
Appl. Math. Inf. Sci.8, No. 4, 1911-1916 (2014) 1911

Applied Mathematics & Information Sciences
An International Journal

http://dx.doi.org/10.12785/amis/080449

Information Declassification for Multi-Threaded
Programs

Hao Zhu1,2,∗, Yi Zhuang1 and Xiang Chen2

1 School of Computer Science and Technology, Nanjing University of Aeronautics Astronautics, Nanjing, 210016, P. R. China
2 School of Computer Science and Technology, Nantong University, Nantong, 226019, P. R. China

Received: 18 Aug. 2013, Revised: 20 Nov. 2013, Accepted: 21 Nov. 2013
Published online: 1 Jul. 2014

Abstract: Information declassification aims for trusted release of secret information to public environment. Existing security speci-
fications and enforcement mechanisms of declassification policies havefocused on sequential programs. This paper generalized the
specification of gradually delimited release policy for sequential programs to the security condition suited for multi-threaded programs.
This security condition restricts that the interleaving of low transition events may not depend on secret information, confines the content
of information declassified in accord with the content allowed to be released, and controls the location of declassification only through
the special release statement. Moreover, we proposed monitoring mechanisms of policy enforcement and proved its soundness.

Keywords: Declassification, information flow, non-interference, information release

1. Introduction

Confidentiality means secret information must not be
leaked by computation. Access control is a standard mech-
anism for achieving confidentiality, but it only controls the
release of information. Information-flow control addition-
ally restricts how information is propagated. There are two
basic kinds of information flows through program con-
structs: explicit flow and implicit flow, where the former
represents that information is passed explicitly through
an assignment, and the latter denotes that information is
passed via control-flow structures or covert channels [1,
2]. Confidentiality requirements of programs could be ex-
pressed by a information-flow control policy, in which a
baseline policy is noninterference which says that an at-
tacker can deduce nothing about the secret inputs from the
public outputs [3]. However, the restrictiveness of nonin-
terference is too strong for many practical systems. For
instance, password checking programs inevitably violate
noninterference because these programs reveal some in-
formation of passwords by rejecting an illegitimate login.

Declassification policies relax the restrictiveness of
noninterference and ensure trusted release of secret in-
formation to public environment along four dimensions:
WHAT (what can be released), WHO (who can initiate the
declassification), WHERE and WHEN (where and when

the declassification can occur) [4]. It would be desirable to
integrate different dimensions for controlling declassifica-
tion to offer enhanced protection from the illegal release
of secret information, but these dimensions are largely or-
thogonal to each other, so a tighter integration of these di-
mensions remains a challenge.

Our previous work [5] has proposed a declassifica-
tion policy called gradually delimited release combining
WHAT and WHERE dimensions, where the security con-
dition in WHAT dimension controls the amount of infor-
mation released can not exceed deliberate release, and the
security condition in WHERE dimension restricts the in-
formation release is only through the special release state-
ments, moreover, this work has presented the enforcement
mechanisms of this policy; however, it was limited to the
sequential programs.

Existing declassification security specifications and
enforcement mechanisms focus on sequential programs [6,
7,8]. They do not generalize naturally to multi-threaded
programs and declassification in multi-threaded programs
is not yet equally well understood. However, much work
has been done for the noninterference in multi-threaded
programs [9,10,11,12], but these results were limited to
information flow properties that forbid declassification.
With this paper, we close this gap by extending gradually
delimited release policy to the multi-threaded programs.

∗ Corresponding author e-mail:searain@nuaa.edu.cn

c© 2014 NSP
Natural Sciences Publishing Cor.

http://dx.doi.org/10.12785/amis/080449

1912 H. Zhu et. al. : Information Declassification for Multi-Threaded Programs

The rest of the paper is organized as follows. Section
2 presents the model of multi-threaded language. Section
3 states the scheduler model. Section 4 describes secu-
rity specifications of gradually delimited release policy in
multi-threaded programs. Section 5 depicts dynamic en-
forcement mechanisms of this policy and proves its sound-
ness. Finally, Section 6 concludes this paper.

2. Multi-threaded Language Model

We enrich the language provided by Russo and Sabelfeld
[9] with declassification primitive and some auxiliary
commands, and name the enriched languageMWhile . In
this language, each variable and constant is annotated by a
security label indicating its confidentiality level. We intro-
duce typing environmentΓ which is a function mapping
each variable to its confidentiality level. We assume set
L of confidentiality levels, ordered by a reflexive tran-
sitive relation⊑ that denotes the relative restrictiveness
of the levels, and〈L ,⊑〉 is a lattice. For simplicity but
without loss of generality, we consider two-element set
L = {low,high} where low ⊑ high. The join operation
⊔ is used to calculate the least upper bound on confiden-
tiality levels. The confidentiality level of an expression is
the least upper bound on the confidentiality levels of its
sub-expressions.

The syntax of the languageMWhile is displayed in
Figure1 and it is composed of expressions and commands.
Expressione comprises constant valuen, variablex, com-
posite expressione ⊕ e, where⊕ is a binary operation.
Commandc includes atomic command, branching com-
mand and composition command. The atomic command
x := declassify(e) downgrades the high level of expres-
sion e (called escape hatch expression) to the low level,
and then assigns it to the variablex. The language sup-
ports two kinds of threads: low and high threads, partition-
ing the thread-pool into low and high parts. The atomic
commandhide upgrades the level of current thread from
low to high, and the commandunhide has the dual ef-
fect: it downgrades the level of current thread fromhigh
to low. The commandsfork (c, d̄) andhfork (c, d̄) is used
to generate a collection of threads̄d while the current run-
ning thread is commandc. The difference between the two
commands is that the former command creates low threads
and the latter spawns high threads. Additionally, there are
two auxiliary commands:stop andend, where the com-
mandstop signifies the termination of a command, and
the commandenddenotes exiting the scope of a branching
command. These auxiliary commands are not accessible to
programmers and only used in command semantics.

Program memorym (mapping variables to values) can
be divided into two parts: low memorymL and high mem-
ory mH , wheremL (resp.mH) restricts the mapping to vari-
ables whose confidentiality level islow (resp.high). Mem-
oriesm1 andm2 are indistinguishable at low memory, i.e.,
m1L = m2L, iff ∀x.Γ (x) = low ⇒ m1(x) = m2(x).

A command configuration has the form〈m,c〉, mean-
ing that the commandc is to be executed in the memorym.
We use ¯c to model a thread pool. A terminated command
configuration with the memorym is denoted by〈m,stop〉.
A small-step transition between command configurations
has the form〈m,c〉

α
−→γ 〈m′,c′〉, whereα is an internal

event andγ is a low transition event, and they are trig-
gered by the commandc. The syntax ofα is defined by
the following grammar:

α ::= s | a(x,e) | d(x,e) | b(e,c) | f | L | H | Ld̄ | Hd̄

where events signals commandskip is performed; event
a(x,e) represents an assignment to variablex of expres-
sione; eventd(x,e) records declassifying of expressione
into variablex; eventb(e) originates from branching com-
mands, denoting the current command branches on ex-
pressione; event f indicates that the structure block of
a branching command has finished execution; event L
(resp. H) shows that commandunhide (resp.hide) is
run; eventLd̄ (resp.Hd̄) signals about the creation of low
(resp. high) threads̄d. Additionally, low transition event is
triggered by one of internal events:a(x,e) andd(x,e) re-
quiringΓ (x) = low, and it has the form(x,m(e)), meaning
variablex with low confidentiality is updated with value
m(e). The low transition event triggered byd(x,e) is called
a release event. We denote a sequence (possible empty) of
transition steps by〈m,c〉

∗
−→γ̄ 〈m′,c′〉, whereγ̄ represents a

sequence of low transition events. We can write the form
〈m,c〉

∗
−→γ̄ when the resulting configuration is unimportant.

If a transition step does not affect low memory, the low
transition event is empty.

e ::= n j x j e© e

c ::= skip j x := e j x := declassify(e)
j if e then c else c j while e do c j c; c

j hide j unhide j fork(c; ¹d) j hfork(c; ¹d)
j stop j end j sleep(n)

Figure 1: Syntax of the languageMWhile

3. Scheduler Model

In multi-threaded programs, CPU scheduling becomes
necessary when the number of threads exceeds the number
of available processing units. In this paper, we assume that
multi-threaded programs run on a single-core CPU with
a shared memory for inter-thread communication. In this
section we present a scheduler model that can be instanti-
ated for a wide class of schedulers [9], and use a labeled
transition system to describe the behavior of the sched-
uler model. Scheduler configurations have the form〈σ ,ν〉,

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1911-1916 (2014) /www.naturalspublishing.com/Journals.asp 1913

whereσ is the scheduler program andν is a scheduler
memory which is disjoint from the program memorym.
In the scheduler memory, we use variableq to show the
how many steps a thread can be scheduled and variable
t to define the set of active threads which consist of low
threads and high threads, denoted by variabletL andtH re-
spectively. Additionally, we use variabler to represent the
current running thread and variablek to regulate whether
low threads may be scheduled. When the value ofk is L,
both low and high threads may be scheduled. However,
when the value ofk is H, only high threads could be sched-
uled to close timing covert channels. A transition between

scheduler configurations has the form〈σ ,ν〉 β
−→ 〈σ ′,ν ′〉,

whereβ is the scheduler event.
The semantics for the scheduler is displayed in Fig-

ure 2. Concretely, rule (S-CREATE) describes that the
scheduler updates the thread-pool according to the sched-
uler eventHr

d̄
andLr

d̄
triggered by thehfork andfork com-

mands respectively. Rule (S-STOP) depicts the termina-
tion of threadr results in eventr ×, which requiring the
scheduler to remove threadr from the thread-pool. Rules
(S-SELECT-L) and (S-SELECT-H) show that the sched-
uler’s selection of threadr′ to be scheduled depending on
the value of variablek as discussed above. Rule (S-UP)
states that the scheduler handles eventr H by mov-
ing the current threadr from the tL to tH and settingk′

to H to ensure the next scheduled thread is high. Rule (S-
DOWN) is opposite to rule (S-UP), but setsq′ to 0 to end
the current thread’s execution for the purpose of prevent-
ing timing covert channels. Rule (S-TRANS) ensures that
for eventr triggered by a non-terminal step of thread
r, variableq is decremented by one. The semantics of the
interaction between threads and the scheduler boils down
to a single rule as follows:

〈m,c〉
α
−→γ 〈m′,c′〉 〈σ ,ν〉 β

−→ 〈σ ′,ν ′〉

〈m,ν , c̄,σ〉 →γ 〈m′,ν ′, c̄′,σ ′〉

wherec is a thread in the thread pool ¯c , and〈m,ν , c̄,σ〉
is thread-pool configuration. The rule ensures that a thread
c is allowed to perform a step with internal eventα only
if the schedulerσ schedules this thread with the scheduler
eventβ triggered by threadc. As a notational convention,
we use〈m,ν , c̄,σ〉

∗
−→γ̄ 〈m′,ν ′, c̄′,σ ′〉 to denote a sequence

(possible empty) of transition steps. The resulting config-
uration could be omitted when it is unimportant.

4. Security Specifications

By convention, we assume that an attacker can observe
low transition events and low memories, and can inject
attack codes excluding commands of declassification into
programs. Attacker knowledge is described by the set of
initial high memories compatible with observations of low
transition events.
Definition 1 Given a schedulerσ , scheduler memoryν

(S-CREATE):
q0 = q ¡ 1 t0X = tX [¹d X 2 fH; Lg

h¾; ºi
Xr

¹d¡¡! h¾0; º0i

(S-STOP):
q0 = 0 t0X = tX n frg X 2 fH; Lg

h¾; ºi
rÃ£
¡¡¡! h¾0; º0i

(S-SELECT-L):
q = 0 k = L q0 > 0 r0 2 tL [tH

h¾; ºi
"r0

¡¡! h¾0; º 0i

(S-SELECT-H):
q = 0 k = H q0 > 0 r0 2 tH

h¾; ºi
"r0

¡¡! h¾0; º 0i

(S-UP):

q0 = q ¡ 1 k0 = H t0L = tL n frg t0H = tH [frg

h¾; ºi
rÃH

¡¡¡! h¾0; º0i

(S-DOWN):

q0 = 0 k0 = L t0L = tL [frg t0H = tH n frg

h¾; ºi
rÃL

¡¡¡! h¾0; º 0i

(S-TRANS):
q0 = q ¡ 1

h¾; ºi
rÃ

¡¡! h¾0; º0i

Figure 2: Semantics of the scheduler

and a sequence of low transition events ¯o produced during
the execution of thread pool ¯c from initial program mem-
ory m, attacker knowledge is defined as follows:

k(m,ν , c̄,σ , ō) = {m′
H |mL = m′

L ∧ (〈m′,ν , c̄,σ〉
∗
−→ō

〈m′′,ν ′,stop,σ ′〉∨ 〈m′,ν , c̄,σ〉
∗
−→ō·o)}

(1)

where ¯o ·o denotes the catenation of ¯o ando.
The above definition is termination-insensitive [6] be-

cause the attacker knowledge is not refined for observ-
ing that program does not enter an infinite loop. Attack-
ers can obtain input information of high memory only by
seeing terminating configuration or sequence of low tran-
sition events followed by one more low transition event.
Attacker knowledge is monotonic along the sequence of
low transition events. The smaller the attacker knowledge
set, the more information obtained by the attacker. Based
on the definition of attacker knowledge, we extend the def-
inition of the gradually delimited release policy proposed
in our previous work [5] to the multi-threaded programs as
follows:
Definition 2 Given a schedulerσ satisfying non-
interference, a scheduler memoryν , a thread pool ¯c starts
running from an initial program memorym0, producing a
sequence of low transition eventson = o1 · · ·on (n ≥ 1),
from which we extract all release events to form a se-
quenceor1 · · ·ork , where 1≤ ri < ri+1 ≤ n and 1≤ i < k,
and its corresponding sequence of escape hatch expres-
sions iser1 · · ·erk . We usemri to denote the program mem-
ory when ori is just generated. Thread pool ¯c satisfies
gradually delimited release policy if for alli and j where

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1914 H. Zhu et. al. : Information Declassification for Multi-Threaded Programs

1≤ i ≤ n,1≤ j ≤ k andi 6= r j then

(

k(m0,ν , c̄,σ , ōi−1) = k(m0,ν , c̄,σ , ōi)
∧ m0(er j) = mr j(er j)

)

(2)

wherek(m0,ν , c̄,σ , ō0) is initial attacker knowledge, cor-
responding to all possible initial high memories that lead
to termination.

The security provided by security condition (2) can be
illustrated with some examples, whereh1, h2, andh3 are
high variables andl1, l2 andl3 are low variables. Consider
the following thread commandsc1 andc2:

c1 : h2 := h1;h3 := h1;

c2 : l1 := 6;skip;

l2 := declassify((h1+h2+h3)/3); l3 := 8;//(A)

It is not difficult to conclude that commandsc1 andc2 sat-
isfy condition (2), respectively. However, the parallel com-
position of the two thread commands does not necessarily
satisfy condition (2). The scheduler might schedulec1 be-
fore the command in lineA is executed, i.e., the executed
sequence might be:

l1 := 6;skip;h2 := h1;h3 := h1;

l2 := declassify((h1+h2+h3)/3); l3 := 8;

Assumem0(h1) = 4, m0(h2) = 2 andm0(h3) = 9 where
m0 is the initial program memory, we havem0((h1+h2+
h3)/3) = 5. When the above executed sequence proceeds
to the declassification command in lineA, the value of the
escape hatch expression will be updated tom((h1+ h2+
h3)/3) = 4, wherem is current program memory. There-
fore, the above thread commandsc1 andc2 are rejected by
condition (2). Consider another pair of thread commands
c3 andc4:

c3 : if h1 > 0 then sleep(100); else skip; l1 := 1;

c4 : sleep(50); l1 := 0;

Attacker will attain whether the value ofh1 was positive
through the low transition event(l1,0) or (l1,1) under the
scheduler model presented in section 3, so the two thread
commands are insecure according to condition (2). Now
consider variationsc′3 andc′4 of the commandsc3 andc4 :

c′3 : hide;

if h1 > 0 then sleep(100); else skip;
unhide;

l1 := 1;

c′4 : sleep(50); l1 := 0;

According to semantics of the scheduler presented in Fig-
ure2, attacker will learn nothing about the information of
h1 through any low transition event. These variations are
secure according to condition (2).

5. Enforcement Mechanisms and Soundness

Figure3 presents dynamic monitoring rules that enforce
the security specification from the previous section. A
monitor configuration has the form〈m0,Γ ,st,hc〉, where
m0 is initial program memory,Γ is a typing environment,
st is a stack used to keep track of the implicit flow, andhc is
a variable that tracks confidentiality level of current thread.
A transition between monitor configurations has the form
〈m0,Γ ,st,hc〉

α
−→ 〈m0,Γ ′,st ′,hc′〉, whereα is an internal

event captured by the monitor. We use the notation :: to
denote pushing an element to a stack, andlev(st) to denote
the top element of the stackst; for example,lev(l :: st) = l.

(T-SKIP): hm0;¡; st; hci
s
¡! hm0;¡; st; hci

(T-PUSH):

hm0;¡; st; hci
b(e)
¡¡! hm0;¡;¡(e) t lev(st) :: st; hci

(T-POP): hm0;¡; l :: st; hci
f
¡! hm0;¡; st; hci

(T-ASSIGN):

¡(e) v ¡(x) lev(st) v ¡(x) hc v ¡(x) lev(st) v hc

hm0;¡; st; hci
a(x;e)
¡¡¡¡! hm0;¡; st; hci

(T-DECL):
m0(e) = m(e) lev(st) = hc = low

hm0; ¡; st; hci
d(x;e)
¡¡¡¡! hm0;¡; st; hci

(T-HIDE): hm0;¡; st; hci
ÃH
¡¡! hm0;¡; st; hc := highi

(T-UNHIDE): hm0;¡; st; hci
ÃL
¡¡! hm0;¡; st; hc := lowi

(T-FORK):
hc = low

hm0;¡; st; hci
Lr

¹d¡¡! hm0;¡; st; hci

(T-HFORK):
hc = high

hm0; ¡; st; hci
Hr

¹d¡¡! hm0;¡; st; hci

Figure 3: Monitoring rules

Rule (T-SKIP) indicates that internal events is always
accepted by the monitor without updating the state of the
monitor configuration. Rule (T-PUSH) presents that the
value of expressionΓ (e)⊔ lev(st), which denotes the least
upper bound of all the levels of branch expressions that the
current command implicitly depends on, should be pushed
into the stackst when internal eventb(e) is captured. Rule
(T-POP) denotes the pop operation of the stack when in-
ternal eventf is captured. Rule (T-ASSIGN) represents
that internal eventa(x,e) is accepted by the monitor on
the premise that the confidentiality level of expressione,
the top element of stackst, and the value of variablehc are
no greater than the confidentiality level of variablex and
the top element of stackst is no greater than the value of
variablehc. Rule (T-DECL) shows internal eventd(x,e) is
accepted without changes in the state of monitor config-
uration but with two conditions: (i) that the value of es-

c© 2014 NSP
Natural Sciences Publishing Cor.

Appl. Math. Inf. Sci.8, No. 4, 1911-1916 (2014) /www.naturalspublishing.com/Journals.asp 1915

cape hatch expression in initial program memory is indis-
tinguishable from the value of this expression in current
program memory and (ii) that the top element of the stack
and the value of variablehc equallow. Rules (T-HIDE) and
(T-UNHIDE) state that internal events H and L result
in updating the value of variablehc, respectively. Rules
(T-FORK) and (T-HFORK) ensure that internal eventsLr

d̄
andHr

d̄
are accepted by the monitor on the premise that the

value of variablehc equals tolow andhigh respectively.
The overall programming discipline enforced by the

monitoring rules ensures that monitored execution of pro-
grams are secure, which is formalized by the following
theorem.
Theorem 1Given a thread pool ¯c with an initial program
memorym0, a non-interfering schedulerσ with a sched-
uler memoryν , and a sequence of low transition events
ōn(n ≥ 0) produced by the〈m0,ν , c̄,σ〉 while monitored
by rules in Figure3, we have that the monitored execution
of c̄ satisfies gradually delimited release policy.
Proof Assume all release events from ¯on to form a se-
quenceor1 · · ·ork(1 ≤ ri < ri+1 ≤ n ∧ 1 ≤ i < k) , and
corresponding sequence of escape hatch expressions is
er1 · · ·erk . We usemri to denote the current program mem-
ory whenori is just generated. We sketch a proof by induc-
tion on the length of the sequence of low transition events
on.
1) Base n=0. The condition (2) trivially holds.
2) Induction step. Assume the theorem holds for ¯on−1 and
need to prove that the theorem also holds for ¯on , i.e., the
condition (2) is satisfied for ¯on. We consider two cases for
the low transition eventon.
Case 1:on is an assignment to the variable in low memory.
By the premisesΓ (e)⊑ Γ (x) andlev(st) ⊑ Γ (x) in mon-
itoring rule (T-ASSIGN), we have that this event will not
result in illegal explicit and implicit flow. Additionally,the
premiseshc ⊑ Γ (x) and lev(st) ⊑ hc in monitoring rule
(T-ASSIGN) exclude an assignment to the low variable in
a high thread and implicit flow from high thread to low
thread, preventing timing covert channels. Hence the at-
tacker knowledge and low memory is unchanged, and con-
dition (2) is satisfied.
Case 2: on is a release event. In this case there is
no demand on attacker knowledge equivalence, i.e.,
k(m0,ν , c̄,σ , ōi−1) = k(m0,ν , c̄,σ , ōi) is trivially satisfied.
Additionally, we assume thaten is the escape hatch expres-
sion corresponding to release eventon. By the premises of
monitoring rule (T-DECL), we havem0(en) = m(en) im-
mediately. Hence, condition (2) is satisfied.

6. Conclusions

Declassification policies relax noninterference policy such
that a deliberate release of some secret information be-
comes possible. In order to ensure trusted release of se-
cret information, many declassification policies and their
enforcement mechanisms have been proposed in recent

years, but they focused on sequential programs. In this pa-
per, we have extended the gradually delimited release pol-
icy to multi-threaded programs. The extended policy can
rule out dangers of internal covert channel in concurrent
programs and ensure declassification of proper content to
proper location in the multi-threaded programs. Addition-
ally, we have presented sound monitoring rules to enforce
the policy. With this paper, we hope to contribute founda-
tions that lead to a better applicability of declassification
polices in practice.

Acknowledgements

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61202006,
the Fundamental Research Funds for the Central Universi-
ties under Grant No. NZ2013306. Thanks for the help.

References
[1] A. Sabelfeld and A. C. Myers, Language-based information

flow security, Selected Areas in Communications,21, 5-19
(2003).

[2] A. Sabelfeld and A. Russo, From dynamic to static and
back: riding the roller coaster of information-flow control
research, Perspectives of Systems Informatics, LNCS,5947,
352-365 (2010).

[3] J. A. Goguen and J. Meseguer, Security policies and security
models, Proc. IEEE Symp. on Security and Privacy, 11-20
(1982).

[4] A. Sabelfeld and D. Sands, Declassification: dimensions
and principles, Journal of Computer Security,17, 517-548
(2009).

[5] H. Zhu, Y. Zhuang and Y. Xue, et al., A two-dimension pol-
icy of confidential information release, Journal of Informa-
tion and Computational Science,8, 3239-3247 (2011).

[6] A. Askarov and A. C. Myers, A semantic framework for
declassification and endorsement, Programming Languages
and Systems, LNCS,6012, 64-84 (2010).

[7] A. Lux and H. Mantel, Declassification with explicit ref-
erence points, Proc. 14th European Symp. on Research in
Computer Security, 69-85 (2009).

[8] A. Askarov and A. Sabelfeld, Tight enforcement of
information-release policies for dynamic languages, Proc.
22nd IEEE Symp. on Computer Security Foundations, 43-
59 (2009).

[9] A. Sabelfeld and A. Russo, Securing interaction between
threads and the scheduler, Proc. 19th IEEE Computer Se-
curity Foundations Workshop, 177-189 (2006).

[10] G. Boudol and i. CastellanI, Noninterference for concurrent
programs and thread systems. Theoretical Computer Sci-
ence,281, 109-130 (2002).

[11] A. Russo and A. Sabelfeld, Security for multithreaded pro-
grams under cooperative scheduling, Perspectives of Sys-
tems Informatics, LNCS,4378, 474-480 (2007).

[12] M. Huisman and H.-C. Blondeel, Model-checking secure in-
formation flow for multi-threaded programs, Theory of Se-
curity and Applications, LNCS,6993, 148-165 (2012).

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp

1916 H. Zhu et. al. : Information Declassification for Multi-Threaded Programs

Hao Zhu received his
M.Sc. degree in 2005 from
Jiangsu University. He is a
Ph.D. candidate in Nanjing
University of Aeronautics and
Astronautics. He is a associate
professor of computer science
and technology in Nantong
university. His research inter-
ests include information secu-
rity and intelligent computing.

Yi Zhuang is a profes-
sor and Ph.D. supervisor of
computer science and technol-
ogy in Nanjing University of
Aeronautics and Astronautics.
Her research interests include
information security, trusted
computing, distributed com-
puting, computer network and
wireless senor network et al.

Xiang Chen received a
Ph.D. degree in Nanjing Uni-
versity. He is a lecturer of
computer science and tech-
nology in Nantong university.
His research interests include
software testing and program
analysis.

c© 2014 NSP
Natural Sciences Publishing Cor.

	Introduction
	Multi-threaded Language Model
	Scheduler Model
	Security Specifications
	Enforcement Mechanisms and Soundness
	Conclusions

