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Abstract: In this article, we address the issues which are related to the cost-based XML query optimization for XPath. Specially,
we focus on the issue of how to determine the execution order for a givenXPath expression according to the cost models. The main
impact factor that dominates the execution order is the size of the intermediate results during the evaluation of queries. The hierarchy
encoding scheme and the value-encoding histogram are introduced to support the size estimation of the path expressions. Two cost
models are proposed to describe the costs of different types of join operations in the path expressions. A heuristic-based dynamic
programming approach is proposed to determine the optimal execution tree. The primary experimental results demonstrate the validity
of our approaches.
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1 Introduction

XML (Extensible Markup Language) [1] has become the
de facto standard for information or data representation
and exchange on the Internet. More and more data is
expressed in XML, which is stored in XML-enabled
databases, e.g. Oracle, DB2, SQL Server, or in native
XML databases [2]. The optimization of XML queries, a
key issue that every XML DBMS is facing, is an extreme
challenge in the context of XML databases. The main
reason is that the semi-structure property of XML data
allowing an irregular or changing organization makes the
data management be of high complexity. This nature of
semi-structure requires more efficient XML query
processing and optimization.

1.1 Motivation

The irregularity of the XML data makes the statistical
data collection as a big challenge for the XML
optimization. In XML documents, the node with the same
tag in different parts of the same document may have a
different meaning or semantics. For example, considering
the sample XML document (named Xmark.xml) tree in
Fig.1 (conforming to the XMark [11]), the nodenamecan
be of different meanings under the nodepersonor under

the nodeitem. In addition, nodes with the same names
may have different numbers of children, e.g. the node
peoplecan have one or moreperson.The XML schemes,
including DTD and XML schema, determine what kinds
of sub-elements or attributes can happen under certain
elements and their cardinalities of sub-elements and so
on.

The order of XML data is another significant
characteristic difference from the relational data, which
limits the flexibility of the transformation rules. To cope
with the order characteristics, path expressions become
the core part of XML query languages, such as XPath and
XQuery. The evaluation of the path expressions can be
carried out from the left to the right or from the right to
the left or in a hybrid way of them. For example,
considering the path expression“/site/people/person/name”
in Fig.1, to get the query results we can travel from the
node site to the node name or from the node name to the
node site, or we can evaluate the path using the order of
“/site/(people/person)/name”. By applying this kind of
associative laws, we can get many different alternative
execution (evaluation) plans. We believe that it can reduce
the total evaluation cost by appropriately applying the
associative laws to regulate the execution order of the
path expressions.

To more accurately estimate the cost of queries, more
statistical information is needed. Because of the
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Fig. 1: Xmark.xml

complexity of the XML data model, the traditional cost
estimation methods are not practical, thus we should find
out new methods to deal with the cost estimation of XML
queries in which the path expression selectivity is the core
issue. Selectivity analysis on complex path expressions is
to estimate the size of the query results. Minimizing the
temporary results can reduce the overall cost of the query.
If the different sizes of different objects are ignored (e.g.
using objects’ IDs for join operation), the estimation of
the cost can be reduced to measure the operation times of
the joining (or matching) the ascendant elements with the
descendant elements. Correspondingly, finding the
optimal execution plan is to find which execution plan has
the minimal join times. Inspired by the other previous
work, we use the dynamic programming method to select
the best execution plan for XML queries.

1.2 Scope of the Article

In this article, we address the issues related to the cost-
based XML query optimization.

Cost-based XML query optimization is to utilize the
cost model and statistics to evaluate the costs of different
execution plans, and to select the least costly one to
execute. The main impact factor that dominates the join
order is the size of the intermediate results during the
evaluation of queries. To this end, we adopted a hierarchy
encoding scheme along with a method of value-encoding
histogram to estimate the size of the results of the
expressions including the predicates, e.g., A[B>2],
furthermore, the design of the structural join order
selection algorithm, which is the kernel of an XML query
optimizer , is another focus of this article.

The techniques used in most existing native system
(such as Lore, TIMBER, Natix and ToX) for evaluating
path expressions can roughly be classified into two
categories [26]: the structural joins and the holistic
algorithms. Our approach belongs to the structural joins
family.

For the experimental study of our approaches, we
adopted the in-memory version of the XSQS [12] as the
host of our test-bed, the XMark [11] as the test database,

and conducted a series of experiments. The major
contributions of our work are summarized below:

•Based on the hierarchy encoding scheme and its
corresponding hierarchy encoding counting table, we
introduce a value-encoding histogram to support the
size estimation of the path expressions including the
predicates.
•Different cost models are proposed to describe the
execution costs of the path expressions according to
the join types.
•We apply a dynamic programming based on the
heuristic rules to determine the join order with the
above techniques and the cost models. We
demonstrate the validity of our approach via the
experimental evaluation.

1.3 Organization of the Article

The remainder of this article is organized as follows.
Section 2 surveys the related work in this area. Section 3
presents preliminaries about the hierarchy encoding
scheme. Section 4 describes the value-encoding
histogram. Section 5 discusses the cost models and the
heuristic-based dynamic programming method for cost
estimation. Section 6 provides the performance study of
query optimization and Section 7 concludes the article.

2 RELATED WORK

XML query optimization which plays an important role in
XML database systems [2] can be implemented at the
logical level or at the physical level, or at both levels. At
the logical level, the XML query optimization is to utilize
the XML Schema, and to apply the rules of normalization
or simplification to the inner query expressions so as to
simplify the expressions that can improve the query
performance. Lots of researches focusing on logical
optimization have been done [3,4,5,6,7,9,10]. Our work
focuses on the cost-based query optimization at the
physical level and deals with how to determine the join
order in query trees according to the cost estimation.

Although numerous articles on XML query
processing have been published, only a few have
addressed the cost-based optimization of XML queries.
Most of those adapt or extend the relational optimization
techniques. The major native XML DBMSs employ the
cost-based optimization such as Lore, Niagara, TIMBER,
Natix and ToX. Some XML-enable DBMSs, such as DB2
XML, use the cost-based optimization approach. Lore
[15] is the first DBMS with the cost-based optimization
originally designed for the semi-structured data and later
migrated to the XML-based data model. The Lore
optimizer is cost-based and does not perform logical-level
optimization. In [15], the cost model does not take into
account the data clustering but does make an assumption

c© 2014 NSP

Natural Sciences Publishing Cor.



Appl. Math. Inf. Sci.8, No. 4, 1935-1948 (2014) /www.naturalspublishing.com/Journals.asp 1937

that each I/O operation gets only one object. So
estimating the cost I/O can be converted to estimate the
size of the intermediate query results. Instead of
estimating the size of the intermediate results, we directly
take the number of executing join operations as the main
factor of the cost models. Another aspect of modeling
cost for XML query optimization is described in [8]
which proposes a CPU cost model with a statistical
learning technique to predict the overall cost. The
occurring of the phenomenon of the high fraction of CPU
cost in XML query processing is also the main reason
why in this article we focus our work on optimizing the
execution order of the path expressions by evaluating the
costs of the join operations. In [26], DB2XML adapts the
holistic algorithms approach to support XML query
optimization in a relational-XML hybid way.

In [17], Wu et al proposes five algorithms based on
dynamic programming for the structural join order
optimization for XML tree pattern matching. This work
models the costs of physical operations to optimize the
XML queries. What differs from [17] is that we utilize
much more order-related constraints (e.g., the associated
law is proposed to constrain the set of the impossible join
orders, thus narrowing down the search space for the
enumeration algorithm) for optimization and we use
different cost models for the join operations, different
dynamic programming method for the join order selection
and we take advantage of the histogram and the hierarchy
encoding technique to estimate the size of XML query
results. The idea of using the dynamic programming
method for the query optimization is not new [28] and
some novel dynamic programming methods [29,30] are
proposed in the relational context. We adapt a new
heuristic?Cbased dynamic programming method in the
XML context, which is different from these researches.

The main factor dominating the order of the
operations is the size of the intermediate query results.
The selectivity analysis on complex path expressions is a
technique for estimating the size of the result set. The
selectivity estimation of Lore is based on the DataGuide
path index together with stored statistics to provide the
structure knowledge about the XML data for
optimization. This idea is later extended by pruned
count-suffix tree (PST) based on correlated subpath trees
in [19], and Markov model based on XSketch in [18]. In
[13], a method based on position histogram is proposed to
collect the distribution information about the
ancestor-descendant. This method does not consider the
selectivity estimation of the path with a predicate
condition. In [14], a PL histogram of one dimension is
built and used to evaluate the selectivity. This method
only considers the node with predicates and skips the
other nodes when evaluating the selectivity. Other work
on XML cardinality estimation includes StatiX in [2],
Bloom histograms in [20] and CXHist in [21]. These
cardinality estimation techniques differ in whether they
are online or offline algorithms, whether they handle
subtree queries or linear path queries only, whether they

handle leaf values, or whether the leaf values are assumed
to be strings or numbers. Our approach explores many
other aspects of applying the structure knowledge of
XML data by the hierarchy encoding scheme and the
related statistics management method for query
optimization elaborated in this article. This is where our
approach is distinguished from these previous researches.

Finally, with regard to the encoding schema for XML
data, Dewey encoding [22] and its variations (e.g. [23],
[24]) are worth mentioning. In [22], each node label is a
combination of its parent label and an integer number
indicating its local order among its siblings. Ordpaths
[24] modifies the original Deway encoding method so that
it becomes insert-friendly. Some other typical work on
labeling schema includes Extended Dewey Encoding [23]
which exploits some schema information for labeling
XML tree. Our research is different from the previous
work in that we adopt the suffix encoding of the binary
sequence called the hierarchy encoding scheme for
labeling the XML tree. This method is easy to judge the
AD and the PC relationship between nodes.

To the best of our knowledge, our work uses a new
hierarchy encoding scheme with the corresponding
value-encoding histogram, new cost models for the join
operations and a new heuristic-based dynamic
programming method to achieve the cost-based XML
query optimization.

3 PRELIMINARIES

Hierarchy encoding scheme is a kind of width-first
encoding scheme whose definition is as follows (more
details can be seen in [16]):

•If Ni,level is the root node (level=0) of an XML
document tree, its hierarchy encoding ID is 0, i.e ,
Hid(Ni,level)=Hid(Root)=0.
•If Ni ,level is an element on level one(level=1) in an
XML document tree, its hierarchy encoding ID is a
binary sequence according to its order among all its
siblings. That is, ifNi,level is the ith (starting from
zero) distinct element on level one in the XML
document tree, then(Ni,level)

′s hierarchy encoding ID
is a binary sequenceSi,1 whoseith bit ,from the right
side to the left side, of the binary sequence is set one,
while all other bits are set zeros. So we get Hid
(Ni,level) =Hid (Ni,1) = Si,1.
•If Ni,level is an element with the level greater than
one(level>1) in an XML document tree, its hierarchy
encoding ID is a binary sequence made up of two
parts, Si,level and Sj,level−1 (i.e., Hid(Ni,level)=
Si,level ·Sj,level−1) , whereSj,level−1 is the encoding ID
of (Ni,level)

′s parent andSi,level is the binary sequence
representation for i which is theith child among all the
siblings in the same level.

As an example, a part of the hierarchy encoding
scheme for Xmark.xml is shown in Fig.2.
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Fig. 2: Hierarchy encoding for the sample document

In order to judge whether two elements are of AD or
PC relationship, we extend the encoding information to a
five-ary structure. The new extension can also be applied
to estimating the selectivity of the path expressions in
XML queries. The five-ary tuple is depicted as<Hid,
nodeCount, childNameNum, textType, isElement>.
Wherein, the Hid denotes the hierarchy encoding ID. The
nodeCount denotes the number of nodes with the same
Hid. The childNameNum denotes the number of distinct
tag names among all its children. The textType denotes
the type of text which can be further classified into three
subtypes, the numeric text, the string text, and the element
text (i.e., element without subelements or text content).
The implementation of our approach is shown in Fig.3,
integer 0 stands for the NULL, integer 1 stands for the
type of numeric text, integer 2 stands for the type of sting
text, and integer 3 stands for the element text. The
isElement denotes a node type which is either an element
or an attribute.

We apply the hash table technique to organize these
records called Encoding Counting Table (ECT) as shown
in Fig.3 (because of the space limit of the article, we just
keep a part of the whole data set here).

Through the hierarchy encoding scheme, it is
convenient to judge the relationship between the XML
nodes. Given two nodesX, Y with their corresponding tuples
of the forms of<Hid, nodeCount, childNameNum, textType,
isElement>, we can judge whetherX and Y are in AD
relationship by formula (1). For clarity, let Hid(X) denote
X.Hid, childNameNum(X) denoteX.childNameNume.

Hid(Y)&(2encodinglength(Hid(X))−1) = Hid(X) (1)

If the result of (1) is true, thenX is the ancestor ofY. For
example, a node people withH4= 001000, a node person with
H15= 1001000.H15&(26− 1) = 001000= H4, soH4 is the

Fig. 3: The encoding counting table of hash table
organization for the document shown in Fig.2

ancestor ofH15. If we further like to judge whether the nodes,X
andY ,are in PC relationship, we can figure it out by formula (2)

length(Child(X)) = length(Hid(X))

+Ceiling(log2(childNameNum(X)+1))
(2)

Because the equationlength(H4)+Ceiling(log2(1+1)) =
length(H15), is satisfied, the element person is the child of the
element people, that is, they are in PC relationship.

4 VALUE-ENCODING HISTOGRAM

Through the ECT, we can estimate the result size of expression
of A/B or A//B, but not the (predicate) filter operations. The
filter operations, such as nodeName1[nodeName2θvalue], are
very common in XPath queries. To estimate the result size of the
filter operations, an efficient way is to build histograms. In our
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method, a value-encoding histogram is to capture the
distribution of the numeric values of the elements or the
attributes.

The constructed Value-Encoding histogram can be
described by several matrixes. Given a document with N distinct
numeric elements, a Primary Matrix A is a 2×N matrix in which
each column corresponds to a hierarchy encoding ID, the first
row stores the minimal values for all the numeric elements and
the second row stores the maximal value intervals of each
numeric element. The Primary Matrix A is formatted as the
following.

A=

[

minV1 minV2 minV3 · · · minVn

interval1 interval2 interval3 · · · intervaln

]

Assuming that the buckets’ number of the histogram is M,
the Secondary Matrix B is a (M+1)×2 matrix with the first
column set ones and the second column is a vector of 0 to M.
Through the Primary Matrix A and the Secondary Matrix B, a
Value Distribution Matrix C can be computed by B multiplying
A (or BA for simplicity). These two matrixes are as follows.

B=



















1 0

1 1

1 2
...
...

1 m
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...
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Cm1 Cm2 · · · Cmn















Based on matrix A, B and C, the Count Distribution Matrix
D (initially ,a zero matrix) for an XML document can be
constructed by applying the rule “when C(i, j)≤ value< C(i+1,
j) is held, D is to be updated with D(i, j) = D(i, j) + value”. The
value in this rule means the numeric value of an element in the
XML document. Each column in D corresponds to one
hierarchy encoding ID. D can be formally expressed as the
below.

D =















D11 D12 · · · D1n

D21 D22 · · · D2n
...

...
...

...

Dm1 Dm2 · · · Dmn















=
[

d1 d2 · · · dn

]

For evaluating the result size f of the predicate
[nodeNameθvalue], If C(i, j) ≤ value< C(i+1, j) is held, an
1×M matrix e should be constructed according to the type ofθ .

The corresponding rules are shown in Table 1. The result size f
is obtained by e *d j , i.e.,σ( f ) = e∗d j .

For example, the matrixes, for the factor =0.535 of the
XMark Database(see Section 6.1) and M =10, are as follows.

A=

[

1 3 1 1 1 0.24 1.5

0.33 4 0.22 1 0.33 705.85 15

]
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]

=

















































1 3 1 1 1 0.24 1.5

1.33 7 1.22 2 1.33 706.09 16.5

1.66 11 1.44 3 1.66 1411.94 31.5

1.99 15 1.66 4 1.99 2117.79 46.5

2.32 19 1.88 5 2.32 2823.64 61.5

2.65 23 2.1 6 2.65 3529.49 76.5

2.98 27 2.32 7 2.98 4235.34 91.5

3.31 31 2.54 8 3.31 4941.19 106.5

3.64 35 2.76 9 3.64 5674.04 121.5

3.97 39 2.98 10 3.97 6352.89 136.5

4.3 43 3.2 11 4.3 7058.74 151.5

















































For a given predicate [hapiness<6] denoted as f and the
hierarchy encoding ID of this happiness is H148 which
corresponds to the 4th column in the D matrix. According to the
rule in Table 1, theσ( f ) can be computed as the following.

σ( f ) = ed4 =
[

0 0 0 0 1 1 1 1 1 1
]
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Table 1: Matrix e constructing rules for differentθ

Operatorθ Matrix e

= The ith coloum in e is set one, others are set zeros.

< The colums in e in front of i-1 are set ones, others are set zeros.

≤ The colums in e in front of i are set ones, others are set zeros.

> The colums in e in front of i are set zeros, others are set ones.

≥ The colums in e in front of i-1 are set zeros, others are set ones.

6= The ith coloum in e is set zero, others are set ones.

For string predicates (e.g. author=‘Smith’), the selectivity
estimation is supported by the EMO algorithm or the EKVI
algorithm which is the extended versions of the MO and the
EKVI respectively. Both of these new algorithms are based on
the RPST. The statistics information of strings is stored in the
RPST which is a kind of modified PST. More details are given
in [27].

5 COST-BASED QUERY OPTIMIZATION

An XML document tree can be modeled as a rooted,
node-labeled treeT = (VT ,ET). VT denotes the set of nodes of
the tree, andET the set of edges of the tree. An XPath query
(pattern) tree is a rooted, node-labeled treeXQ = (VQ,EQ).
Nodes of XQ are the Boolean compositions of the predicates.
Edges of XQ are also labelled (PC or AD) to specify (the
immediate or arbitrary) the relationship between nodes.

A match of the XQ in T is a total mapping M:{q : q∈XQ}→
{n : n∈ T} such that:

•For each nodeq ∈ XQ, the predicate node label of q is
satisfied by M(q) in T ;
•For each edge(p,q) ∈ XQ,M(p) is the parent or ancestor of
M(q) in T.

Given an XQ, there are many alternative query (execution)
plans that should be considered. The query optimizer can
evaluate these plans to choose the optimal one (or at least
sub-optimal one) based on their estimated costs.

An XPath evaluation plan is modeled as a rooted, labeled tree
XEP=(VP,EP), whose nodes are cataloged into a set of Operand
Node (e.g., element, attribute or value node) or a set of Operator
Node(e.g., “/”, “//”, “[ ]” (or Filter), “ >” ,“=” ,and so on.), thus
VP =Voperand

⋃

Voperator in this article.

5.1 Cost Model

In general, a path expression P can be expressed as
ωN1[P1]ωN2[P2]ω . . .ωNm[Pm], wherein,ω is an absolute path
“/” or a relative path “//”, Nk (k=1. . .m) can be an element
operand or an * , andPk is a set of predicates which can include
path expressions. For example, a path expression can be
/A//*/B[C/D]/ E[@F]/G. It is obvious that different join orders
can produce different costs. It is worth mentioning that we only
consider the abbreviated syntax of XPath, the transformation

from the Axis XPath expression to the abbreviated one is out of
this scope.

In this article, eight join operations and eight predicate filter
operations summarized in Table 2 are considered. In order to
accurately estimate the size of the result set, the selectivity of
the predicates should be taken into account. How to calculate
the selectivity is shown in Table 2. It should be mentioned that
in this article the selectivity of a path expression without
predicates can be accurately obtained through the ECT. Together
with the ECT, the selectivity of a path expression can be
obtained by applying the calculation method of the selectivity of
the predicates.

Some explanations about the notations in Table 2 are
described briefly. EN, EN1 and EN2 are the tag names, Path,
LeftPath and RightPath denote the path expressions, PP denotes
a path with predicates. Count is a function for computing the
size of the results of a path expression through hierarchy
encoding information, selec denotes the selectivity, such as
Path.selec for the selectivity of the Path.Path(i).level denotes the
level of the ith element in the result set of the path expression
Path.θ denotes one operator of =,< , > . EN2cv (see No.10 in
Table 2) denotes the result set satisfying that EN2 and EN1 are
of PC relationship, and at the same time that the EN2θValue is
held when EN1[EN2θValue] is being evaluated. For example,
given a query “/site/openauctions/openauction[@id =
‘openauction5’][bidder//date]/annotation”, the sub-path
openauction[@id = ‘openauction5’] conforms to the type of
EN1[EN2θValue](see No.10 in Table 2), the[bidder//date]
conforms to the type of EN1//EN2 (see No.7 in Table 2), and the
operation that joins the [bidder//date] and the
openauction[@id = ‘openauction5’] conforms to the type of
PP[/Path] (see No.14 in Table 2),etc.

The operations in Table 2 are based on five atomic
operations which are called the Element-Path Parent-Child
Matching primitive(short for EPPC), the Path-Path Parent-Child
Matching primitive(short for PPPC),the Element-Path
Ancestor-Descendent Matching primitive (short for EPAD),the
Path-Path Ancestor-Descendent Matching primitive(short for
PPAD) and the Element-Or-Attribute Fetching primitive(short
for EOA). The unit costs of these atomic operations are denoted
as F1, F2, F3, F4 and F5 respectively in Table 2.

The join operations are divided into the associative joins
and the commutative joins in this article. The associative joins
such as A/B/C can be executed in an associative way, that is, the
execution plan of A/B/C can be (A/B)/C or A/(B/C); while the
commutative joins such as A[B][C] (both [B] and [C] are not
position predicates, or else the A[B][C] is not commutative one)
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Table 2: Estimation Formulae for JoinCost

No. Join Type Cost Formula Estimation Formula for Selectivity

1 EN/Path F1∗Count(Path)∗Path.selec Path.selec

2 LeftPath/RightPath F2 ∗ Count(Le f tPath) ∗ Count(RightPath) ∗
Le f tPath.selec∗RightPath.selec

Le f tPath.selec∗RightPath.selec

3 EN//Path F3∗Path.selec∗∑n
i=1Path(i).level Path.selec

4 LeftPath//RightPath F4 ∗ Le f tPath.selec ∗ RightPath.selec ∗
∑n

i=1(RightPath(i).level)−Le f tPath(i).level
Le f tPath.selec∗RightPath.selec

5 EN1/EN2 F5 ∗ totalNodes + F1 ∗ Count(EN2) ∗
Path.selec

1

6 Path / EN F5 ∗ totalNodes + F2 ∗ Count(Path) ∗
Count(EN)∗Path.selec

Path.selec

7 EN1// EN2 F5∗ totalNodes+F3∗∑n
i=1EN2(i).level 1

8 Path // EN F5 ∗ tatalNodes + F4 ∗ Path.selec ∗
∑n

i=1(EN(i).level−Path(i).level)
Path.selec

9 EN1[EN2] F5∗ totalNodes+F1∗Count(EN2C) Count(EN2C)/Count(EN1)

10 EN1[EN2θ Value] F5 ∗ 2 ∗ totalNodes+ F2 ∗ Count(EN1) ∗
Count(EN2CV)

Count(EN2CV)/Count(EN1)

11 PP[EN] F5 ∗ totalNodes + F2 ∗ Count(PP) ∗
Count(EN)∗PP.selec

Count(EN)/Count(PP)

12 PP[ENθ Value] F5 ∗ totalNodes + F2 ∗ Count(PP) ∗
Count(ENCV)∗PP.selec

Count(ENCV)/Count(PP)

13 EN[/Path] F5 ∗ totalNodes + F1 ∗ Count(Path) ∗
Path.selec

Count(Path)/Count(EN)

14 PP[/Path] F5 ∗ totalNodes + F1 ∗ Count(Path) ∗
Path.selec

Count(Path)/Count(PP)

15 EN[//Path] F5 ∗ totalNodes+ F3 ∗ ∑n
i=1Path(i).level ∗

Path.selec
Count(Path)/Count(EN)

16 PP[//Path] F5 ∗ totalNodes+ F3 ∗ ∑n
i=1Path(i).level ∗

Path.selec
Count(Path)/Count(PP)

cannot be executed in an associative way but in a commutative
way, that is, the execution plan of A[B][C] can be of A[C][B]
but not of A([B][C]).In this article, the expression with only the
associative join(s) is called the association-enabled expression
(AE), the expression with only the commutative join(s) is called
the commutation-enabled expression (CE), and the expression
with associative joins and commutative joins is called the hybrid
expression (HE). The cost of HE comprise those of AE and CE.

The cost model of evaluating AE type P with N (location)
steps is defined as formula (3)

Cost(i, j) =











0 i=j
Cost(i,split)+Cost(split+1, j)

+ joinCost((i,split),(split+1, j))
(i+1<j<N)

(3)

The cost model of evaluating CE type P with N (location)
steps is defined as formula (4).

Cost(i, j) =











joinCost(i, j) i+1=j
Cost(i, j−1)

+ joinCost((i, j−1), j)
(i+1<j≤N)

(4)

The joinCost in formula (3) and (4) is the cost function for
computing the join operations shown in Table 2.

5.2 Dynamic Programming for Optimizing the
Execution Plan

5.2.1 Framework for dynamic programming method

The procedure of using the Dynamic Programming is made up
of four main steps: initializing, cost estimating for alternative
execution plans, recording the costs and split points in DP
Information Record(short for DPIR), and constructing the
optimal execution plan. The task of initialization that focuses
mainly on building the DPIR is completed by Algorithm 1.
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Algorithm 1: InitializingDPIR
Input: path /*the path is a XEQ tree*/
Output: ArrayList< S path[ ][ ] > S paths /*of the format of
DPIR*/
Procedure:
{ /* Parsing the XPath expression path and storing the operands
and operators into
S operand[] and Soperator[].S operand[], Soperator[],
S path[][] are arrays*/
S operand← path.Voperands;
S operator←Path.Voperators; /
do{
if(i==j) S path[i][j] ←(0,i);
else{
S path[i][j] ←(0, pathsplit(Soperand [i],
S operand [j]));
}
} while((06 i 6 j 6 S operand.size())/*end of initializing the
DPIR*/
S operands←S operand[];
S operators←S operator[];
S paths←S path[][];
}

The task of the pathsplit(S operand [i],Soperand [j]) is to
determine the split point for a path Soperand starting from
location i to location j. For a path expression with commutative
join , such as A[B][C]/D ( i=0 and j=3), there is no split point
for A[B][C] in our approach because it makes no sense for
A[B]([C]/D), in other words, A[B][C] should be taken as a
whole part first although the order of [B] and [C] can be
exchanged.

Taking “/site // openauction[initial>‘100’][//bidder] //
description[//text/bold]/*/listitem[*/listitem//bold]” (i.e., the
query 7 in Table 6 ) as an example, the initial and final states of
the DPIRs are shown as Table 3 and Table 4 respectively. Each
cell of the tables is a kind of the triple of<splitting point,
minCost, resultSet> (each real result of the resultSet is just
denoted as * in these tables for simplicity). In these tables, the
values of the splitting point are integers from 0 to 8. The integer
0 indicates that the splitting position is just between the
expression “site” and “openauction”, the integer 1 indicates
that the splitting position is between the “openauction” and
“initial>100” , etc. Corresponding to the final state of DPIR, the
execution order is the form of ((/site) // ((openauction
[initial>‘100’][//bidder]) // (description[//text/bold])))/((*
)/(listitem[*/listitem//bold])).

By applying the associative law and/or the commutative
law, a path expression P can have alternative execution plans
with different smaller pieces of path expressions in different
orders. One way of evaluating the P can be realized by step
joins. The main procedure of evaluating the cost of P is the
EvalCost shown in Algorithms 2.

Algorithm 2: EvalCost
Input: path /*path expression*/
Output: minimal cost of path
Procudure:
{
/*calculating the cost according to the type of the input path
MAX VALUE is a predefined big number*/
if (Path.cost == MAXVALUE)
{

Table 3: Initialization State of DPIR

site
open

auction

initial

>100

//

bidder

descrip

tion

//text

/bold
* listitem

*

/listitem

//bold

site 0,max,* 0,max,* 0,max,* 0,max,* 0,max,* 0,max,* 0,max,* 0,max,* 0,max,*

open

auction
1,max,* 1,max,* 1,max,* 1,max,* 1,max,* 1,max,* 1,max,* 1,max,*

initial

>100
2,max,* 2,max,* 2,max,* 2,max,* 2,max,* 2,max,* 2,max,*

//bidder 3,max,* 3,max,* 3,max,* 3,max,* 3,max,* 3,max,*

descrip

tion
4,max,* 4,max,* 4,max,* 4,max,* 4,max,*

//text

/bold
5,max,* 5,max,* 5,max,* 5,max,*

* 6,max,* 6,max,* 6,max,*

listitem 7,max,* 7,max,*

*

/listitem

//bold

8,max,*
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Table 4: Final State of DPIR

site
open

auction

initial

>100

//

bidder

descrip

tion

//text

/bold
* listitem

*

/listitem

//bold

site 0,0.00,* 0,max,* 0,max,* 0,3.85,* 0,max,* 0,8.15,* 0,30.92,* 0,max,* 5,20.46,*

open

auction
1,max,* 1,max,* 2,3.83,* 3,max,* 3,8.14,* 5,30.90,* 3,max,* 5,20.45,*

initial

>100
2,max,* 2,max,* 2,max,* 2,max,* 2,max,* 2,max,* 2,max,*

//

bidder
3,max,* 3,max,* 3,max,* 3,max,* 3,max,* 3,max,*

descrip

tion
4,max,* 4,4.31,* 5,172.71,* 5,max,* 5,20.63,*

//text

/bold
5,max,* 5,max,* 5,max,* 5,max,*

* 6,0.00,* 6,max,* 6,11.73,*

listitem 7,max,* 7,11.53,*

*

/listitem

//bold

8,max,*

if (Singlestep)
{ Path.cost←stepCost(Path);}
else if (Short-path-with-filters)
{ Path.cost← predicatePathCost(Path);}
else (longpath)
{ Path.cost←pathCost(Path);}
}
return mcost;/*return the minimum cost and update DPIR*/
}

The Single-step is a kind of node (path) expressions without
predicates such as A or B. The Short-path-with-filters is a kind
of path expressions which contain an element (or node)
operation followed by predicates, such as openauction[@id],
bidder[increase≤‘19.50’],openauction[@id=‘openauction0’],
bidder[1],bidder[increase] or the combination of these types of
predicates. The Long-path is the combination of the Single-step
and the Short-path-with-filters. Given split points, the cost can
be evaluated through formula (3) and/or formula (4) together
with the value-encoding histogram. The discussions on details
of functions, such as stepCost(Path), predicatePathCost(Path)
and pathCost(Path), are beyond the scope of this article.

After the costs are estimated and the updates of DPIR are
completed, an optimized plan can be constructed to be the final
execution plan by using Algorithm 3.

Algorithm 3: BuildOptimizedAST
Input: Soperands[ ],Soperators[ ], Spaths[ ][ ];
Output: Rtn /* optimized execution plan */
Procedure:
{

if (path start ==path end)
Rtn← S operands.get(loc)[pathstart];
else
{
/* using recursion method to construct the final execution plan*/
Rtn← s operators.get(loc)[split];
Lhs←s paths.get(loc)[pathstart][split].buidOptimizedAST( );
Rhs←s paths.get(loc)[split+1][pathend].buidOptimizedAST(
);
LeftLink(Rtn)← Lhs;
RightLink(Rtn)←Rhs;
}
return Rtn;
}

In this article, InitializingDPIR, EvalCost and
BuildOptimizedAST are the basic components of the framework
for the dynamic programming method. We present two heuristic
rules for this framework in the next section.

5.2.2 Heuristic rules for dynamic programming method

In relational databases, the project and the selection with
predicates are evaluated first to reduce the intermediate results
to fasten the query execution. In XML databases, we believe
that some similar measurements will optimize the query
execution. From our observations, the predicates and the
wildcard * should be considered seriously. Two rules for query
optimizer using the bottom-up fashion are the following.
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Rule 1: if there are some wildcards (*) in a path expression,
the lower * is evaluated first, while for a join between * and a
sub-path, the sub-path is evaluated first.

Rule 2: If there are no predicates in the path expression, the
candidate execution plan can be selected from the set of the right-
deep query trees.

These two heuristic rules are implemented in the function
pathCost(Path) in the algorithm EvalCost. The approach to deal
with the path expression with predicates has been discussed in
section 5.1.

The heuristic rules can degrade the time complexity of the
search algorithm. For rule 2, given an XPath query
A1/A2/A3.../An as the example, the number of all the possible
query plan trees can be figured out by the formula (5)

f (n) =

{

1 n=1

∑n−1
i=1 f (i) f (n− i) n>1

=

{

1 n=1
(2n−2)!

n((n−1)!)2 n>1

(5)

Using the basic dynamic programming method, the time
complexity of the search algorithm is O(n3). When the heuristic

rule 2 is applied to the basic dynamic programming method, the
size of the search space can be computed by the formula (6).

F(n) =

{

1 n=1,2

F(1)F(n−1)+F(n−1)F(1) n>2

=

{

1 n=1,2

2n−2 n>2

(6)

In this case, the time complexity of the search algorithm
based on the basic dynamic programming is O(n2).

6 EXPERIMENTS

In this section, the primary experimental results are provided
here to verify the validity of our approaches. The performance
comparisons between the original approach and our optimized
approach focus on the execution time, the scaling effect of the
optimization approach and the speedup ratios of the optimized
queries over the original ones. The experimental results are the
average cost of the executions carried out five times in the same
tests.

The original approach constructs the query expression tree
from the left to the right according to the XPath expression and
executed in a bottom-up fashion. The optimized approach
corresponds to our heuristic-based dynamic programming
method.

Table 5: Some Selected Query Statements for Testing

Group QNum Path Expression

A

1 /*/regions//*/description//parlist/*/text/emph

2
/site/closedauctions/closedauction/*/description

/*/listitem/parlist/*/text/emph

B

3 /site/regions//item[1]/description//*/listitem/text/emph

4
/site/regions//item[quantity=1]

/description[//parlist/listitem/text]//emph

5

/site/closedauctions/closedauction[price>’40.00’]

/annotation[/author/@person]/description/*

/listitem/parlist/listitem/text/emph

C

6
/site/regions//item[@featured][quantity][payment=’Creditcard’]

/mailbox[mail]/mail/text[bold]/bold

7
/site//openauction[initial>’100’][//bidder]

//description[//text/bold]/*/listitem[*/listitem//bold]

8

/site/closedauctions/closedauction[price>’10’]

[//listitem/text/*/emph][price<’15’][quantity=1]

/annotation/description//text/emph

D 9 /site/categories/category[@id = ’category0’]//listitem[//text[bold]]/parlist

E

10 /site/regions//item/description//parlist/listitem/text/emph

11
/site/closedauctions/closedauction/annotation/description

/parlist/listitem/parlist/listitem/text/emph
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Table 6: XML Databases for Testing

Database Size(MB) factor #of Node

1 60 0.535 1734772

2 90 0.795 2582727

3 120 1.065 3450402

4 150 1.35 4376400

5 180 1.60 5179247

6.1 Experiment Environment

The test bed is the in-memory version of the XSQS[12] which is
a native XML DBMS prototype. All experiments were run on a
machine with a 2.8 MHz Pentium processor, 3GB memory, and
a 150G hard disk. The underlying OS is Windows 7/64bit.

The test data or database is generated by XMark[11] shown
in Table 5. The factors are 0.535, 0.795, 1.065, 1.345 and 1.595
of the size of 60M, 90M, 120M, 150M and 180M, respectively.

The selected running examples which are cataloged into five
groups are shown in Table 6. Each group has some similar
characteristics. Group A includes queries with the wildcards (*)
but with no predicates, group B includes queries with single
predicate, group C includes queries with the conjunctive
predicates, group D includes a query with an embedded
predicate and group E includes queries without the predicates
and the wildcards (*).

6.2 Experimental Results

6.2.1 Performance Results

Fig.4 depicts the performance comparisons between the original
execution plans and their optimized counterparts (the
optimization cost is included) on database1 as an example (size
of database1 is 60MB, see Table 3). By the way, the costs of
generating the optimized execution plans of the queries are less
than 30ms except that of Q8 which is about 60ms-80ms in our
tests. The experiments on the other databases illustrate similar
effects.

6.2.2 Scaling Effect

To know how our optimization approach responds to the growth
of the size of databases, we carried out tests by using, one by
one, the same queries over the five databases (shown in Table 3).
Because the execution time of Q4, Q6 and Q7 is one magnitude
higher than other queries, the experimental results of these eleven
queries are depicted in (a) and (b) of Fig.5 for clarity. The similar
consideration is taken for describing the experimental results of
the speedup ratio in section 6.2.3.

6.2.3 Speedup Ratio of the Optimization

To know to what extension the optimization achieved, we did the
tests on speedup ratios by using these eleven queries over these

five databases. Depicted in (a) and (b) of Fig.6 are the speedup
ratios which are the costs of the original execution plan divided
by the costs of the optimized queries.

6.2.4 Remarks on Experimental Results

It can be seen in Fig.4 that the execution time of the optimized
queries of Q3-Q9 over database1 (of size 60MB) is much less
than that of the original ones. While the execution time of the
optimized plans of Q1, Q2, Q10 and Q11 is slightly more than
that of the original ones. The reasons are that the optimized
execution trees are the same as those of the original ones and the
execution time of each optimized one should include the cost of
generating the optimized execution tree. The same results are
obtained for other databases. All of the Q1, Q2, Q10 and Q11
are the path expressions without the predicates, their optimal
query trees are all the right-deep trees in our tests. Our heuristic
rules make sense.

Fig.5 shows that these optimized queries almost have linear
scaling effects with the growth of the size of database, taking into
account the presence of system errors.

As Fig.6 shown, among these eleven queries, Q3, Q6, Q8
and Q9 have approximate linear behavior. Q6 containing a string
predicate has the maximal speedup ratio. The rest of the queries
have nearly constant (or in a narrow band) speedup ratios. It can

(a)

(b)

Fig. 4: Performance Results of Q1-11 on Database 1
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(a)

(b)

Fig. 5: Scaling Effect of Optimized Q1-11

be concluded that by using our approach a good speedup ratio
can be achieved for XPath.

7 CONCLUSIONS AND FUTURE WORK

In this article, a value-encoding histogram is proposed to collect
statistics of the XML database and the cost models are presented
to describe the costs of different types of join operations.
Together with the hierarchy encoding technique, a
heuristic-based dynamic programming method is used to
optimize the join order. The experiments demonstrate that the
optimized query plans have linear scaling effects, greater
performance improvements and significant speedup effects for
evaluating XPath queries. Our approaches can always select the
optimal execution plan. To parallelize our algorithms and to
extend them for XQuery is our next step.
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