symposium on Logic in Computer Science, 375-384
(2012).

Hu jingjing received
the PhD degree in Computer
science from Beijing
Institute of Technology,
Beijing, China. She is
currently a lecturer in the
school of Software of Beijing
Institute of Technology. Her
research interests are in the
areas of service computing,
multi-agent systems, and

GPU-based computer tomography.

Zhu wei is a
postgraduate in the school
of Software, Beijing
Institute of Technology,
China. His research interests
include artificial intelligence,
services computing, software
engineering, etc.

Zhao xing received
the Ph.D degree in Computer
science from University
of Science & Technology
of China, HeFei, China.
He is currently an associate
professor in the school
of Mathematical sciences
of Capital Normal University.
His research interests
are in the areas of computer

tomography, service computing.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

2024 H. Jingjing et. al. : Web Service Composition Automation based on Timed Automata

Zhu dongfeng is a
Ph.D candidate in the school
of Computer, Beijing Institute
of Technology, China.
He received his B.S. degree
in computer science from
Beijing Jiaotong University.
His research interests
include p2p computing,
services computing,
delay tolerant networks,

etc.

c© 2014 NSP
Natural Sciences Publishing Cor.

	Introduction
	WSC model based on Timed Automata
	Service composition automation
	Performance evaluation
	Conclusions

