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Abstract: In this paper, we consider an operator for refinement of variables to be used in the design of hybrid system. Variables on a
given level of abstraction are replaced by more complicated processes on a lower level just like the function are called in the program.
Then we established the equivalence, bisimulation equivalence and approximate bisimulation equivalence which are by polynomial
flow event structures. These equivalence, bisimulation equivalence and approximate bisimulation equivalence are based on the common
forms of their zeros. The example show that the equivalence, bisimulation equivalence and approximate bisimulation equivalence are
preserved or not under the variables refinement, if the equivalence isnot preserved precisely, then we can use the approximate methods
to make them approximate equivalence. Lastly we show that our refinement has some nice properties.
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1 Introduction

For traditional methods a complex system is always to be
described as a simple abstract specification and then to be
refined it into a more concrete implementation. This is
called the hierarchical specification methodology. It has
been successfully developed for systems where
abstract-level instructions are expanded until a concrete
implementation is reached [1]. In the method the core
operation is refinement, which leads to a successful
technique known as top-down system design. It allows the
representation of systems in a hierarchical way.

The author discussed the action refinement detailed in
concurrent systems in literature [2,3]. The action
refinement operator is generally described on three
aspects in these literatures, on language level of various
process algebra [4,5,6], on Logic levels, and on structure
levels (transition systems [7,9] and event structure [8]).
However, the tradition systems are mostly discrete, and
the discrete methods biggest drawback is unable to
describe and process the data flow. Therefore, recently
years, more and more people began to pay attention to
hybrid system [10,11,12], now it is one of the most
importance field of computer science. The paper [13]

firstly used polynomial equation to define the state
transition hybrid system, and through polynomials
Groebner base generate the invariant. Based on these,
some equivalence and approximate equivalence were
proposed [14,15,16]. But the refinement of hybrid system
is not mentioned. So in this paper, we investigate variable
refinement in hybrid systems that encompass the notation
of polynomial equations with variables.

In this paper we choice the model based on the flow
event structures [17]. Because the model of flow event
structure has some advantages: firstly flow event
structures closely resemble prime event structures [18],
but flow event structure overcome the unique enabling
problem of prime event structures, and flow event
structures are suitable for defining parallel composition;
secondly, flow event structure overcomes the stability
constraint [18] problem of stable event structures; thirdly,
flow event structure overcome the all events in a bundle
set should in conflict [18] of bundle event structures.
In[18], Glabbeek and Goltz defined an operator of action
refinement on flow event structures and other causality
based event-oriented models of concurrency.
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In this paper, we use polynomial flow event structures
which is based on the flow event structure as the model,
and refine the variables of the polynomials. Why use
polynomials? Firstly, polynomials enhance the ability of
description. Secondly, polynomials are among the
simplest functions. Thirdly, computer can directly
evaluate polynomials, so polynomials have both
theoretical and practical relevance. Fourthly, refinement
variables are very easy to do. Fifthly the events from the
abstract to the concrete, we can more clear understanding
of the event itself.

The variables refinement operation should be safe. If
the behaviors of two systems before refinement are same,
then after the variables refinement they are should be the
same too. So an important question being considered is
the following: which equivalence notions for concurrent
systems are preserved under refinement? Taking two
system representations,P,Q, which are equivalent for
some equivalence notion≈ , noteP ≈ Q. f is a refined
function, we would expect thatf (P) ≈ f (Q), for any
refinement and many other approaches for moving to a
lower of abstraction, our expectation is based on the idea
that in the original system representations and it is not
know how the events will be implemented. However, it is
decided that different occurrences of the events will be
implemented in the same way if they have the same
polynomial zero, so that any different between and that
could arise after refinement is already visible in the
abstract representations, namely through the use of
different events names for corresponding events but have
the same polynomial zero.

After refinement then we should research preservation
question under the refinement. In the paper we take some
equivalence notions, just like equivalence, bisimulation
equivalence, and approximate bisimulation equivalence.
Try to find which equivalence are preserved under the
refinement. Generally speaking, we use the variables zero
of polynomial as standards of equivalence. But when we
study the practical cases; an exact equivalence is too
restrictive and also not robust sometimes. Some
equivalence are kept after refinement, but some are not.
For instance, in the process of using two microwaves to
heat the same bread, there are two main parameters for
the microwaves, functional parameter and time parameter.
If the functional parameters of two microwaves are the
same, it means bread can be cooked by the two
microwaves, then we can set the time for cooking bread,
maybe ones time parameter is 1.0s, anothers is 0.99s, it
does not matter, we can say they are abstractly the same.
Such example show that some unimportant and less
frequently used states are able to be ignored, and the
result will not be changed much significantly. In this
paper, this process can be called approximation. So if the
equivalence is kept after the refinement, we can say it
preserved. If not matins, we can use the approximation to
keep it matins. For approximation, in recent years, many
researchers have been studied in this field [19,20]. Most
of the methods were applied to deal with problems for

dynamical systems and process them directly, which cost
a large amount of computations and had high
complexities.

Symbolic computation is a useful formal method [25],
which is chosen to standardize the system before
processing it. After standardizing, the forms of
polynomial equations are normalized, and several
properties of the system will be easier to be verified.

In this paper, in order to implement the above goals,
the definition of polynomial flow event structures based
on flow event structures is achieved for hybrid system.
Firstly refine the variables for the events. Then observe
the equivalent relationship of two systems is determined
by using their common zeros. With bisimulation
semantic, if they can’t preserve the equivalence, after
ignoring unimportant conditions, we propose a notion of
approximate bisimulation. The error caused by
approximation is calculated and controlled by symbolic
and numerical calculation.

2 polynomial flow event structures

In this section, we introduce polynomial flow event
structure and operators for variable refinement and
approximate equivalence.

Polynomial flow event structure describes a hybrid
system as a set of events modeling actions occurrences,
together with three relations: the flow relation represents
possible immediate causes of events; the conflict relation
expresses which events mutually exclude each other; the
independent relation means events occur in any order or
simultaneously. In this model the abstract events are
replaced by polynomial equations, for example, the
abstract evente is replaced byy= x+1.

Definition1. A polynomial flow event structure
(PFES) is a tupleξ <V,E,≤, ♯, |||>, where

V is a finite set of variables,
E is a denumerable set of events, every event is

represented by polynomial overV,
≤⊆ E × E is the flow relation, it is an irreflexive

relation,
♯ ⊆ E × E is the conflict relation, it is a symmetric

relation,
|||=⊆ E×E− ♯−≤ is the independent relation, it is a

independent relation.
Note that independent means events occur in any

order or simultaneously, so they neither need to happen in
parallel nor to occur one before the other. Polynomial
flow event structures are depicted as follows, events are
polynomial with variable denoted by closed dots, conflict
relatione♯e′ is indicated by a dotted line betweeneande′,
flow relation is indicated by an arrow line, independent
relation omit by inheritance.

For example, in one program, each assignment
y= l(v1, ..., vn) is an event,l is a function about variables
V. V(l(v1, ...,vn)) is the variables inV that needed to
evaluate for y, then we use polynomial equation to
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Fig. 1: The corresponding polynomial flow event structure of the
program.

express the eventey, for Ve ∈V(l(v1, ..., vn)) , e≤ ey this
is the causality relation between the assignment left-side
and right-side. Each group of conditional choice is a
cartesian product conflict relation between the events in
different choice.

Such as the following program ( a part of the long
program ):

x= 0;
{
if m= a;

y= x+m;
else if

z= x;
}
The corresponding polynomial flow event structure of

the program is figure 1.
In the figure,
evente1 expressed the polynomialm= a;
evente2 expressed the polynomialx= 0;
evente3 expressed the polynomialy= x+m;
evente4 expressed the polynomialz= x.
The conflict and flow relation’s interpretation are

formalised by defining which subsets of events constitute
possible runs of the represented system, and which of
these runs terminate successfully. These subsets are called
configurations.

Definition2. A evaluation sequence is a sequence of
distinct eventsC= {e1,e2, ...,en} ∈ E, satisfying:

(1){e1,e2, ...,en} is conflict-free, i.e. .∀ei ,ej : ¬(ei♯ej)
(2)∀i : e≤ ei ⇒∃ j < i : ej ≤ ei ∧ (e= ej ∨e♯ej)
C is called a configuration.
Notice that any two events will be in conflict or cause

each other cannot occur in the same configuration.
Hereafter, we will useC(ξ ) to denote the set of all the
configurations ofE .

A configurationC of ξ is called maximal iffC ⊆C′ ∈
C(ξ ) impliesC=C′ .

A configuration C of ξ is called successfully
terminated iff∀d ∈ E : d /∈C ⇒∃e∈C with d♯e. We will
usePFES to denoted the set of allp f es, ξ ,ξi ∈ PFES

and ξ =< V,E, ♯, ||| >, ξi =< Vi ,Ei , ♯i , |||i >. For two
different p f es ξ f andξg, we always assume
thatEf ∩Eg = /0.

3 Bisimulation Equivalence

In this section, we will consider some equivalence notions
for investigating them are preserved or not under the
variables refinement.

3.1 Equivalence

By the definition of polynomial flow event structures, we
find it is easily to find that there exists equivalence
between two different polynomial flow event structures
based on the common zeros of their polynomials. In this
subsection, we consider that such equivalence as behavior
equivalence.

Theorem 1. Events have equal zeros and equal zeros of
enabling event are equivalence.

Definition3. There is an equivalence between two
polynomial flow event structuresξ1 and ξ2, if exists
Zero(P1) = Zero(P2), notationξ1 ≈e ξ2, whereZero(Pi)
is the algebraic variety for polynomial system ofξi , Pi is
the configurations ofξi which is belong toC(ξi) , and the
Zeroare defined in an arbitrary field of characteristic 0 in
the whole paper.

By the definition3 and the theorem1, the system’s
equivalence is very simple from thezero of the
polynomial. But it demand us to analysis the system
rigorously, and propose the most precise equivalent
relations to the structure of the systems.

3.2 Bisimulation Equivalence

Based on the equivalent relationship for polynomial flow
event structures, we expect to look for an abstraction
which is equivalent with the whole system, we can call it
a structure equivalence. Bisimulation is the finest
semantic and widely used in non-deterministic
equivalence verification for different concurrent systems.

Definition4. There are two polynomial systemsξ1 and
ξ2, a relation R ⊆ C(ξ1) × C(ξ2) is a bisimulation
equivalent relation between the two polynomial systems
ξ1 and ξ2, where, R1 ∈ P1,R2 ∈ P2, x,y ∈ R, notated
ξ1 ≈b ξ2. If satisfy:

∀x
R1−→ x′, ∃y

R2−→ y′ and Zero(P1) = Zero(P2), such
that(x′,y′) ∈ R.

∀y
R2−→ y′, ∃x

R1−→ x′ and Zero(P2) = Zero(P1), such
that(x′,y′) ∈ R.

By the definition, we are able to find whether exist a
bisimulation or not between two polynomial systems. Two
polynomial systems are bisimular if there exists a causality

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


1962 B. Liu et. al. : Approximate Bisimulation Equivalence and...

relation for one, there exists the same causality relation for
the other, and conversely the same. So for processing the
same causality relation based on bisimulation, large scale
system can reduced or simplified.

3.3 Approximate Bisimulation Equivalence

For two given systems, the exact equivalence requires that
the common zeros must be identical or totally the same.
But sometimes it is too restrictive for some real problems
and also not robust in the technology field while several
special systems only have approximate models. So
defining the approximation sometimes for the different
systems is necessary. It may have some advantages, by
approximation, making the two different systems are
equivalence, thus, we can select a simpler one to reduce
the complex one. secondly. After behavior and structure
approximate, we can get a system which is an
approximate system for given system and also much
simpler than it. Thus, approximate bisimulation is an
appropriate relation for system. And for refinement
system, if two systems behavior is the same, after
refinement it is not exact equivalence, then we can use
approximate to make them equivalence.

Definition5. There are two polynomial systemsξ1 and
ξ2, a relation R ⊆ C(ξ1) × C(ξ2) is an approximate
bisimulation equivalent relation between two polynomial
flow event structureξ1 and ξ2, whereR1 ∈ P1,R2 ∈ P2 ,
(x,y) ∈ R, D < ε. Notatedξ1 ≈a ξ2. D is an error.

∀x
R1−→ x′, ∃y

R2−→ y′ andZero(P1) ≈D Zero(P2), Such
that(x′,y′) ∈ R.

∀y
R2−→ y′, ∃x

R1−→ x′ andZero(P2) ≈D Zero(P1), Such
that(x′,y′) ∈ R.

By the definition, we can get the approximate
bisimulation relation of two system. If there exists an
approximate bisimulation relation, how to calculate the
zero of polyomials and the error are the key problems. We
can find some methods in references [15,16,20], we also
give some methods in the following section.

3.4 Approximate methods

For the given polynomial flow event structure, after
establishing the approximate bisimulation equivalence
relations, we should determine whether the error is in our
acceptance or not.

3.4.1 Zero Computation

We can use symbolic computation to calculate zeros, just
like Groebner basis and characteristic sets methods [23].
Before getting their zeros these methods need to represent
the polynomial equations standardize and unique firstly.

Then, based on the unique form, we can know that whether
there exists equivalence or not.

Let T(P) be Irreducible Characteristic Sets forP, G
be Groebner basis forP, Ideal(P) be Ideal forP, GB(P)
be Reduced Groebner Basis forP. These theories of
characteristic set , Ideal and Groebner Bases can be found
in referance[23].

Proposition1.If GB(P1) = GB(P2), then
Zero(P1) = Zero(P2).

Proof: With the polynomial setsP ⊂ k[x], an idealI
which is called ideal generated byP must exist, then

Zero(Ideal(P)) = Zero(P) exist also.
With the given polynomial set and its ideal, it will be

existed a Groebner basis G, and
Ideal(P) = Ideal(G) = I . If G is irreducible, then,
Zero(P) = Zero(G). Therefore,Zero(P1) = Zero(P2), if
G1 = G2. However if G is reducible and has a
factorizationG = G1G2, then, to consider eachGi asG,
and continue process as the same as the above way, there
is a decomposition of the following form

Zero(P) =
⋃e

i=1Zero(Gi),
We get its unique Reduced Groebner Basis with the

Groebner basis ofGi . If GB(P1) = GB(P2), Then
Zero(P1) = Zero(P2),
Proposition2. If T(P1) = T(P2), then

Zero(P1) = Zero(P2).
Proof We all known that because the multivariate

polynomial rings are Noetherian over feild, thus, we can
be decomposed every idealI into some primary
componetsQ : I = Q1 ∩ ...∩ Qm. EachQi is a primary.
Then, by calculatingT(Qi) for Qi , It is unique, so we get
a algebraic variety for the ideal,
V(I) =V(Q1)∪ ...∪V(Qm) =V(T1\ I1)∪ ...∪V(Tm\ Im)
Thus,Zero(P1) = Zero(P2), if T(P1) = T(P2), whereIi is
initial for Ti .

3.4.2 Approximate methods

There are some approximate methods for different
polynomial equations we can use, according to the unary
or multivariate variables, we can choice the different
methods.

For unary, we can use the following methods:
Theorem2. Weierstrass approximation theorem: iff (x)

is a continuous function defined on real interval[a,b], and
if D > 0 is given, then∃p(x) on[a,b] such that∀x∈ [a,b],
| f (x)− p(x)|< D.

this theorem makes sure that given a error limit there
exist a approximate polynomial aboutf (x) only needs that
it is a continuous function defined on real interval[a,b].

theorem3.Taylors theorem:
Let k ≤ 1 be an integer and functionf : R→ R be k

times differentiable at the pointa∈ R. then∃hk, such that

f (x) = f (a) + f ′(a)(x − a) + f ′′(a)
2! (x − 2)2 + ... +

f k(a)
k! (x − a)k + hk(x)(x − a)k, and limhk(x) = 0. If

| f k+1(x)| ≤ N on (a− r,a+ r), r > 0, then|D| ≤ N rk+1

(k+1)! .
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The last equation gives the error limit.
Theorem4. Piecewise linear interpolation theorem:
I(x) is the piecewise linear interpolation function of

f (x) ∈ C2[a,b],
h= max0≤k≤(n−1){xk+1− xk|a= x0 < x1 < ... < xn = b},
thenmax0≤k≤n−1| f (x)− I(x)| ≤ 1

8maxa≤x≤b| f ′′(x)|h2.
Theorem5. The best first order approximation theorem:
Suppose f (x) ∈ C2[a,b], f ′′(x) ∈ (a,b) does not

change sign, then the best first order approximation p(x)
satisfies,p(x) = 1

2[ f (a)+ f (x2)]+
f (b)− f (a)
(b−a) (x− (a+x2)

2 )

f (x2) = f (b)− f (a)
(b−a)

maxa≤x≤b| f (x)− p(x)|= f (x2)− p(x2)
The last equation gives the error limit.
For multivariate, we can use the following methods:
Given two polynomial flow event structures, we are

going to determine if there is an approximate bisimulation
equivalence or not for the two systems with an errorD
when D < ε, andε is given. Let M and N be two
polynomial flow event structures. In fact if they are
equivalent the number and value of variables must be the
same. The number of variables also must be the same
even if they are approximate equivalent. In this section,
for the approximate bisimulation equivalence, we mainly
use numerical calculation to compute the errorD between
the two systems. The detailed algorithm are following.

Step 1. Firstly we should order the relation< for the
variables of two systems are:x< y< x1 < ... < xn; x< y<
y1 < ... < yn;

Step 2. Then choose one method about symbolic
computation to computer the equivalent relationship
betweenM andN.

If GB(M)=GB(N), then,M andN are equivalent, end.
Else, go to Step 3.

Step 3. According to the prem program [24]to get
prem(x1,

y1,y), ..., prem(xn,yn,y); Then,
Iq1
1 x1 = Q1y1+R1, ..., I

qn
n xn = Qnyn+Rn;

where, Ii = lc(yi ,y); l i = deg(xi ,y); mi = deg(yi ,y);
qi = max(l i −mi +1,0);

Thus,|xi −
Qi

I
qi
i

yi |= | Ri

I
qi
i
|;

Then, to compute
min(∑n

i=1(‖xi −
Qi

I
qi
i yi

‖+‖yi −
Qi

I
qi
i ‖

)) = min(∑n
i=1(

‖ Ri

I
qi
i
‖+‖Qi

I
qi
i
‖))< ε.

The arrange of some variable can be achieved, Then,
M andN, N andN will be approximate equivalent.

Thus, yi turns into Qi

I
qi
i yi

, N turns into N. and

N = { Q1
I
q1
1 y

, ..., Qn
Iqn
n y

}, end.

Else,M andN will be not approximate equivalent, end.
In the three steps, we will find thatQi

I
qi
i

are an

approximate greatest common factor for two polynomial
system M and N. By analysis, equivalence and
approximate equivalence methods are useful methods,

they can reduce the structure and behavior for the large
scale original systems.

4 Variables refinement

4.1 Refinement

The refinement of variables, as formalized in refinement
action[21], is based on the following definition6. A
variable is refined by an event structure, denoted by
v = f (v′). It is just close to the event which is used in
Murphy and Pitt [22].

Definition6. We called f : v → p f es a refinement
function. f (v′) is a refinement ofv . And f (v′) require
have non-empty configurations, sof (v′) couldnt be
forgetful [17].

Let f is the refinement function. Then we define the
refinedp f esof ξ to be

f (ξ ) = (Vf ,Ef ,< f , ♯ f , ||| f ), where
Vf = {V ∪V ′|V ∈ E∪V ′ ∈ Ef },
Ef = {(e,e′)|(e∈ E)∧ (V = f (V ′))∧ l(V ∪ f (V ′)) =

e′}∪{(e,e)|(e∈ E)∧ l(V) = e}
For (e1,e2),(e′1,e

′
2) ∈ Ef , (e1,e2)♯(e′1,e

′
2) iff

Ife1 = e′1, thene2♯ f (ξ )e′2, or e2,e′2 ∈ exit( f (V ′)) and
ee2 6= e′2(e2 6= e1 ande′2 6= e′1 in the case),

Ife1 6= e′1 then
e2 = e1 ande′2 = e′1 thene1♯e′1,
If e2 6= e1 ande′2 = e′1 thene1♯e′1 ande2 ∈ {l( f (V ′)∪

V)∪exit(l(v∪ f (V ′)))},
Ife2 = e1 ande′2 6= e′1 thene1♯e′1 ande′2 ∈ {l( f (V ′)∪

V)∪exit(l(v∪ f (V ′)))},
Ife2 6= e1, e′2 6= e′1 then e1♯e′1 and

e2 ∈ {l( f (V ′) ∪ V) ∪ exit(l(v ∪ f (V ′)))}, and
e′2 ∈ {l( f (V ′)∪V)∪exit(l(v∪ f (V ′)))},

For(e1,e2), (e′1,e
′
2) ∈ Ef , (e1,e2)< (e′1,e

′
2) iff e1 < e′1

or (e1 = e′1∨e2 < e′2)

4.2 Example

There is a program and the program have the calling
function, the bellowing is the program and the
corresponding polynomial flow event structures in
figure2.

The program code(partially):
x,y;
{
if y> 0

r = ex+y;
else

p= ex;
q= x;

}
In the figure2, the events are corresponding to the

polynomial of the program.
e1 expressed the variablesx,y;
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Fig. 2: The corresponding polynomial flow event structures of
the program.

e2 expressed the polynomialp= ex;
e3 expressed the polynomialr = ex+y;
e4 expressed the polynomialq= x,
we called the polynomial flow event structure isξ .
Then if the program called the subfunctiony,
The subfunction of the program code:
f ()
{

if x≥ 0
y= ex;

else
y= e(−x);

}

Then we can get the variable refinement’s polynomial
flow event structuref (y) in figure3, e0 expressed the
empty event.

Fig. 3: The polynomial flow event structures off (y) .

let ξ be the p f es in figure2. And the variable
refinement’s polynomial flow event structuref (y) in
figure3. Then thep f esof f (ξ ) is figure4.

Fig. 4: The polynomial flow event structuresf (ξ ) .

5 Properties

Proposition3.
(1)If ξ ∈ Ef low, and f is a refinement function, then

f (ξ ) is a polynomial flow event structure.
(2)If ξ ∈ Ef low , and f , f ′ are refinement functions

with f (v)≈x f (v′),x∈ {e,b,a}, v∈V , then f (ξ )≈x f (ξ )′
.

(3)If ξ ,F ∈ Ef low, ξ ≈x F ,x ∈ {e,b,a}, and f is a
refinement function, thenf (ξ ) ≈x f (F) is a polynomial
flow event structure.

Fig. 5: The polynomial flow event structureF .

Example: The figure5 is the polynomial flow event
structure ofF , e′1 expressed the variablesx,y; e′2 expressed
the polynomial p = 1 + x + x2/(2!) + + x9/(9!); e′3
expressed the polynomial
r = 1+ x+ x2/(2!) + + x9/(9!) + y; e′4 expressed the
polynomial q = x. We assume the errorD is 10−5, then
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Fig. 6: The polynomial flow event structuref (F).

we can see thatF is approximate bisimulation equivalent
with ξ . Notate thatξ ≈a F , after refinementy we can get
the f (F) in figure6 . Now we can see thatf (ξ )≈a f (F) .

Cf is a configuration of f (ξ ), let
π1(Cf ) = {e|(e,e′) ∈ E(Cf )}, so e ∈ π1(E(Cf )), let
π2(Cf ,e) = {e′|(e,e′) ∈ E(Cf )}, in fact π1(Cf ) is the
projection ofCf on ξ , andπ2(Cf ,e) is the projection of
Cf on f (ξ ). From the following lemma we can see that
the projection ofCf on ξ is a configuration ofξ , and the
projection ofCf on f (ξ ) is a configuration off (ξ ).

Lemma1.
(1) π1(Cf ) ∈C(ξ );
(2) π2(Cf ,e) ∈C( f (ξ ));
(3)If e isn’t maximal in E(π(Cf )), (Cf ,e) can

successfully terminates.
C is a configuration ofξ , Ce is a configuration off (v),

f (v) satisfying the following condition: if evente is not
maximal inC wheree∈ E(C) andv ∈ V(e), V(e) is the
variables for valuation evente , Ce can successfully
terminates. Let f (C,∪eC′

e) = {(e,e′)|e ∈ E(C) and if
{v ∈ V(e)|e′ = e}. otherwise
v ∈ (V(e) ∪ f (v)),e′ = l(V(e) ∪ E(Ce))}. In fact
f (C,∪C′

e) is obtained by a configurationCE of f (v) with
replacing each evente in configuration withl(V(e)∪ f (v))
.

Lemma2.f (C,∪eC′
e) ∈C( f (ξ )).

From the lemma, we can see that the configurations
of the refinedp f es f(ξ ) can get from the configuration
refinements ofξ .

Theorem6.C( f (ξ )) = {Cf |Cf is the refinement ofC∈
C(ξ )} .

We use f (v) to substitute the variablesv of event in
ξ .the start event is the start point of the system. Theorem
5.3 denotes that the refinement of a configuration ofξ can
be obtained by calling the function of variable of events.
The causality relation in eachC is respected to the

refinement ofC . The causality relation is that ife causese′

in C, then some successful termination event of
l(V(e)∪ f (v)) causes the start-event ofl(V(e′)∪ f (v′)) .

So the behavior off (ξ )can be get from the behavior
of ξ calling for the refinement variablev of the behavior
of f (v) .

Example:we consider againξ in figure6 of example.
Cf = e1,e0,e5is a configuration off (ξ ).

π1(Cf ) = {e1,e3}
π2(Cf ,e3) = {e0,e5}
π1 is a configuration ofξ and π2 is a configuration

f (v).

6 Conclusion

In this paper, we proposed the new concept of polynomial
flow event structure which is suitable for parallel
composition, refinement and many other operators of
CCS-like languages. And then we translated the program
code toPFES, Considered an operator for refinement of
variables on polynomial flow event structure. For the
variables refinement we demonstrated that they are safe
and equivalence (equivalence, bisimulation equivalence
or approximate bisimulation equivalence) under
refinement. The equivalence (equivalence, bisimulation
equivalence or approximate bisimulation equivalence) is
based on the common forms of their zeros. With using
symbolic method and numerical calculation, the value of
zero or error is can calculate.

But how to improve the efficiency of our approach are
still a very big challenge as well as our main future work.
In addition, the system is limited which can be expressed
by polynomial flow event structure, we also demand to
establish more appropriate systems to describe different
systems in the future just like different system in the
future.
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