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Abstract: In this paper, we consider an operator for refinement of variables tssed in the design of hybrid system. Variables on a
given level of abstraction are replaced by more complicated prazessa lower level just like the function are called in the program.
Then we established the equivalence, bisimulation equivalence anoxappte bisimulation equivalence which are by polynomial
flow event structures. These equivalence, bisimulation equivalentammproximate bisimulation equivalence are based on the common
forms of their zeros. The example show that the equivalence, bisimulagjoivalence and approximate bisimulation equivalence are
preserved or not under the variables refinement, if the equivalence jseserved precisely, then we can use the approximate methods
to make them approximate equivalence. Lastly we show that our refiridras some nice properties.
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1 Introduction firstly used polynomial equation to define the state
. i transition hybrid system, and through polynomials
For traditional methods a complex system is always to begroebner base generate the invariant. Based on these,
described as a simple abstract specification and then to bgsme equivalence and approximate equivalence were
refined it into a more concrete implementation. This is yroposed 14, 15,16]. But the refinement of hybrid system
called the hierarchical specification methodology. It hasjs not mentioned. So in this paper, we investigate variable

been successfully developed for systems whergefinement in hybrid systems that encompass the notation

implementation is reachedl][ In the method the core
operation is refinement, which leads to a successful
technique known as top-down system design. It allows the  In this paper we choice the model based on the flow
representation of systems in a hierarchical way. event structuresl]/]. Because the model of flow event
The author discussed the action refinement detailed irstructure has some advantages: firstly flow event
concurrent systems in literature2,B]. The action structures closely resemble prime event structufie, [
refinement operator is generally described on threebut flow event structure overcome the unique enabling
aspects in these literatures, on language level of variouproblem of prime event structures, and flow event
process algebral[5,6], on Logic levels, and on structure structures are suitable for defining parallel composition;
levels (transition system</[9] and event structureg]). secondly, flow event structure overcomes the stability
However, the tradition systems are mostly discrete, andconstraint L8] problem of stable event structures; thirdly,
the discrete methods biggest drawback is unable tdlow event structure overcome the all events in a bundle
describe and process the data flow. Therefore, recentlget should in conflict 18 of bundle event structures.
years, more and more people began to pay attention tin[18], Glabbeek and Goltz defined an operator of action
hybrid system 10,11,12], now it is one of the most refinement on flow event structures and other causality
importance field of computer science. The pap&8][ based event-oriented models of concurrency.
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In this paper, we use polynomial flow event structuresdynamical systems and process them directly, which cost
which is based on the flow event structure as the modela large amount of computations and had high
and refine the variables of the polynomials. Why usecomplexities.
polynomials? Firstly, polynomials enhance the ability of Symbolic computation is a useful formal meth@j,
description. Secondly, polynomials are among thewhich is chosen to standardize the system before
simplest functions. Thirdly, computer can directly processing it. After standardizing, the forms of
evaluate polynomials, so polynomials have bothpolynomial equations are normalized, and several
theoretical and practical relevance. Fourthly, refinementproperties of the system will be easier to be verified.
variables are very easy to do. Fifthly the events from the In this paper, in order to implement the above goals,
abstract to the concrete, we can more clear understandintpe definition of polynomial flow event structures based
of the event itself. on flow event structures is achieved for hybrid system.

The variables refinement operation should be safe. IfFirstly refine the variables for the events. Then observe
the behaviors of two systems before refinement are samehe equivalent relationship of two systems is determined
then after the variables refinement they are should be théy using their common zeros. With bisimulation
same too. So an important question being considered isemantic, if they can’t preserve the equivalence, after
the following: which equivalence notions for concurrent ignoring unimportant conditions, we propose a notion of
systems are preserved under refinement? Taking twapproximate bisimulation. The error caused by
system representation®, Q, which are equivalent for approximation is calculated and controlled by symbolic
some equivalence notiorr , noteP ~ Q. f is a refined and numerical calculation.
function, we would expect th&tP) ~ f(Q), for any
refinement and many other approaches for moving to a
lower of abstraction, our expectation is based on the ide polynomial flow event structures
that in the original system representations and it is not
know how the events will be implemented. However, it is In this section, we introduce polynomial flow event
decided that different occurrences of the events will bestructure and operators for variable refinement and
implemented in the same way if they have the sameapproximate equivalence.
polynomial zero, so that any different between and that Polynomial flow event structure describes a hybrid
could arise after refinement is already visible in the system as a set of events modeling actions occurrences,
abstract representations, namely through the use afogether with three relations: the flow relation represents
different events names for corresponding events but haveossible immediate causes of events; the conflict relation
the same polynomial zero. expresses which events mutually exclude each other; the

After refinement then we should research preservatiorindependent relation means events occur in any order or
guestion under the refinement. In the paper we take somsimultaneously. In this model the abstract events are
equivalence notions, just like equivalence, bisimulationreplaced by polynomial equations, for example, the
equivalence, and approximate bisimulation equivalenceabstract eventis replaced by = x+ 1.

Try to find which equivalence are preserved under the Definitionl. A polynomial flow event structure
refinement. Generally speaking, we use the variables zer@PFES is a tuple < V,E, <,4,||| >, where

of polynomial as standards of equivalence. But when we V is afinite set of variables,

study the practical cases; an exact equivalence is too E is a denumerable set of events, every event is
restricive and also not robust sometimes. Somerepresented by polynomial over,

equivalence are kept after refinement, but some are not. <C E x E is the flow relation, it is an irreflexive
For instance, in the process of using two microwaves torelation,

heat the same bread, there are two main parameters for # C E x E is the conflict relation, it is a symmetric
the microwaves, functional parameter and time parameterelation,

If the functional parameters of two microwaves are the ||| =CE x E—t— < is the independent relation, it is a
same, it means bread can be cooked by the twandependent relation.

microwaves, then we can set the time for cooking bread, Note that independent means events occur in any
maybe ones time parameter is 1.0s, anothers is 0.99s, drder or simultaneously, so they neither need to happen in
does not matter, we can say they are abstractly the samearallel nor to occur one before the other. Polynomial
Such example show that some unimportant and les$low event structures are depicted as follows, events are
frequently used states are able to be ignored, and thpolynomial with variable denoted by closed dots, conflict
result will not be changed much significantly. In this relationeg€ is indicated by a dotted line betweemnd¢/,
paper, this process can be called approximation. So if thélow relation is indicated by an arrow line, independent
equivalence is kept after the refinement, we can say itrelation omit by inheritance.

preserved. If not matins, we can use the approximationto For example, in one program, each assignment
keep it matins. For approximation, in recent years, manyy = I (vi, ..., Vp) is an event| is a function about variables
researchers have been studied in this fia®20]. Most V. V(I(v4,...,vn)) is the variables inv that needed to

of the methods were applied to deal with problems forevaluate fory, then we use polynomial equation to
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and & =< V,E ||| >, & =< M, E,ti,]|i >. For two
different pfes ¢&; andy, we always assume

3 Bisimulation Equivalence
In this section, we will consider some equivalence notions

for investigating them are preserved or not under the
variables refinement.

Fig. 1: The corresponding polynomial flow event structure of the 3.1 Equivalence
program.

By the definition of polynomial flow event structures, we

find it is easily to find that there exists equivalence

) between two different polynomial flow event structures

express the ever, for Ve € V(I(vy,..., vn)) ,e< e this  hased on the common zeros of their polynomials. In this
is the causality relation between the assignment left-sideyypsection, we consider that such equivalence as behavior
and right-side. Each group of conditional choice is aequivalence.

different choice. . enabling event are equivalence.
Such as the following program ( a part of the long  pefinition3. There is an equivalence between two
program ): polynomial flow event structureg§; and &, if exists
x=0; Zera(Py) = Zero(P,), notationé; =~ &, whereZera(R)
{ is the algebraic variety for polynomial system&f, R is
if m=a; the configurations of; which is belong taC(&;) , and the
y=X+m Zeroare defined in an arbitrary field of characteristic 0 in
else if the whole paper.
zZ=X By the definition3 and the theoreml, the system’s
} equivalence is very simple from theero of the
The corresponding polynomial flow event structure of polynomial. But it demand us to analysis the system
the program is figure 1. rigorously, and propose the most precise equivalent
In the figure, relations to the structure of the systems.

evente; expressed the polynomial = g;

evente, expressed the polynomigk= 0O;

eventes expressed the polynomigk= x+m 3.2 Bisimulation Equivalence

evente, expressed the polynomialk= x.

The conflict and flow relation’s interpretation are gaseq on the equivalent relationship for polynomial flow
formalised by defining which subsets of events constituté,yent structures. we expect to look for an abstraction

possible runs of the represented system, and which Ofyhich is equivalent with the whole system, we can call it
these runs terminate successfully. These subsets ard callg gt cture equivalence. Bisimulation is the finest

conﬁgu'ra_\t'lons. ) , semantic and widely used in non-deterministic
_ Definition2. A evaluation sequence is a sequence Olgqyivalence verification for different concurrent systems
distinct eventC = {ey, e,....en} € E, satisfying: Definition4. There are two polynomial systesand
(L){er,&,....en} is conflict-free, i.e. Ve, ej - ~(efe)) g, a relation R C C(&) x C(&) is a bisimulation
(Qvi:e<e=dj<i:eg<eA(e=ejVeig) equivalent relation between the two polynomial systems
Cis called a configuration. &1 and &, where,R; € PR, € P, x,y € R, notated

Notice that any two events will be in conflict or cause ¢, ~, &, If satisfy:

each other cannot occur in the same configuration. R, Ry
Hereafter, we will useC(£) to denote the set of all the vx — X, 3y =y and Zero[Py) = Zero[F,), such

configurations of . thatx’,y’) € R

A configurationC of £ is called maximal ifiC CC' € vy R, y, X R, ¥ and ZeroP2) = Zero(Py), such
C(&) impliesC=C'. thatx,y) e R.

A configuration C of & is called successfully By the definition, we are able to find whether exist a
terminated iffvd € E : d ¢ C = Je € C with dfe. We will bisimulation or not between two polynomial systems. Two

usePFESto denoted the set of apfes &,& € PFES  polynomial systems are bisimular if there exists a caysalit
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relation for one, there exists the same causality relation f Then, based on the unique form, we can know that whether
the other, and conversely the same. So for processing thiéhere exists equivalence or not.
same causality relation based on bisimulation, large scale Let T(P) be Irreducible Characteristic Sets fBr G
system can reduced or simplified. be Groebner basis fd?, Ideal(P) be Ideal forP, GB(P)
be Reduced Groebner Basis f&x These theories of
characteristic set, Ideal and Groebner Bases can be found
i Qi i i in referance3].
3.3 Approximate Bisimulation Equivalence PropositonL.f  GB(P) — GB(Ry). then
For two given systems, the exact equivalence requires tha%ero(Pl) — Z_ero(Pz). . .
the common zeros must be identical or totally the same, hler}qof. \1\|/th _Ejhe lpolynon?e:jl set® Ct k[x_],tatr;] ideall
But sometimes it is too restrictive for some real problemsW '; 'S |C§ el IID ei %eneg\ € _E’i/mlus exist, then
and also not robust in the technology field while several V\;"rﬁ( hea_( ) = lero( )leX|s as:j).. ideal. it will b
special systems only have approximate models. So . Ith the given polynomial set and its ideal, it will be
defining the approximation sometimes for the different existed a Groebner basis G, and

: eal(P) = ldeal(G) = I. If G is irreducible, then,
systems is necessary. It may have some advantages, é&) N - -
approximation, making the two different systems are ero(P) = ZerdG). Therefore,Zero(Py) = Zera(P), if

. . 1 = G,. However if G is reducible and has a
equivalence, thus, we can select a simpler one to reducgactorizationG — G,G,, then, to consider eadB; asG,

the complex one. secondly. After behavior and structurean d continue process as the same as the above wav. there
approximate, we can get a system which is an.. - decom oé)ition of the following form Y
approximate system for given system and also mucH P 9

, : : . o ZeroP) = Uf_,1 ZerdG)),
simpler than it. Thus, approximate bisimulation is an . Vi=l o
appropriate relation for system. And for refinement We get its unique Reduced Groebner Basis with the

: - Groebner basis d&;. If GB(P) = GB(P), Then
system, if two systems behavior is the same, after Zero(Py) — ZerdPy),

refinement it is not exact equivalence, then we can use - _
approximate to make them equivalence. Zers(rggos';‘;?;bz) If T(P) = T(R), then
L ; )) = )
Definition5. There are two polynomial systegisand Proof We all known that because the multivariate

&, a relation R C C(&1) x C(&2) is an approximate s . .
bisimulation equivalent relation between two polynomial POlynomial rings are Noetherian over feild, thus, we can
be decomposed every idedl into some primary

flow event structur€, and &, whereR; € PR € B>,

' - componetQ : | = Q1 N...NQm. EachQ; is a primary.
(xY) 65’ D<e. FI:OtatEdEl ~a & Dis an error. Then, by calculating (Q)) for Q;, It is unique, so we get
Vx — X, dy =y andZeroP1) ~p ZeroP;), Such  a algebraic variety for the ideal,
thatx,y) e R V(I)=V(Q1)U...UV(Qm) = V(Ti\ 1) U...UV(Tm\ |m)
vy R, v, 3x Ry v and Zero(Py) ~p Zero(Py), Such Thus,Zero(Py) = Zera(P,), if T(Py) = T(P), wherel; is
thatX,y) € R. initial for T;.

By the definition, we can get the approximate
bisimulation relation of two system. If there exists an
approximate bisimulation relation, how to calculate the
zero of polyomials and the error are the key problems.
can find some methods in referencé&s, [L6,20], we also
give some methods in the following section.

3.4.2 Approximate methods

WeThere are some approximate methods for different
polynomial equations we can use, according to the unary
or multivariate variables, we can choice the different
methods.

. For unary, we can use the following methods:

3.4 Approximate methods Theorem2. Weierstrass approximation theorerh(xj

is a continuous function defined on real intefaab|, and

For the given polynomial flow event structure, after if D > 0 is given, therdp(x) on[a, b] such that'x € [a,b],

establishing the approximate bisimulation equivalence|f(x) — p(x)| < D.

relations, we should determine whether the error is in our  this theorem makes sure that given a error limit there

acceptance or not. exist a approximate polynomial abolitx) only needs that

it is a continuous function defined on real intefaab).
theorem3.Taylors theorem:

3.4.1 Zero Computation Let k <1 be an integer and functioh: R — R be k

times differentiable at the poiate R. thendhy, such that

We can use symbolic computation to calculate zeros, just  f(x) = f(a) + f/(a)(x — a) + f”z@ (Xx—2)2+ ..+

like Groebner basis and characteristic sets meth28&s [ k) K K . B

Before getting their zeros these methods need to representd (X — @° + h(x)(x — @)%, and limh(x) = 0. If

the polynomial equations standardize and unique firstly, f1(x)] < N on(a—r,a+r),r > 0, then|D| < N%.
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The last equation gives the error limit. they can reduce the structure and behavior for the large
Theorem4. Piecewise linear interpolation theorem:  scale original systems.
[(x) is the piecewise linear interpolation function of
f(x) € C?[a,b],
h=map<k<n-1){X+1—Xl@a=X <X <.. <X =b}, 4 Variables refinement
thenmaxpy<n_1| f(X) — 1 (X)| < FMagcxep| f”(X)|h2.
Theoremb5. The best first order approximation theorem:4.1 Refinement
Suppose f(x) € C?[a,b], f”(x) € (a,b) does not
change sign, then the best first order approximation p(XjThe refinement of variables, as formalized in refinement

satisfiesp(x) = 3[f(a) + f(x2)] + f“(’t)):;)(a) (x— <a+2’<2>) actionp1], is based on the following definition6. A
) f(b)—f(a) variable is refined by an event structure, denoted by
FOX%) =~ v = f(V). It is just close to the event which is used in
Maxa<x<p| F(X) — p(X)| = f(x2) — p(x2) Murphy and Pitt 2].

The last equation gives the error limit. Definition6. We calledf : v — pfesa refinement
For multivariate, we can use the following methods: ~ function. f(v) is a refinement ot . And f (V') require
Given two polynomial flow event structures, we are have non-empty configurations, sb(v') couldnt be
going to determine if there is an approximate bisimulationforgetful [17]. _ . _
equivalence or not for the two systems with an etBor Let fis the refinement function. Then we define the
when D < ¢, anct is given. LetM and N be two refinedpfesof ¢ to be
polynomial flow event structures. In fact if they are (&)= (Vt.Ef,<t.81.[[[t), where
equivalent the number and value of variables must be the Vi = {VUV')V e EUV’ € Ef},
same. The number of variables also must be the same Ei ={(e€)|[(e€ E)A(V = f(V))AI(VUT(V)) =
even if they are approximate equivalent. In this section,€}U{(e.€)[(e€ E)Al(V)=e}
for the approximate bisimulation equivalence, we mainly ~ For (é1,€2), (€},€)) € Eg, (e1,€2)1(€),€)) iff

use numerical calculation to compute the efdoetween Ife; = €, thenext(&)€, or ez, € € exit(f(V')) and
the two systems. The detailed algorithm are following.  €€2 # €5(€2 # €1 ande, # € in the case),
Step 1. Firstly we should order the relatienfor the Ife; # € then
variables of two systems arex y < X3 < ... < Xpg; X<y < & = e ande, = ¢, theney €],
V1< oo < Vil If & # e, and€, = €] theneyte] ande; € {I(f(V')U

Step 2. Then choose one method about symbolic/)Uexit(l(vuf(V')))}, /
computation to computer the equivalent relationship Ifez_zelande/’ﬁéefl theneyt€) andé, € {I(f(V')U
betweerM andN. V) Uexit(l(vu f(V'))) 1,

If GB(M) = GB(N), then,M andN are equivalent, end. o lfe, # e, & # ¢ then efe and

Else, go to Step 3. o E{I(];{'(\(/,)(V/\)”U V)'t(ILé eXf“é\'/(/‘;))L; f(v))}  and
Step 3. According to the prem prograr@4]to get = uVv)uexitlvu ! .

pren(xz ’ prem prograrddlo o For (e, €2), (€),6) € Ef, (e1,€2) < (€],6) iff &1 < €]
YL,Y), -, PrEMXn, Yo, Y); Then, O'(@1=@&Vez<&)

1% = Q11 + Ru, o, 1™ = Qnyn + Rn;
where, i = Ic(yi,y); li = dedx;,y); m = dedyi,y);
g = max(lj —m +1,0); 4.2 Example

Thusjx ﬂr'y" |ET'" There is a program and the program have the calling

Then, to compute function, the bellowing is the program and the

mi“(Z?:l(HXi—,ﬁ%HJFHYi—pQriH))Zmin(Zinzl( gorreszponding polynomial flow event structures in
_ _ 4 ' igure2.

II%II—FII%II)) <E&. The program code(partially):

The arrange of some variable can be achieved, Then, XY,
M andN, N andN will be approximate equivalent.

Thus, yi tuns into @, N turns into N. and ify>0
us, yi turns into Ty urns into an f— &ty
N:{%,...,%’},end. else
1 . .
Else,M andN will be not approximate equivalent, end. g:fx

In the three steps, we will find tha}% are an

approximate greatest common factor for two polynomial In the figure2, the events are corresponding to the
system M and N. By analysis, equivalence and polynomial of the program.
approximate equivalence methods are useful methods, e; expressed the variablasy;
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Fig. 2: The corresponding polynomial flow event structures of Fig. 4: The polynomial flow event structuré&) .
the program.

5 Properties
e expressed the polynomigl= €*;

dth | Bl &4 v Proposition3.
€ expressed the po ynom!a Y (DIf € € Efjow, and f is a refinement function, then
&4 expressed the polynomigl= x, f (&) is a polynomial flow event structure.
we called the polynomial flow event structuregis (2)If &€ € Efjow , and f , f’ are refinement functions
Then if the program called the subfunctign with f(v) =« f(V)),xe {eb,a},veV , thenf (&) ~x (&)’
The subfunction of the program code: ' i
f() @)If &, F € Efiow, § = F x€ {eb,a}, andf is a
refinement function, theri(§) ~x f(F) is a polynomial

{ flow event structure.
if x>0

y=¢€"
else

y=elX:
}

Then we can get the variable refinement’s polynomial
flow event structuref(y) in figure3, ey expressed the

empty event.
e I
Fig. 5: The polynomial flow event structufe .

Fig. 3: The polynomial flow event structures bfy) . Example: The figure5 is the polynomial flow event
structure of , €] expressed the variabley; €, expressed

the polynomial p = 1+ x + x2/(2!) + +x°/(9!); &

let & be the pfes in figure2. And the variable expressed the polynomial
refinement’s polynomial flow event structuréy) in r=1+x+x2/2)+ +x°/(9") +y; €, expressed the
figure3. Then the fesof f (&) is figure4. polynomial g = x. We assume the errd is 10°°, then
@© 2014 NSP
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refinement of . The causality relation is thatdtause®

in C, then some successful termination event of
- [(V(e)U f(v)) causes the start-eventlg¥ (¢ ) U f(V)) .
N So the behavior of (§)can be get from the behavior

: of & calling for the refinement variabbe of the behavior

of f(v) .

Example:we consider agaif in figure6 of example.
Ct = ey, ep, &sis a configuration of (&).
m(Cr) = {ey, €3}

(Cs,€3) = {€p, €5}
R is a configuration of and @ is a configuration
f(v).

6 Conclusion

In this paper, we proposed the new concept of polynomial

Fig. 6: The polynomial flow event structuf¢r ). flow event structure which is suitable for parallel
composition, refinement and many other operators of

CCS-like languages. And then we translated the program

code toPFES Considered an operator for refinement of

we can see thktis approximate bisimulation equivalent variables on polynomial flow event structure. For the
with &. Notate tha€ ~, F , after refinemeny we can get  variables refinement we demonstrated that they are safe
the f(F) in figure6 . Now we can see tHed) ~, f(F) . and equivalence (equivalence, bisimulation equivalence

Cs is a configuration of f(&), let O approximate b_isimulation _equivalence_)_ und_er
m(Cs) = {el(e€) € E(Cf)}, so e € m(E(Cy)), let refmement. The equwglence _((_aquwa!ence, p|S|muIat|qn
™(Ct,e) = {€|(e,) € E(Ct)}, in fact m(Cy) is the equivalence or approximate bisimulation equivalence) is
projection ofCy on &, and 7&(Cs, ) is the projection of based on the common forms of their zeros. With using
Ct on f(£). From the following lemma we can see that symbolic method and numerical calculation, the value of

the projection ofC; on & is a configuration of , and the ~ Z€ro or error is can calculate.

projection ofC; on f(&) is a configuration of (£). _ But how to improve the efficiency of our approach are
Lemmadl. still a very big challenge as well as our main future work.
(1) 1(Cy) € C(8); In addition, the system is limited which can be expressed

by polynomial flow event structure, we also demand to
establish more appropriate systems to describe different
systems in the future just like different system in the

(2) ®(Ct,e) € C(£(<));
(3)If e isn't maximal in E(m(Cs)), (Ct,e) can
successfully terminates.

future.
Cis a configuration o€, Cq is a configuration of (v), ut
f(v) satisfying the following condition: if everg is not
maximal inC wheree € E(C) andv € V(e), V(e) is the Acknowledgement

variables for valuation evené , Co can successfully
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replacing each eveatn configuration with (V(e) U f(v)) o 2012GXNSFGA060003, the Science and Technology
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