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Abstract: Information declassification aims for trusted release of secret inftowm#o public environment. Existing security speci-
fications and enforcement mechanisms of declassification policiesfbewsed on sequential programs. This paper generalized the
specification of gradually delimited release policy for sequential progtarthe security condition suited for multi-threaded programs.
This security condition restricts that the interleaving of low transition evenystoedepend on secret information, confines the content
of information declassified in accord with the content allowed to be releaseldcontrols the location of declassification only through
the special release statement. Moreover, we proposed monitoringnigets of policy enforcement and proved its soundness.
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1. Introduction the declassification can occud) ]It would be desirable to
integrate different dimensions for controlling declassifi
Confidentiality means secret information must not betion to offer enhanced protection from the illegal release
leaked by computation. Access control is a standard mechef secret information, but these dimensions are largely or-
anism for achieving confidentiality, but it only controlgth thogonal to each other, so a tighter integration of these di-
release of information. Information-flow control additton mensions remains a challenge.
ally restricts how information is propagated. There aretwo ~ Our previous work $] has proposed a declassifica-
basic kinds of information flows through program con- tion policy called gradually delimited release combining
structs: explicit flow and implicit flow, where the former WHAT and WHERE dimensions, where the security con-
represents that information is passed explicitly throughdition in WHAT dimension controls the amount of infor-
an assignment, and the latter denotes that information isnation released can not exceed deliberate release, and the
passed via control-flow structures or covert channgls [ security condition in WHERE dimension restricts the in-
2]. Confidentiality requirements of programs could be ex- formation release is only through the special release-state
pressed by a information-flow control policy, in which a ments, moreover, this work has presented the enforcement
baseline policy is noninterference which says that an atmechanisms of this policy; however, it was limited to the
tacker can deduce nothing about the secret inputs from theequential programs.
public outputs 8]. However, the restrictiveness of nonin- Existing declassification security specifications and
terference is too strong for many practical systems. Forenforcement mechanisms focus on sequential progréms [
instance, password checking programs inevitably violate7,8]. They do not generalize naturally to multi-threaded
noninterference because these programs reveal some iprograms and declassification in multi-threaded programs
formation of passwords by rejecting an illegitimate login. is not yet equally well understood. However, much work
Declassification policies relax the restrictiveness ofhas been done for the noninterference in multi-threaded
noninterference and ensure trusted release of secret iprograms 9,10,11,12], but these results were limited to
formation to public environment along four dimensions: information flow properties that forbid declassification.
WHAT (what can be released), WHO (who can initiate the With this paper, we close this gap by extending gradually
declassification), WHERE and WHEN (where and whendelimited release policy to the multi-threaded programs.
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The rest of the paper is organized as follows. Section A command configuration has the forfm,c), mean-
2 presents the model of multi-threaded language. Sectiomg that the commandis to be executed in the memany
3 states the scheduler model. Section 4 describes seciVe usec to model a thread pool. A terminated command
rity specifications of gradually delimited release poliny i configuration with the memormnis denoted bym, stop).
multi-threaded programs. Section 5 depicts dynamic enA small-step transition between command configurations

forcement mechanisms of this policy and proves its soundhas the form(m,c) 2, (m/,c¢’), wherea is an internal

ness. Finally, Section 6 concludes this paper. event andy is a low transition event, and they are trig-
gered by the command The syntax ofa is defined by
the following grammar:

2. Multi-threaded Language Model ai—s|ax.e) |dxe) |bec) | f| ~L|~H|Ly|Hg

We enrich the language provided by Russo and Sabelfeld/here evens signals commandkip is performed; event
[9] with declassification primitive and some auxiliary &(X.€) represents an assignment to variablef expres-
commands, and name the enriched langudi¢hile. In ~ SION€ eventd(x, e) records declassifying of expressien
this language, each variable and constant is annotated by'At0 variablex; _eventb(e) originates from branching com-
security label indicating its confidentiality level. Weriot ~~ Mands, denoting the current command branches on ex-
duce typing environmen which is a function mapping Pressione; event f indicates _that the structure block of
each variable to its confidentiality level. We assume sef@ Pranching command has finished execution; everit
.# of confidentiality levels, ordered by a reflexive tran- ("€Sp.~> H) shows that commandnhide (resp.hide) is
sitive relationC that denotes the relative restrictiveness 'Un; eventlq (resp.Hy) signals about the creation of low
of the levels, and$7g> is a lattice. For S|mp||c|ty but (r_esp. hlgh) threa&.-Addltlona”y, low transition event is
without loss of generality, we consider two-element settriggered by one of internal eventa(x, e) andd(xe) re-
% = {low,high} wherelow C high. The join operation ~quiringl” (x) =low, and it has the fornix, m(e)), meaning
Ll is used to calculate the least upper bound on Confiden\/arlablex with low Conflden“allty IS Updated with value
tiality levels. The confidentiality level of an expressian i M(€). The low transition event triggered biyx, €) is called
the least upper bound on the confidentiality levels of itsa release event. We denote a sequence (possible empty) of
sub-expressions. transition steps bym, c¢) = (m',c’), wherey represents a
The syntax of the languagdWhile is displayed in  sequence of low transition events. We can write the form
Figureland itis composed of expressions and commands{m, c) -y when the resulting configuration is unimportant.
Expressiore comprises constant valug variablex, com-  |f a transition step does not affect low memory, the low
posite expressioe® e, where® is a binary operation. transition event is empty.
Commandc includes atomic command, branching com-
mand and composition command. The atomic command
x := declassify{e) downgrades the high level of expres-
sion e (called escape hatch expression) to the low level, ex=nlz|ede
and then assigns it to the variabte The language sup- c == skip | z := e | z := declassify(e)
ports two kinds of threads: low and high threads, partition-
ing the thread-pool into low and high parts. The atomic i -
commandhide upgrades the level of current thread from | hide | unhide | fork(c, d) | hfork(c, d)
low to high, and the commandnhide has the dual ef-
fect: it downgrades the level of current thread frbgh
to low. The command$ork (c,d) andhfork (c,d) is used
to generate a collection of threadsvhile the current run-
ning thread is command The difference between the two
commands is that the former command creates low threads
and the latter spawns high threads. Additionally, there are
two auxiliary commandsstop and end, where the com- 3. Scheduler Model
mand stop signifies the termination of a command, and
the commanenddenotes exiting the scope of a branching In multi-threaded programs, CPU scheduling becomes
command. These auxiliary commands are not accessible thecessary when the number of threads exceeds the number
programmers and only used in command semantics. of available processing units. In this paper, we assume that
Program memoryn (mapping variables to values) can multi-threaded programs run on a single-core CPU with
be divided into two parts: low memom. and high mem-  a shared memory for inter-thread communication. In this
ory my, wherem_ (resp.my) restricts the mapping to vari- section we present a scheduler model that can be instanti-

| if e then c else ¢ | while e do ¢ | ¢;¢

| stop | end | sleep(n)

Figure 1: Syntax of the languad#while

ables whose confidentiality levellisw (resp.high). Mem-  ated for a wide class of schedule#],[and use a labeled
oriesm; andmy, are indistinguishable at low memory, i.e., transition system to describe the behavior of the sched-
myL = mpy, 1iff VX (X) = low = my (X) = mp(X). uler model. Scheduler configurations have the féayw),
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where o is the scheduler program andis a scheduler d=q-1 tk=txud Xe{HL}
memory which is disjoint from the program memary (S-CREATE): B

In the scheduler memory, we use variabléo show the {o,v) == (o’, V")

how many steps a thread can be scheduled and variable(S_STOP)_ qd =0 ty=tx\{r} Xe{H L}

t to define the set of active threads which consist of low ' (0, 1) 225 (o7, 1)

threads and high threads, denoted by varigbéndty re- ) ,
spectively. Additionally, we use variabieto representthe  (S_SELECT-L): 4=0 F=L ¢ >0 r €irUtn
current running thread and varialiteéo regulate whether (o,v) 15 (o7, 1)

low threads may be scheduled. When the valuk isfL, -
both low and high threads may be scheduled. However, (S-SELECT-H): 4=

0 k=H ¢ >0 ' cty

when the value ok is H, only high threads could be sched- (o,0) 1% (o7, v)
uled to close timing covert channels. A transition between (S-UP):
scheduler configurations has the fotm, v) LN (a’,v'), d=q—1 K=H t,=t:\{r} th=tgU{r}
where is the scheduler event. —" .,
The semantics for the scheduler is displayed in Fig- {o,v) {o'sv7)

ure 2. Concretely, rule (S-CREATE) describes that the (S-DOWN):
scheduler updates the thread-pool according to the sched- ;o r ;o ;o
uler eventH-andL"-triggered by théfork andfork com- (=0 K=L tp=teU{r} ty=tu\ir}

mands resgective(iy. Rule (S-STOP) depicts the termina- (o,v) =5 (0", 1)

tion of threadr results in event ~ x, which requiring the g =q—1
scheduler to remove threadrom the thread-pool. Rules ~ (S-TRANS): R
(S-SELECT-L) and (S-SELECT-H) show that the sched- (o, v) — (o, v")
uler’s selection of thread to be scheduled depending on _ )

the value of variablé as discussed above. Rule (S-UP) Figure 2: Semantics of the scheduler

states that the scheduler handles ewent H by mov-
ing the current thread from thet, to ty and settingk’
g)gv\;ﬁl)egsgre égﬁenfgtrjlz hgﬂ%‘; tBL?aSZ;SStQ'gTé Fézge (Sénd a sequence of low transition eveafsroduced during

PP ) \ ’ the execution of thread poolfrom initial program mem-
the current thread’s execution for the purpose of prevent-

ing timing covert channels. Rule (S-TRANS) ensures thatOry m, attacker knowledge is defined as follows:

for eventr ~~ triggered by a non-terminal step of thread k(m,v,€,0,0) = {mjy|m_=m A ((m,v,G,0) 55
r, variableq is decremented by one. The semantics of the o H - T D)
interaction between threads and the scheduler boils down (m",V',gtop,0’) v (m,v,¢,0) —50)}

to a single rule as follows: _ . _
9 whereo- o denotes the catenation ofando.

a The above definition is termination-insensitia be-
(m,c) =y (m,c) (o,v) ﬂ (0',v') cause the attacker knowledge is not refined f\(f)? [:)bserv-
(mv,c,a) =y (m,v',c, o) ing that program does not enter an infinite loop. Attack-
. ) _ _ ers can obtain input information of high memory only by
wherec is a thread in the thread pool, and(m,v,c,0)  seeing terminating configuration or sequence of low tran-
|s.thread—pool configuration. The_rulg ensures that a threadjtjon events followed by one more low transition event.
cis allowed to perform a step with internal evemionly  Attacker knowledge is monotonic along the sequence of
if the scheduleo schedules this thread with the scheduler |\ transition events. The smaller the attacker knowledge
eventf triggered by thread. As a notational convention,  get, the more information obtained by the attacker. Based
we use(m, v, ¢, a) —y (nf,v',&,a’) to denote a sequence on the definition of attacker knowledge, we extend the def-
(possible empty) of transition steps. The resulting config-inition of the gradually delimited release policy proposed

uration could be omitted when it is unimportant. in our previous work’] to the multi-threaded programs as
follows:
Definition 2 Given a schedulerg satisfying non-
4. Security Specifications interference, a scheduler memarya thread poot starts

running from an initial program memoryy, producing a
By convention, we assume that an attacker can observeequence of low transition eventg = 01---0, (N > 1),
low transition events and low memories, and can injectfrom which we extract all release events to form a se-
attack codes excluding commands of declassification intajuenceoy, ---or,, where 1< r; <rj;3 <nand 1<i <Kk,
programs. Attacker knowledge is described by the set ofand its corresponding sequence of escape hatch expres-
initial high memories compatible with observations of low sions ise, - - - &,. We usen’i to denote the program mem-
transition events. ory whenoy, is just generated. Thread poolsatisfies
Definition 1 Given a scheduleo, scheduler memory gradually delimited release policy if for dlland j where
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1<i

<n,1<j<kandi#rjthen 5. Enforcement Mechanisms and Soundness

A mo(er;) =mli(er;) the security specification from the previous section. A

(k(mo, V,C,0,0/_1) = k(rrb7v,c_,a,c7i)) @) Figure 3 presents dynamic monitoring rules that enforce
monitor configuration has the forgmg, I, &, hc), where

wherek(mg, v, C,g,0p) is initial attacker knowledge, cor- ny is initial program memory[” is a typing environment,

resp
tote

onding to all possible initial high memories that lead« is a stack used to keep track of the implicit flow, duads
rmination. avariable that tracks confidentiality level of current tiae

The security provided by security conditio?) can be A transition between monitor configurations has the form
illustrated with some examples, whetg, hy, andhz are  (mg 7 & he) < (my, I/, &/, hc’), wherea is an internal

high variables ant, |> andls are low variables. Consider eyent captured by the monitor. We use the notation :: to
the following thread commands andc;: denote pushing an element to a stack, lau¢kt) to denote
the top element of the stask for examplejev(l :: &) =1.
c1:hy:=hy;hs:=hy;
Cp: 11 :=6;skip;
I ;= declassify{(hy + hp+h3)/3);13:=8;//(A) (T-SKIP): (mo, T, st,he) = (mo, T, st, he)

It is not difficult to conclude that commandsg andc, sat- (T-PUSH):
isfy condition @), respectively. However, the parallel com- {mo, T, st, hc) LGON {mo, T, T'(e) U lev(st) :: st, hc)
position of the two thread commands does not necessarily(T_POP), (mo, T, 1 == st, he) L» (mo, T, st, he)

satisfy condition 2). The scheduler might schedudgbe-

fore the command in lin& is executed, i.e., the executed (T-ASSIGN):

sequence might be: T(e) CT(z) lev(st) CT(x) heCT(x) lev(st) E he
l1:=6;skip; hy :=hy;hz :=hy; {mo, T, st, he) e {mo, T, st, he)
I> := declassify (h1 + h2+h3)/3); 13 := 8; (T-DECL): mo(e) = m(e) lev(st) = he = low

(mo, T, st, he) LGOR (mo, T, st, he)

Assumemp(hy) = 4, mp(hz) = 2 andmg(hz) = 9 where o .
My is the initial program memory, we hawy((hy + hy + (T-HIDE): (mo,T", st, hc) — (mo, ', st, he := high)
h3)/3) = 5. When the above executed sequence proceeds(T-UNHIDE): (mo, T, st, he) —= (ma, I, st, he := low)

to the declassification command in liAethe value of the he = low
escape hatch expression will be updateantéh; + hy + (T-FORK): I
hz)/3) = 4, wherem is current program memory. There- (mo,T, st, he) =% (mo, T, st, he)
fore, the above thread commangsandc; are rejected by ) he = high
condition @). Consider another pair of thread commands (T-HFORK): HE
03 andC4 <m0? Pa Sta hC> - <m07 F7 St? hC>
cg :if hy > Othen sleeg100); else skipli :=1; Figure 3: Monitoring rules
c4 : sleed50);11 :=0;
Attacker will attain whether the value &f was positive Rule (T-SKIP) indicates that internal evesis always

through the low transition everl;, 0) or (11,1) under the ~ accepted by the monitor without updating the state of the
scheduler model presented in section 3, so the two threathonitor configuration. Rule (T-PUSH) presents that the

com

consider variations; andc), of the commandsz andc; :

mands are insecure according to conditizp ow  Vvalue of expressiofi (e) LUlev(st), which denotes the least
upper bound of all the levels of branch expressions that the

current command implicitly depends on, should be pushed

c; : hide; into the staclst when internal everti(e) is captured. Rule
if hy > 0 then sleeg100); else skip (T-POP) denotes the pop operation of the stack when in-
unhide: ternal eventf is captured. Rule (T-ASSIGN) represents
' that internal event(x,e) is accepted by the monitor on
l1:=1; the premise that the confidentiality level of expressipn
c, : sleef50);11 :=0; the top element of stack, and the value of variablac are

no greater than the confidentiality level of variakland

According to semantics of the scheduler presented in Figthe top element of stackt is no greater than the value of
ure 2, attacker will learn nothing about the information of variablehc. Rule (T-DECL) shows internal eved{x, e) is

h; through any low transition event. These variations areaccepted without changes in the state of monitor config-
secure according to conditiog)( uration but with two conditions: (i) that the value of es-
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cape hatch expression in initial program memory is indis-years, but they focused on sequential programs. In this pa-
tinguishable from the value of this expression in currentper, we have extended the gradually delimited release pol-
program memory and (ii) that the top element of the stackicy to multi-threaded programs. The extended policy can
and the value of variablac equallow. Rules (T-HIDE) and  rule out dangers of internal covert channel in concurrent
(T-UNHIDE) state that internal events H and~ L result ~ programs and ensure declassification of proper content to
in updating the value of variablec, respectively. Rules proper location in the multi-threaded programs. Addition-

(T-FORK) and (T-HFORK) ensure that internal eveh ally, we have presented sound monitoring rules to enforce
andH"-are accepted by the monitor on the premise that thehe policy. With this paper, we hope to contribute founda-
value of variabléhc equals td ow andhigh respectively. tions that lead to a better applicability of declassificatio

The overall programming discipline enforced by the polices in practice.
monitoring rules ensures that monitored execution of pro-
grams are secure, which is formalized by the following
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