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Abstract: Dimensionality reduction and segmentation have been used as methods to reduce the complexity of the representation of
hyperspectral remote sensing images. In this study, a new object-oriented mapping approach is proposed based on nonlinear subspace
feature analysis of hyperspectral remote sensing images. Nonlinear local manifold learning approaches for feature extraction were
utilized to obtain subspace feature representation of hyperspectral remote sensing images. Afterwards, with a proper selection of
parameters, the extracted subspace feature images were fed into the object-oriented system. Texture features derived from gray level
co-occurrence matrix and wavelet filter with the use of SVM classifier at the pixel level of the feature images were also used to evaluate
the proposed algorithm. Experiments are conducted on the AVIRIS dataset with 220 spectral bands, covering an agricultural area.
Classification results show that the proposed object-oriented subspace analysis approach can give significantly higher accuracies than
the traditional pixel-level and texture-based subspace feature classification.

Keywords: Nonlinear manifold learning, subspace feature analysis, object-oriented classification, hyperspectral remote sensing
images, texture

1 Introduction

Hyperspectral sensors are characterized by the high
spectral resolution that provides a very large number of
wavelength channels per pixel [1]. These narrow and
contiguous spectral channels improve the capabilities for
discriminating, characterizing and monitoring over an
area. Theoretically, hyperspectral data should increase
abilities in classifying land use/cover types. However, the
“curse of dimensionality” and highly correlated spectral
bands are problematic for many operations on
hyperspectral data such as model fitting, parameter
estimation or optimization of objective functions, the
problem of classification is often referred to the “Hughes
phenomenon” [2–4]. Hyperspectral data also allow better
characterization of nonlinear responses, which is not
possible with multispectral data. The samples of
hyperspectral data often lie on a nonlinear subspace of
lower dimension. There are multiple sources of
nonlinearity, one of the more significant sources,
especially in land-cover classification application, stems
from wavelength dependent nonlinear reflectance defined

by the bidirectional reflectance distribution function
(BRDF). Another source of nonlinearity arises from
complex scattering of energy in vegetation and nonlinear
attenuation of energy in water bodies [5].

Dimension reduction (DR) has been used to mitigate
the issues of high interband spectral correlation and the
“Hughes phenomenon” for classification of hyperspectral
data. The resultant features not only require reduced data
storage and computation, but also produce a more robust
(small variance) and accurate (small bias) classifier.
Several unsupervised and supervised linear feature
extraction methods have been applied to hyperspectral
data such as principal component (PCA) [6], maximum
noise fraction (MNF) [7], nonparametric weighted feature
extraction (NWFE) [8]. Recently, the impact of feature
selection has been also investigated with respect to
support vector machines (SVM) which do not necessarily
require a separate feature selection/extraction step [9]. the
SVM classifier is well known for its robustness to high
dimensionality, removal of irrelevant features can still
improve the performance of SVM classifier for some
hyperspectral data, but these linear feature extraction and
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classification methods largely ignore the inherent
nonlinear characteristics and cannot properly handle the
nonlinearity in hyperspectral data, often resulting in
extraction of non-representative features and low
classification accuracies. Recently, the machine learning
community has demonstrated the potential of manifold
learning (ML) methods for nonlinear DR; nonlinear ML
algorithms assume that the original high dimensional data
actually lie on a low dimensional manifold defined by
local geometric differences between samples. Recent
research has demonstrated the potential of ML
approaches for the representation of high dimensional
observations through nonlinear mapping [10].

Nonlinear ML methods are broadly characterized as
global or local approaches. Global ML methods retain the
fidelity of the overall topology of the data set such as
isometric feature mapping (Isomap) [11] and kernel
PCA(KPCA) [12],but have greater computational
overhead for large data sets, while local ML methods
preserve local geometry Isometric feature and are
computationally efficient because they only require sparse
matrix computations such as locally linear embedding
(LLE) [13], local tangent space alignment
(LTSA) [14],and Laplacian eigenmaps(LE) [15]. These
methods are developed to represent high dimensional
nonlinear phenomena in lower dimensional spaces, the
imbedded features have been used to address the
nonlinearity in hyperspectral data; they are potentially
useful for classification of hyperspectral data. Bachmann
et al [5]demonstrated Isomap potential for data
representation and classification of hyperspectral data.
The problem of heavy computational load for large-scale
remote sensing data sets was tackled by a scalable
approach based on various methods for aligning
manifolds derived from image subsets, experiments
showed that features extracted by Isomap were able to
explain a greater amount of variance in the data than
MNF coordinates; The proposed ENH-Isomap was used
for bathmetric retreival, and produced retrieval errors for
spatially and temporally disjoint test sets that were
comparable to those of bathymetric LiDAR [10]. Fauvel
et al [16]applied kernel PCA (KPCA) to airborne
hyperspectral data sets prior to the application of support
vector machines (SVM), and showed that KPCA extracts
more informative features than conventional PCA,
justifying the use of KPCA in combination with
SVM-based classification. Li et al [17] proposed a new
ML technique called discriminant locally linear
embedding (DLLE), in order to preserve the local
geometric properties within each class and enhance the
separability between different classes. Ma et
al [18]generalized a new local ML weighted kNN
classifier from the kernel view and applied it to
hyperspectral images classification,the study showed that
the proposed method outperforms the regular k-NN
method in classification of hyperspectral data.

By summarizing nonlinear ML methods and
classification methods for hyperspectral data, it can find

that these approaches always focus on pixel-wise
classification which only utilizes spectral information
associated with a given pixel location and ignores
important spatial information. This important spatial
information is recognized as characteristics of
geographical data, including region shape, location and
relation of neighboring samples to the targeted sample.
Pixel-based classification often leads to a
“pepper-and-salt” appearance .it is also difficult to flag
outliers in a homogeneous area and discriminate the
spectrally similar class when contextual information is
not considered. Few such approaches for the exploitation
of spatial information is necessary for classification of
hyperspectral imagery have been proposed, which is
partly due to the high dimensionality of the data and the
spectral and spatial heterogeneity of remote sensing
images [19,20].

In this study, for the sake of exploiting both spectral
and spatial information contained in hyperspectral remote
sensing images, an object-oriented nonlinear subspace
feature analysis (OSFA) for hyperspectral remote sensing
images classification was proposed. Local ML such as
LLE, LE and LTSA methods were employed to reduce
the number of the dimensionality and extract the spectral
feature subspace from hyperspectral remote sensing
images. The proposed approach operated on many more
object-related features than typically available with
pixel-based approaches. The idea of object-based analysis
is to group the neighbouring pixels into spectrally
homogeneous objects.Multiresolution segmentation in
Definiens? Professional 7.0 (DEFINIENS 2007) [21] was
utilized to extract objects from feature images and SVM
classifier was then used to classify the object-based
feature images. In addition, GLCM and wavelet-based
texture features were implemented at the pixel of
subspace feature images and the classification results
were used to evaluate the proposed algorithm.

2 Methods

2.1 Local manifold learning

LLE, LE and LTSA were selected for experiment
analysis, they are based on solely preserving the
properties of small neighbourhoods around the data
points. They are initiated by constructing a nearest
neighbourhood graph for each data point, and the local
structures are then used to obtain a global manifold.
According to the framework by solving the eigenvalue
problem LY = λBY , the embeddingY of target
dimension p is provided by the eigenvectors
corresponding to the 2∼ p+ 1 smallest eigenvalues(the
eigenvector that corresponds to the smallest zero
eigenvalue is a unit vector with equal elements and is
discarded).The parameters and computational complexity
are listed in Table 1.N is the number of data sample.D is
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Table 1: The parameters and computational complexity of local
ML

Method Parameter Complexity
LLE p,k O(DN2)

LTSA p,k O(DN2)
LE p,k O(DN2)

dimension of the original space of data samples. Another
possibility is to connect every point to all other points
within a given radiusε , We did no use this type of graphs
since thek-nearest-neighbours graph yielded good results.

2.2 Object-oriented nonlinear subspace
analysis

The object-oriented classification based on objects is a
new classification method, it allows explicit consideration
of spatial context during the classification processing. An
image is subdivided into separated regions called objects
or segments during the segmentation process, and then
the objects are assigned to a specific class.
Object-oriented classification has been applied
successfully to high resolution remote sensing image the
high resolution satellite images have richer spatial but less
spectral information, such as Quickbird, IKONOS, and
GeoEye only contain four spectral bands [22, 23].
Increased number of spectral bands in hyperspectral data
provides abundant information on earth surface by
capturing the signature of a ground object in narrow
spectral bands over contiguous spectral ranges. Not only
it helps differentiating ground objects through
characteristic wavelengths, but also allows investigation
on more complex natural phenomena that are often
nonlinearly related to the spectral information. Linear
dimension reduction methods may fail to precisely relate
the spectral changes to the nonlinear factors. Therefore,
linear feature extraction and object-oriented analysis
cannot be directly applied to hyperspectral data. In this
study, nonlinear ML methods and the object-oriented
classification technique were integrated in order to make
use of both spectral information (feature vector of the
pixels) and spatial information (size, shape and adjacency
to other pixels) for hyperspectral data. The proposed
OSFA approach involves main steps as follows:

Step 1: Preprocessing: The low-dimensional feature
images are extracted from the originally high
dimensional hyperspectral remote sensing images
via local ML methods. It reduces redundant
hyperspectral information, thus raising the
efficiency of the data processing. In this study,
Because of memory and computational
constraints in local ML. the hyperspectral remote
sensing images are divided into a set of 50× 50

pixel tiles. Local ML methods focus inherently on
retaining local structure of the data, so, manifold
coordinates of each tile can be thought to lie on a
unified full-scene global manifold coordinate
system.

Step 2: Multiresolution segmentation algorithm: the
subspace feature images are segmented using the
multi-resolution segmentation algorithm
(Definiens 2007),which starts with one-pixel
image segments and merges neighbouring
segments together until a ‘heterogeneity
threshold’ is reached. The heterogeneity threshold
is determined by a user-defined scale parameter,
as well as smoothness/compactness weights
[24,25,26]. In this study, Different scales, from 5
to 50, are applied to each pair of weights for
segmenting the feature images. Since this study is
on land use classification and does not emphasize
any kind of class to be extracted, so the weight of
each image layer (band) is the same and takes
default value. Appropriate segmentation
parameters are determined subjectively by
comparing segmentation results with class label
maps. Classification accuracies are also used for
comparing segmentation alternatives and deciding
optimal segment size.

Step 3: Spectral characteristics of objects: After Step (2),
the feature images have been represented based on
objects. Accordingly, the pixel-by-pixel spectral
information within each object is integrated for
object-based features. In this paper, the spectral
characteristic for each object is calculated by
averaging the spectral vectors of all pixels within
this object:

Fb(i) =
1
n ∑

x∈i
Fb(x) (1)

with F(x) = {F1(x), · · · ,Fb(x), · · · ,FD(x)} .
Where F(x) is the spectral vector with
D-dimensional space for pixelx . After this step,
each segmenti is represented using an averaged
spectral vector with dimension ofD .

Step 4: SVM-based classification: Each object is assigned
to a specific class using SVM classifier. The radial
basis function (RBF) kernel is used due to its
effectiveness in many classification problems. The
regularization parameter and the spread factor of
RBF kernel are determined using cross-validation
approach.

Step 5: Accuracy assessment: Classification accuracy is
measured for both classification methods using a
standard error matrix. An accuracy assessment of
the classification results is performed. The
accuracy assessment is implemented on the basis
of classification results and reports overall
accuracy.
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(a) (b)

Fig. 1: RGB image (channels 50, 26, 16 for RGB) (a) and the ground-truth reference map: class label (Number of training
samples/number of test samples) for the AVIRIS data set (b)

3 Results and discussions

3.1 AVIRIS dataset

A sub-image of AVIRIS data which was obtained from
ftp://ftp.ecn.purdue.edu/biehl/MultiSpec/ with the size of
145×145 pixels was used. This experiment included the
Indiana Indian Pine with the 220 spectral channels and
12-class data set acquired by the AVIRIS sensor in June
1992 at 20-m spatial resolution. After removed water
absorption bands (104-108,150-163, and 220), 200 bands
were available for analysis. The scene showed an
agricultural region with regular geometry. Selected results
were included for C2 and C9 which were difficult to
discriminate during the early part of the growing season.
The RGB image and the ground-truth reference are
presented in Figure 1.

3.2 Nonlinear subspace feature extraction

To better understand nonlinear characteristics of
hyperspectral data in the manifold domain. 3-D plots of
selected coordinates for local ML are shown in Figure 2
for a tile, which contains 9 classes in the upper left corner
of the original hyperspectral images. Figure 2 shows that
nonlinear structures are clearly exhibited, Data structures
provided by LE are significantly different from those of
LLE and LTSA.LE also preserves the local neighborhood
structures of the data, but not well preserves distance
formation between the data.

For each of these nine tiles, manifold coordinates are
derived using local ML methods. so, subspace feature
images for each tile are obtained. The first three subspace
feature images for all tiles are illustrated in Figure 3, we
find that each feature image has different information;
they clearly reflect different gray value for the different
classes. Image texture is more abundant. The information
of the first three feature images does not change
obviously. Because local ML methods retain local
structure of the data, the discontinuities of adjoining
feature images are smaller.

In this study, we assumed that manifold coordinates of
each tile can be thought to lie on a unified manifold
coordinate system.In order to further evaluate the
effectiveness of the full-scene global manifold coordinate
system. Two DR results derived from single-tile manifold
coordinate system and full-scene global manifold
coordinate system respectively in combination with
SVM-based classification are compared. Two ways of DR
methods were utilized (1)Each local ML runs directly on
the original all train samples and randomly sampled 10%
of original all test data. (2) Each ML runs directly on the
original all train samples, DR data of randomly sampled
10% of original all test data are obtained from full-scene
global manifold coordinate system. SVM classifier was
then used to classify DR data obtained by above two ways
of ML methods with 20 replications of each experiment.
Classification results are shown in Figure 4. For each
ML,they have very similar classification results. Through
the quantitative evaluation of classification accuracy, it
further indicates the full-scene global manifold coordinate
system of each local ML is effective.

3.3 Comparison of pixel-based and
object-based subspace feature classification

Full-scene manifold coordinates are derived with local
ML, meanwhile, subspace feature images are obtained
with full-scene manifold coordinates for each ML.
Subspace feature images with the use of SVM classifier
are investigated.The pixel-based classification accuracies
are shown in Figure 5 for each subspace feature images.
The overall accuracies (OA) based on the confusion
matrix; over a range of the parameter values for local ML
methods are used to assess the classification results.

The statistics in Figure 5 are obtained using a
pixel-by-pixel SVM classification without considering the
spatial relationship of neighboring pixels. In Fgure 5, the
x axe represented the dimensionality of subspace, in
general, we hope that ML methods are better able to
capture the nonlinear structure of the associated
manifolds and achieve higher accuracies with small
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(a) (b)

(c) (d)

Fig. 2: 3D plots of the first three coordinates for (a) original high-dimensionalspace (b) LLE DR results (c) LE DR results (d) LTSA
DR results

number of dimension. In Figure 5(a) to Figure 5(c), good
performance can be achieved for more than 15 dimension
with large values of . For smaller numbers of local
neighborsk,larger values of dimension are required to
achieve higher accuracies. In general, smaller numbers of
local neighborsk can capture the smaller neighborhood
structure of data, so, it requires more bands to describle
more details of local structure of the data, but larger
numbers of local neighborsk can smooth some of the
details of local structure of the data, but it can better able
to take into account the data global structure, and a small
amount of band can better describe the data structure
information. When implemented with best parameters,
LLE and LTSA consistently yield better results than LE.
Considering that the pixel-wise classification of SVM
with the originally 200-dimensional AVIRIS channels
gives OA=72.8%, it can be said that subspace analysis is
effective in extracting spectral information from the
hyperspectral data,furthermore,it is able to reduce the
computational cost.

Table 2 shows the object-oriented classification
accuracies with scale/optimal segment size of each local
ML method considering their best performance in
pixel-based classification accuracies and The
segmentation parameters are mainly based on experience
by repeating tests and comparison with class label maps.

Table 2 shows that the object-oriented subspace feature
classification can provide substantially higher accuracies
than the pixel-wise classification. With the OSFA
classification, the OA improvements are 12.7%, 8.7%,
8.3% and 10.2% for 15-dimemsional LLE, LTSA and LE
features, respectively. The OSFA-based LLE, LTSA, LE
features give over 90% overall accuracies. Therefore, it
can be stated that the prosed OSFA can effectively exploit
the spatial relationship of pixels and give much more
accurate classification results.l

Figure 6 compares the classification maps of the LLE,
LTSA and LE features for the pixel-based and
object-based classification considering best performance
in the classification accuracies. From the Figure 6, it can
be observed that the OSFA-based method reduces the
“pepperCsalt” effects resulted from the pixel-wise
classification, and it avoids the misclassifications and
uncertainty in homogeneous regions. In addition, the
OSFA method classifies the image based on objects;
consequently, it is more appropriate for the vector-based
post-processing and Geographic Information System
spatial analysis. Table 3 provides the class-specific
accuracies for different subspace features with and
without object-oriented analysis, and the accuracies
obtained by all-bands AVIRIS hyperspectral data (200
channels) are used for comparison.it indicates that C2 and

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1992 L. Ding et. al. : Subspace Feature Analysis of Local Manifold Learning.. .

I (a) (b) (c)

II (a) (b) (c)

III (a) (b) (c)

Fig. 3: The first three manifold coordinates derived for each tile using (I) LLE(II) LTSA (III) LE, from (a) to (c): coordinates 1, 2, 3

Fig. 4: Overall accuracies in percentage for two DR results from (1) ML on training data and test data, (2)ML on training data and
full-scene global ML on test data, the average(AVG) of each classification accuracy are shown.
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Fig. 5: Overall accuracies in percentage for the pixel-based classification forLLE, LTSA, LE

Table 2: Scale/optimal segment size and object-based classification accuracies with best parameter values of ML method (S = shape,
O = compactness).

Name LLE LTSA LE
Parameter values k= 50, p= 20 k= 50, p= 20 k= 50, p= 20

Scale/optimal segment size 10/S0.7O0.5 10/S0.6O0.4 5/S0.6O0.3
Pixel-based OA 85.7% 87.0% 81.9%
OSFA-based OA 94.4% 95.3% 92.1%

(a) (b) (c)

(d) (e) (f)

Fig. 6: Pixel-based classification maps for (a) LLE, (b) LTSA,(c)LE,object-oriented classification for (d)LLE,(e) LTSA,(f) LE.

C9,the most difficult class pair, can be well separated by
ML features.

Textural measures have been proven an effective
approach for spatial information extraction. Therefore, in
order to further validate the proposed OSFA method.
Grey-level co-occurrence matrix (GLCM) [27] and Gabor
wavelet [28] were implemented as benchmarks.

20-dimensional LLE, LTSA, LE features were selected
for the texture analysis considering good performance.

The accuracy improvements resulted from the GLCM
textures were 5.2%, 3.4% and 7.8% for LLE,LTSA and
LE,respectively, and the respective improvements from
the wavelet texture were 2.7%,2.2% and 3.6%.However,
it could be clearly seen that the OSFA-based classification
obtained the best accurate results. However, the utility of
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Table 3: Class-specific accuracies in percentage from pixel-based (P) and object-oriented (O) classification for nonlinear subspace
features

Name 200 bands
LLE LTSA LE

P O P O P O
C1 60.7 79.8 90.1 80.6 95.6 80.3 89.6
C2 56.4 89.7 93.9 90.4 95.1 87.6 92.6
C3 75.2 71.4 90.1 89.8 90.9 70.1 93.3
C4 85.1 91.2 95.7 95.3 97.1 87.7 91.7
C5 72.6 88.7 96.9 90.2 94.9 81.4 96.2
C6 79.4 86.4 98.0 97.6 98.6 84.2 89.6
C7 61.7 78.3 95.7 87.7 96.6 78.9 95.2
C8 84.1 86.8 93.5 85.9 94.6 81.9 88.9
C9 68.4 87.6 95.9 83.6 95.1 88.3 95.6
C10 87.8 89.2 97.8 80.1 96.2 87.6 89.5
C11 79.5 91.8 95.6 87.9 94.3 78.2 94.5
C12 60.1 78.6 96.5 82.8 97.2 80.0 96.1

GLCM and wavelet textures substantially increases the
number of dimensionality of features. Therefore, it can be
said that the proposed OSFA-based classification is more
effective in simultaneously exploit spectral and spatial
information in terms of accuracies and computational
cost.

4 Conclusions

In this study, a new object-oriented nonlinear subspace
feature analysis has been presented to improve the
performance of hyperspectral remote sensing images
classification, in order to exploit the spectral and spatial
information contained in the images. The nonlinear
subspace characteristics of hyperspectral data are
investigated using local ML,since local ML methods are
able to model nonlinear structure in hypespectral data and
reduce the information redundancy in hyperspectral data
with hundreds of highly correlated bands. The local ML
methods are utilized to obtain low dimensional feature
images of hyperspectral imagery. Extracted features are
implemented in conjunction with SVM classifier for
pixel-based and object-oriented classification.

The experiments show that the object-oriented
features analysis gives much more accurate mapping
results than the pixel-wise classification. All nonlinear
subspace features give higher classification accuracies
than the full dimensional hyperspectral images. It can be
said that the integration of nonlinrear subspace analysis
and object-based processing is effective for
spectral/spatial information extraction and classification
from hyperspectral data. In addition, in comparison with
results obtained by GLCM and Gabor wavelet textures
classification, the proposed approach gives obviously
higher accuracies but with much smaller feature
dimensionality, with a proper selection of parameters and
a sufficient number of features, LLE and LTSA
consistently yield better results than LE.
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[15] M. Belkin, P. Niy ö gi, Neural Computation, 15, 1373-1396
(2003).

[16] M. Fauvel, J. Chanussot, J. A Benediktssion,EURASIP
Journal on Advances in Signal Processing, 783194 (2009).

[17] X. Li, S. Lin, S. Yan, D. Xu, IEEE Transactions on
Systems, Man, and Cybernetics, Part B,Cybernetics, 38, 342-
352 (2009).

[18] L. Ma, M. M.Crawford, J. W. Tian,IEEE Transactions on
Geocience Remote Sensing, 48, 4099-4199 (2010).

[19] J. M. Duarte-Carvajalino, G. Sapiro, M. Velez-Reyes, P.
E. Castillo, IEEE Transactions on Geoscience and Remote
Sensing, 46, 2418-2434 (2008).

[20] X. Huang, L. Zhang,International Journal of Remote
Sensing, 30, 3205-3221 (2009).

[21] Definiens, Definiens Developer 7.0 Reference Book.
Definiens AG, M̈unchen, Germany, (2007).

[22] R. Mathieu, J. Aryal, Planning and Urban Ecology,81, 179-
192 (2007).

[23] VL. Lucieer, International Journal of Remote Sensing, 29,
905-921(2008).

[24] U. C. Benz, P. Hofmann,G. Willhauck, I. Lingenfelder,
M. Heynen,ISPRS Journal of Photogrammetry and Remote
Sensing, 58, 239-258 (2004).

[25] B. A. Johnson,Remote Sensing Letters, 4, 131-140 (2013).
[26] X. J. Li, Q. Y. Meng, X. F. Gu, T.Jancso, T. Yu, K.Wang,

S.Mavromatis, International Journal of Remote Sensing,34,
4655-4668 (2013).

[27] B. S. Manjunath, W. Y. Ma, IEEE Transactions on Pattern
Analysis and Machine Intelligence,18, 837-842 (1996).

[28] Y. O. Ouma, T. G. Ngigi, R. Tateishi,International Journal
of Remote Sensing, 27, 73-104 (2006).

Ling Ding received
the B.E. and the M.E. degree
both from the Shandong
University of Science
and Technology. She is
currently pursuing the Ph.D.
degree at the Institute of
Remote Sensing and Digital
Earth, Chinese Academy
of Sciences. Her research

interests include machine learning, neural networks, and
algorithms analysis with applications to identification and
classification processes for remote sensing data.

Ping Tang received the
B.S. degree in mathematics
from Ningxia University, and
the M.S. and Ph.D. degrees
both in Mathematics from
Beijing Normal University.
She is a Professor in
Institute of Remote Sensing
and Digital Earth, Chinese
Academy of Sciences. Her

research lies in using mathematical theories to develop
algorithms for satellite image processing such as
multispectral imagery radiometric and geometric
correction.

Hongyi Li received
the B.E. and the M.E.
degree both from Ningxia
University.Presently he serves
as assistant researcher in
Institute of Remote Sensing
and Digital Earth, Chinese
Academy of Sciences.His
research lies in images
processing and analysis such

as designing software systems for satellite image
processing and applications,data mining and scientific
programming.

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

	Introduction
	Methods
	Results and discussions
	Conclusions

