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Abstract: We introduce the concept of mixed(G,S)-monotone mappings and prove coupled coincidence point theorems for such
mappings satisfying a nonlinear contraction involving altering distance functions. Presented theorems extend, improve and generalize
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1 Introduction and preliminaries

Fixed point problems of contractive mappings in metric
spaces endowed with a partially order have been studied
by many authors (see [1]-[17]). Bhaskar and
Lakshmikantham [3] introduced the concept of a coupled
fixed point and studied the problems of a uniqueness of a
coupled fixed point in partially ordered metric spaces and
applied their theorems to problems of the existence of
solution for a periodic boundary value problem. In [8],
Lakshmikantham and́Cirić established some coincidence
and common coupled fixed point theorems under
nonlinear contractions in partially ordered metric spaces.
Very recently, Harjani, Ĺopez and Sadarangani [7]
obtained some coupled fixed point theorems for a mixed
monotone operator in a complete metric space endowed
with a partial order by using altering distance functions.
They applied their results to the study of the existence and
uniqueness of a nonlinear integral equation. Now, we
briefly recall various basic definitions and facts.

Definition 11(see Bhaskar and Lakshmikantham [3]). Let
(X,�) be a partially ordered set and F: X × X → X.
Then the map F is said to have mixed monotone property
if F (x,y) is monotone non-decreasing in x and is
monotone non-increasing in y, that is,

x1 � x2 implies F(x1,y)� F(x2,y) for all y∈ X

and

y1 � y2 implies F(x,y2)� F(x,y1) for all x∈ X.

The main result obtained by Bhaskar and
Lakshmikantham [3] is the following.

Theorem 11(see Bhaskar and Lakshmikantham [3]). Let
(X,�) be a partially ordered set and suppose there is a
metric d on X such that(X,d) is a complete metric space.
Let F : X × X → X be a mapping having the mixed
monotone property on X. Assume that there exists
k∈ [0,1) such that

d(F(x,y),F(u,v))≤ k
2[d(x,u)+d(y,v)]

for each u� x and y� v.

Suppose either F is continuous or X has the following
properties:

(i)if a non-decreasing sequence xn → x, then xn � x for
all n,

(ii)if a non-increasing sequence xn → x, then x� xn for
all n.

If there exist x0,y0 ∈ X such that

x0 � F(x0,y0) and F(y0,x0)� y0,

then F has a coupled fixed point.
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Inspired by Definition11, Lakshmikantham and́Cirić
in [8] introduced the concept of ag-mixed monotone
mapping.

Definition 12(see Lakshmikantham and́Ciri ć [8]). Let
(X,�) be a partially ordered set, F: X × X → X and
g : X → X. Then the map F is said to have mixed
g-monotone property if F(x,y) is monotone
g-non-decreasing in x and is monotone g-non-increasing
in y, that is,

gx1 � gx2 implies F(x1,y)� F(x2,y) for all y∈ X

and

gy1 � gy2 implies F(x,y2)� F(x,y1) for all x∈ X.

Definition 13(Lakshmikantham and́Ciri ć [8]). Let X be a
non-empty set, and let F: X×X → X, g: X → X be given
mappings. An element(x,y) ∈ X ×X is called a coupled
common fixed point of the mappings F and g if F(x,y) =
gx= x and F(y,x) = gy= y.
An element(x,y) ∈ X×X is called a coupled coincidence
point of the mappings F and g if F(x,y) = gx and F(y,x) =
gy.

Definition 14(Lakshmikantham and́Ciri ć [8]). Let X be a
non-empty set. Then we say that the mappings F: X×X →
X and g: X → X are commutative if for all x,y∈ X

g(F(x,y)) = F(gx,gy).

The main result of Lakshmikantham andĆirić [8] is the
following.

Theorem 12(Lakshmikantham and́Ciri ć [8]). Let (X,�)
be a partially ordered set and suppose there is a metric d
on X such that(X,d) is a complete metric space. Assume
there is a functionφ : [0,+∞) → [0,+∞) with φ(t) < t
and limr→t+ φ(r) < t for each t> 0 and also suppose F:
X×X → X and g: X → X are such that F has the mixed
g-monotone property and

d(F(x,y),F(u,v))≤ φ
(

d(gx,gu)+d(gy,gv)
2

)

for all x,y,u,v∈ X with gx� gu and gv� gy. Assume that
F(X ×X) ⊆ g(X), g is continuous and commutes with F
and also suppose either F is continuous or X has the
following properties:

(i)if a non-decreasing sequence xn → x, then xn � x for
all n,

(ii)if a non-increasing sequence xn → x, then x� xn for
all n.

If there exist x0,y0 ∈ X such that gx0 � F(x0,y0) and
F(y0,x0) � gy0 then there exist x,y ∈ X such that
gx = F(x,y) and gy= F(y,x), that is, F and g have a
coupled coincidence point.

Recently, Harjani, Ĺopez and Sadarangani [7]
established coupled fixed point theorems for a mixed
monotone operator satisfying contraction involving
altering distance functions in a complete partially ordered
metric space.
Denote byF the set of functionsϕ : [0,+∞) → [0,+∞)
satisfying the following properties:
(a) ϕ is continuous and non-decreasing,
(b) ϕ(t) = 0 if and only if t = 0.

The functionsϕ ∈ F satisfying these properties are
called altering distance functions.

Theorem 13(Harjani, López and Sadarangani [7]). Let
(X,�) be a partially ordered set and d be a metric on X
such that (X,d) is a complete metric space. Let
F : X×X → X be a mapping having the mixed monotone
property on X and satisfying

ϕ(d(F(x,y),F(u,v)) ≤ ϕ(max{d(x,u),d(y,v)})

−Φ(max{d(x,u),d(y,v)})

for all x,y,u,v ∈ X with u� x and y� v, whereϕ,ψ ∈
F . Suppose either F is continuous or X has the following
properties:

(i)if a non-decreasing sequence xn → x, then xn � x for
all n,

(ii)if a non-increasing sequence xn → x, then x� xn for
all n.

If there exist x0,y0 ∈ X such that x0 � F(x0,y0) and
F(y0,x0)� y0 then F has a coupled fixed point.

In this paper, we introduce the concept of mixed
(G,S)-monotone mappings and prove coupled
coincidence point theorems for such mappings satisfying
a nonlinear contraction involving altering distance
functions. Presented theorems extend, improve and
generalize the results of Harjani, López and Sadarangani
[7]. We end this paper by the study of the existence of
solutions to a system of nonlinear integral equations.

2 Main Results

First, we introduce the concept of mixed(G,S)-monotone
property.

Definition 21Let X be a non-empty set endowed with a
partial order �. Consider the mappings F: X ×X → X
and G,S : X → X. We say that F has the mixed
(G,S)-monotone property on X if for all x, y ∈ X,

x1, x2 ∈ X, G(x1)� S(x2)⇒ F(x1,y)� F(x2,y),

x1, x2 ∈ X, G(x1)� S(x2)⇒ F(x1,y)� F(x2,y),

y1, y2 ∈ X, G(y1)� S(y2)⇒ F(x,y1)� F(x,y2),

y1, y2 ∈ X, G(y1)� S(y2)⇒ F(x,y1)� F(x,y2).

Remark 1If we take G= S, then F has the mixed
(G,S)-monotone property implies that F has the mixed
G-monotone property.
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Now, we state and prove our first result.

Theorem 21Let (X,�) be a partially ordered set and
suppose that there exists a metric d on X such that(X,d)
is a complete metric space. Let G,S : X → X and
F : X × X → X be a mapping having the mixed
(G,S)-monotone property on X. Suppose that

ϕ(d(F(x,y),F(u,v))) ≤ ϕ(max{d(Gx,Su),d(Gy,Sv)})

−φ(max{d(Gx,Su),d(Gy,Sv)}),
(1)

for all x, y, u, v ∈ X with G(x)� S(u) or G(x)� S(u) and
S(y)� G(v) or S(y)� G(v), whereϕ,φ ∈F . Assume that
F(X×X)⊆ G(X)∩S(X) and assume also that G,S and F
satisfy the following hypotheses:

(I)F,G and S are continuous,
(II)F commutes respectively with G and S.

If there exist x0, y0, x1 and y1 such that
{

G(x0)� S(x1)� F(x0,y0);
G(y0)� S(y1)� F(y0,x0),

then there exist x, y∈ X such that

G(x) = S(x) = F(x,y) and G(y) = S(y) = F(y,x),

that is, G,S and F have a coupled coincidence point
(x,y) ∈ X×X.

Proof. Let x0, y0, x1, y1 ∈ X such that

G(x0)�S(x1)�F(x0,y0) and G(y0)�S(y1)�F(y0,x0).

Since F(X × X) ⊆ G(X) ∩ S(X), we can choose
x2, y2, x3, y3 ∈ X such that

{

G(x2) = F(x0,y0)
G(y2) = F(y0,x0)

and
{

S(x3) = F(x1,y1)
S(y3) = F(y1,x1)

·

Continuing this process we can construct sequences{xn}
and{yn} in X such that
{

G(x2n+2) = F(x2n,y2n)
G(y2n+2) = F(y2n,x2n)

;

{

S(x2n+3) = F(x2n+1,y2n+1)
S(y2n+3) = F(y2n+1,x2n+1)

(2)
for all n≥ 0.
We shall show that for alln≥ 0,

G(x2n)� S(x2n+1)� G(x2n+2) (3)

and
G(y2n)� S(y2n+1)� G(y2n+2). (4)

As G(x0) � S(x1) � F(x0,y0) = G(x2) and
G(y0) � S(y1) � F(y0,x0) = G(y2), our claim is satisfied
for n= 0.

Suppose that (3) and (4) hold for some fixedn> 0. Since
G(x2n) � S(x2n+1) � G(x2n+2) and
G(y2n) � S(y2n+1) � G(y2n+2), and asF has the mixed
(G,S)-monotone property, we have

G(x2n+2) = F(x2n,y2n) � F(x2n+1,y2n)

� F(x2n+1,y2n+1)� F(x2n+2,y2n+1)

� F(x2n+2,y2n+2),

then
G(x2n+2)� S(x2n+3)� G(x2n+4).

On the other hand,

G(y2n+2) = F(y2n,x2n) � F(y2n+1,x2n)

� F(y2n+1,x2n+1)� F(y2n+2,x2n+1)

� F(y2n+2,x2n+2),

then
G(y2n+2)� S(y2n+3)� G(y2n+4).

Thus by induction, we proved that (3) and (4) hold for all
n≥ 0.

We complete the proof in the following steps:

Step 1:We will prove that

limn→+∞ d(F(xn,yn), F(xn+1,yn+1)) =

limn→+∞ d(F(yn,xn), F(yn+1,xn+1)) = 0.
(5)

From (3), (4) and (1), we have

ϕ(d(F(x2n,y2n),F(x2n+1,y2n+1)))

≤ ϕ(max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)})

−φ(max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)})

≤ ϕ(max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}).

(6)

Sinceϕ is a non-decreasing function, we get that

d(F(x2n,y2n),F(x2n+1,y2n+1))≤

max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}.

Therefore

d(Gx2n+2,Sx2n+3)≤ max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}.
(7)

Again, using (3), (4) and (1), we have

ϕ(d(F(y2n,x2n),F(y2n+1,x2n+1)))

≤ ϕ(max{d(Gy2n,Sy2n+1),d(Gx2n,Sx2n+1)})

−φ(max{d(Gy2n,Sy2n+1),d(Gx2n,Sx2n+1)})

≤ ϕ(max{d(Gy2n,Sy2n+1),d(Gx2n,Sx2n+1)}).

(8)

Sinceϕ is non-decreasing, we have

d(F(y2n,x2n),F(y2n+1, x2n+1))≤

max{d(Gy2n,Sy2n+1),d(Gx2n,Sx2n+1}.
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Therefore

d(Gy2n+2,Sy2n+3) ≤

max{d(Gy2n,Sy2n+1),d(Gx2n,Sx2n+1)}. (9)

Combining (7) and (9), we obtain

max{d(Gx2n+2,Sx2n+3),d(Gy2n+2,Sy2n+3)}

≤ max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}.

Then

{

max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}

}

is a

positive non-increasing sequence. Hence there exists
r ≥ 0 such that

lim
n→+∞

max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}= r.

Combining (6) and (8), we obtain

max{ϕ(d(Gx2n+2,Sx2n+3)),ϕ(d(Gy2n+2,Sy2n+3))}

≤ ϕ(max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)})

−φ(max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}).

Sinceϕ is non-decreasing, we get

ϕ(max{d(Gx2n+2,Sx2n+3),d(Gy2n+2,Sy2n+3)})

≤ ϕ(max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)})

−φ(max{d(Gx2n,Sx2n+1),d(Gy2n,Sy2n+1)}).

Lettingn→+∞ in the above inequality, we get

ϕ(r)≤ ϕ(r)−φ(r),

which implies thatφ(r) = 0 and then, sinceφ is an altering
distance function,r = 0. Consequently

limn→+∞ max{d(F(x2n,y2n),F(x2n+1,y2n+1)),

d(F(y2n,x2n),F(y2n+1,x2n+1))}= 0.
(10)

By the same way, we obtain

limn→+∞ max{d(F(x2n+1,y2n+1),F(x2n+2,y2n+2)),

d(F(y2n+1,x2n+1),F(y2n+2,x2n+2))}= 0.
(11)

Finally, (10) and (11) give the desired result, that is, (5)
holds.

Step 2: We will prove thatF(xn,yn) and F(yn,xn) are
Cauchy sequences.
From (5), it is sufficient to show thatF(x2n,y2n) and
F(y2n,x2n) are Cauchy sequences.
We proceed by negation and suppose that at least one of
the sequencesF(x2n,y2n) or F(y2n,x2n) is not a Cauchy
sequence.
This implies that d(F(x2n,y2n),F(x2m,y2m)) 9 0 or

d(F(y2n,x2n),F(y2m,x2m))9 0 asn,m→+∞.
Consequently

max{d(F(x2n,y2n),F(x2m,y2m)),

d(F(y2n,x2n),F(y2m,x2m))}9 0, asn,m→+∞.

Then there existsε > 0 for which we can find two
subsequences of positive integers{m(i)} and{n(i)} such
thatn(i) is the smallest index for whichn(i)> m(i)> i,

max{d(F(x2m(i),y2m(i)),F(x2n(i),y2n(i))),

d(F(y2m(i),x2m(i)),F(y2n(i),x2n(i)))} ≥ ε .
(12)

This means that

max{d(F(x2m(i),y2m(i)),F(x2n(i)−2,y2n(i)−2)),

d(F(y2m(i),x2m(i)),F(y2n(i)−2,x2n(i)−2))}< ε .
(13)

From (12), (13) and using the triangular inequality, we get

ε ≤ max{d(F(x2m(i),y2m(i)),F(x2n(i),y2n(i))),

d(F(y2m(i),x2m(i)),F(y2n(i),x2n(i)))}

≤ max{d(F(x2m(i),y2m(i)),F(x2n(i)−2,y2n(i)−2)),

d(F(y2m(i),x2m(i)),F(y2n(i)−2,x2n(i)−2))}

+max{d(F(x2n(i)−2,y2n(i)−2),F(x2n(i)−1,y2n(i)−1)),

d(F(y2n(i)−2,x2n(i)−2),F(y2n(i)−1,x2n(i)−1))}

+max{d(F(x2n(i)−1,y2n(i)−1),F(x2n(i),y2n(i))),

d((F(y2n(i)−1,x2n(i)−1),F(y2n(i),x2n(i))))}

< ε +max{d(F(x2n(i)−2,y2n(i)−2),F(x2n(i)−1,y2n(i)−1)),

d(F(y2n(i)−2,x2n(i)−2),F(y2n(i)−1,x2n(i)−1))}

+max{d(F(x2n(i)−1,y2n(i)−1),F(x2n(i),y2n(i))),

d(F(y2n(i)−1,x2n(i)−1),F(y2n(i),x2n(i)))}.

Letting i → +∞ in above inequality and using (5), we
obtain that

lim i→+∞ max{d(F(x2m(i),y2m(i)),F(x2n(i),y2n(i))),

d(F(y2m(i),x2m(i)),F(y2n(i),x2n(i)))}= ε .
(14)
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Also, we have

ε ≤ max{d(F(x2m(i),y2m(i)),F(x2n(i),y2n(i))),

d(F(y2m(i),x2m(i)),F(y2n(i),x2n(i)))}

≤ max{d(F(x2m(i),y2m(i)),F(x2n(i)−1,y2n(i)−1)),

d(F(y2m(i),x2m(i)),F(y2n(i)−1,x2n(i)−1))}

+max{d(F(x2n(i)−1,y2n(i)−1),F(x2n(i),y2n(i))),

d(F(y2n(i)−1,x2n(i)−1),F(y2n(i),x2n(i)))}

≤ max{d(F(x2m(i),y2m(i)),F(x2n(i),y2n(i))),

d(F(y2m(i),x2m(i)),F(y2n(i),x2n(i)))}

+max{d(F(x2n(i),y2n(i)),F(x2n(i)−1,y2n(i)−1)),

d(F(y2n(i),x2n(i)),F(y2n(i)−1,x2n(i)−1))}

+max{d(F(x2n(i)−1,y2n(i)−1),F(x2n(i),y2n(i))),

d(F(y2m(i),x2m(i)),F(y2n(i),x2n(i)))}.

Using (5), (14) and lettingi →+∞ in the above inequality,
we obtain

lim
i→+∞

max{d(F(x2m(i),y2m(i)),F(x2n(i)−1,y2n(i)−1)), (15)

d(F(y2m(i),x2m(i)),F(y2n(i)−1,x2n(i)−1))}= ε .

On other hand, we have

max{d(F(x2m(i),y2m(i)),F(x2n(i),y2n(i))),

d(F(y2m(i),x2m(i)),F(y2n(i),x2n(i)))}

≤ max{d(F(x2m(i),y2m(i)),F(x2m(i)+1,y2m(i)+1)),

d(F(y2m(i),x2m(i)),F(y2m(i)+1,x2m(i)+1))}

+max{d(F(x2m(i)+1,y2m(i)+1),F(x2m(i)+2,y2m(i)+2)),

d(F(y2m(i)+1,x2m(i)+1),F(y2m(i)+2,x2m(i)+2))}

+max{d(F(x2m(i)+2,y2n(i)+1),F(x2n(i)+1,y2n(i)+1)),

d(F(y2m(i)+2,x2m(i)+2),F(y2n(i)+1,x2n(i)+1))}

+max{d(F(x2n(i)+1,y2n(i)+1),F(x2n(i),y2n(i))),

d(F(y2n(i)+1,x2n(i)+1),F(y2n(i),x2n(i)))}.

Sinceϕ is a continuous non-decreasing function, using (5)
in the above inequality, we get taking the upper limit

ϕ(ε)≤ ϕ(limsup
i→+∞

max{d(F(x2m(i)+2,y2m(i)+2),

F(x2n(i)+1,y2n(i)+1)),d(F(y2m(i)+2,x2m(i)+2),

F(y2n(i)+1,x2n(i)+1))}). (16)

Using the contractive condition (1), on one hand we have

ϕ(d(F(x2m(i)+2,y2m(i)+2),F(x2n(i)+1,y2n(i)+1))

≤ ϕ(max{d(Gx2m(i)+2,Sx2n(i)+1),d(Gy2m(i)+2,Sy2n(i)+1)})

−φ(max{d(Gx2m(i)+2,Sx2n(i)+1),d(Gy2m(i)+2,Sy2n(i)+1)})

= ϕ(max{d(F(x2m(i),y2m(i)),F(x2n(i)−1,y2n(i)−1)),

d(F(y2m(i),x2m(i)),F(y2n(i)−1,x2n(i)−1))})

−φ(max{d(F(x2m(i),y2m(i)),F(x2n(i)−1,y2n(i)−1)),

d(F(y2m(i),x2m(i)),F(y2n(i)−1,x2n(i)−1))}).

On the other hand, we have

ϕ(d(F(y2m(i)+2,x2m(i)+2),F(y2n(i)+1,x2n(i)+1)))

≤ ϕ(max{d(Gy2m(i)+2,Sy2n(i)+1),

d(Gx2m(i)+2,Sx2n(i)+1)})

−φ(max{d(Gy2m(i)+2,Sy2n(i)+1),

d(Gx2m(i)+2,Sx2n(i)+1)})

= ϕ(max{d(F(y2m(i),x2m(i)),F(y2n(i)−1,x2n(i)−1)),

d(F(x2m(i),y2m(i)),F(x2n(i)−1,y2n(i)−1))})

−φ(max{d(F(y2m(i),x2m(i))),F(y2n(i)−1,x2n(i)−1),

d(F(x2m(i),y2m(i))),F(x2n(i)−1,y2n(i)−1)}).

Therefore

ϕ(max{d(F(x2m(i)+2,y2m(i)+2),F(x2n(i)+1,y2n(i)+1)),

d(F(y2m(i)+2,x2m(i)+2),F(y2n(i)+1,x2n(i)+1))})

≤ max{ϕ(d(F(x2m(i)+2,y2m(i)+2),F(x2n(i)+1,y2n(i)+1)),

ϕ(d(F(y2m(i)+2,x2m(i)+2),F(y2n(i)+1,x2n(i)+1))}

≤ ϕ(max{d(F(x2m(i),y2m(i)),F(x2n(i)−1,y2n(i)−1)),

d(F(y2m(i),x2m(i)),F(y2n(i)−1,x2n(i)−1))}

−φ(max{d(F(x2m(i),y2m(i)),F(x2n(i)−1,y2n(i)−1)),

d(F(y2m(i),x2m(i)),F(y2n(i)−1,x2n(i)−1))}).

(17)

Finally, taking the limsup asi → +∞ in (17), using (15),
(16) and the continuity ofϕ andφ , we get

ϕ(ε)≤ ϕ(ε)−φ(ε),

which implies that φ(ε) = 0, that is, ε = 0, a
contradiction. Thus{F(x2n,y2n)} and {F(y2n,x2n)} are
Cauchy sequences inX, which give us that{F(xn,yn)}
and{F(yn,xn)} are also Cauchy sequences.

Step 3:Existence of a coupled coincidence point.
Since{F(xn,yn)} and{F(yn,xn)} are Cauchy sequences in
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the complete metric space(X, d), there existα, α ′ ∈ X
such that

lim
n→+∞

F(xn,yn) = α and lim
n→+∞

F(yn,xn) = α ′
.

Therefore, lim
n→+∞

G(x2n+2) = α, lim
n→+∞

G(y2n+2) = α ′,

lim
n→+∞

S(x2n+3) = α and lim
n→+∞

S(y2n+3) = α ′.

Using the continuity and the commutativity ofF andG,
we have

G(G(x2n+2)) = G(F(x2n,y2n))
= F(Gx2n,Gy2n)

and
G(G(y2n+2)) = G(F(y2n,x2n))

= F(Gy2n,Gx2n).

Letting n → +∞, we get G(α) = F(α,α ′) and
G(α ′) = F(α ′,α).
Using also the continuity and the commutativity ofF and
S, by the same way, we obtainS(α) = F(α,α ′) and
S(α ′) = F(α ′,α).
Therefore,,

G(α)=F(α,α ′)=S(α) and G(α ′)=F(α ′
,α)=S(α ′).

Thus we proved that(α,α ′) is a coupled coincidence point
of G,SandF . �

In the next result, we prove that the previous theorem
is still valid if we replace the continuity ofF by some
conditions.

Theorem 22If we replace the continuity hypothesis of F in
Theorem21by the following conditions:

(i)if (xn) is a non-decreasing sequences with xn → x then
xn � x for each n∈ N,

(ii)if (yn) is a non-increasing sequences with yn → y then
y� yn for each n∈ N,

(iii)x ,y∈ X, x� y⇒ Gx� Sy,
(iv)x,y∈ X, x� y⇒ Gx� Sy.

Then G,S and F have a coupled coincidence point.

Proof. Following the proof of Theorem21, we have that
F(xn,yn) and F(yn,xn) are Cauchy sequences in the
complete metric space(X,d), there existα, α ′ ∈ X such
that

lim
n→+∞

F(xn,yn) = α and lim
n→+∞

F(yn,xn) = α ′
.

Therefore, lim
n→+∞

F(x2n,y2n) = α and

lim
n→+∞

F(y2n,x2n) = α ′
. Hence, lim

n→+∞
G(x2n+2) = α,

lim
n→+∞

G(y2n+2) = α ′, lim
n→+∞

S(x2n+3) = α and

lim
n→+∞

S(y2n+3) = α ′. Using the commutativity of{F,G}

and {F,S} and the contractive condition (1), it follows

from the conditions (iii) and (iv) that

ϕ(d(G(F(x2n,y2n)),S(F(x2n+1,y2n+1))))

= ϕ(d(F(Gx2n,Gy2n),F(Sx2n+1,Sy2n+1)))

≤ ϕ(max{d(G(Gx2n),S(Sx2n+1)), (18)

d(G(Gy2n),S(Sy2n+1))})

−φ(max{d(G(Gx2n),S(Sx2n+1)),d(G(Gy2n),S(Sy2n+1))}).

Similarly, we have

ϕ(d(G(F(y2n,x2n)),S(F(y2n+1,x2n+1))))

= ϕ(d(F(Gy2n,Gx2n),F(Sy2n+1,Sx2n+1)))

≤ ϕ(max{d(G(Gy2n),S(Sy2n+1)), (19)

d(G(Gx2n),S(Sx2n+1))})

−φ(max{d(G(Gy2n),S(Sy2n+1)),

d(G(Gx2n),S(Sx2n+1))}).

Combining (18), (19) and the fact that max{ϕ(a),ϕ(b)}=
ϕ(max{a,b}) for a,b ∈ [0,+∞), from (iii) and (iv), we
obtain

ϕ(max{d(G(F(x2n,y2n)),S(F(x2n+1,y2n+1))),

d(G(F(y2n,x2n)),S(F(y2n+1,x2n+1)))})

≤ ϕ(max{d(G(Gx2n),S(Sx2n+1)),

d(G(Gy2n),S(Sy2n+1))})

−φ(max{d(G(Gx2n),S(Sx2n+1)),

d(G(Gy2n),S(Sy2n+1))}).

Lettingn→+∞ in the last expression, using the continuity
of G andS, we get

ϕ(max{d(G(α),S(α)),d(G(α ′),S(α ′))})

≤ ϕ(max{d(G(α),S(α)),d(G(α ′),S(α ′))})

−φ(max{d(G(α),S(α)),d(G(α ′),S(α ′))}).

This implies that
φ(max{d(G(α),S(α)),d(G(α ′),S(α ′))}) = 0 and, since
φ is an altering distance function, then

max{d(G(α),S(α)),d(G(α ′),S(α ′))}= 0.

Consequently

G(α) = S(α) and G(α ′) = S(α ′). (20)

To finish the proof, we claim thatF(α,α ′) =G(α) =S(α)
andF(α ′,α) = G(α ′) = S(α ′).
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Indeed, using the contractive condition (1), (3) and (4), it
follows from (i)-(iv) that

ϕ(d(F(Gx2n,Gy2n),F(α,α ′)))

≤ ϕ(max{d(G(Gx2n),S(α)),d(G(Gy2n),S(α ′))})

−φ(max{d(G(Gx2n),S(α)),d(G(Gy2n),S(α ′))})

≤ ϕ(max{d(G(Gx2n),S(α)),d(G(Gy2n),S(α ′))}).

Using the fact thatϕ is non-decreasing, we get

d(F(Gx2n,Gy2n),F(α,α ′))≤

max{d(G(Gx2n),S(α)),d(G(Gy2n),S(α ′))}.
(21)

Similarly, we have

ϕ(d(F(Gy2n,Gx2n),F(α ′
,α)))

≤ ϕ(max{d(G(Gy2n),S(α ′)),d(G(Gx2n),S(α))})

−φ(max{d(G(Gy2n),S(α ′)),d(G(Gx2n),S(α))}

≤ ϕ(max{d(G(Gy2n),S(α ′)),d(G(Gx2n),S(α))}).

Using the fact thatϕ is non-decreasing, we see that

d(F(Gy2n,Gx2n),F(α ′,α))≤

max{d(G(Gy2n),S(α ′)),d(G(Gx2n),S(α))}.
(22)

Combining (21) and (22), we get

max{d(F(Gx2n,Gy2n),F(α,α ′)),

d(F(Gy2n,Gx2n),F(α ′,α)))

≤ max{d(G(Gx2n),S(α)),d(G(Gy2n),S(α ′))}.

Using the commutativity ofF andG, we write

max{d(G(F(x2n,y2n))),F(α,α ′)),

d(G(F(y2n,x2n)),F(α ′,α))}

≤ max{d(G(Gx2n),S(α)),d(G(Gy2n),S(α ′))}.

Lettingn→+∞, using the continuity ofG, we obtain

max{d(G(α),F(α,α ′)),d(G(α ′),F(α ′,α))} ≤

max{d(G(α),S(α)),d(G(α ′),S(α ′))}.

Looking at (20), we deduce that

max{d(G(α),F(α,α ′)),d(G(α ′),F(α ′
,α))}= 0.

Therefore,

d(G(α),F(α,α ′)) = 0 and d(G(α ′),F(α ′
,α)) = 0.

Consequently

G(α) = F(α,α ′) and G(α ′) = F(α ′
,α). (23)

By the same way, we get

S(α) = F(α,α ′) and S(α ′) = F(α ′
,α). (24)

Finally, combining (20), (23) and (24), we deduce that
(α,α ′) is a coupled coincidence point ofF , G andS. �

Remark 2
Taking G= S= IX (the identity mapping of X) in Theorem
21, we obtain [7, Theorem 2].
Taking G= S= IX in Theorem22, we obtain [7, Theorem
3].

TakingS= G, we get the following:

Corollary 21Let (X,�) be a partially ordered set and
suppose that there exists a metric d on X such that(X,d)
is a complete metric space. Let G: X → X be a
continuous mapping and F: X × X → X be a mapping
having the mixed G-monotone property on X. Suppose
that

ϕ(d(F(x,y),F(u,v)))≤ ϕ(max{d(Gx,Gu),d(Gy,Gv)})

−φ(max{d(Gx,Gu),d(Gy,Gv)}),
(25)

for all x, y, u, v ∈X with G(x)�G(u) or G(x)�G(u) and
G(y) � G(v) or G(y) � G(v), whereϕ,φ ∈ F . Assume
that F(X×X)⊆ G(X)∩G(X) and assume that

(I)F is continuous or assumptions(i) − (ii) of
Theorem22hold with G non-decreasing.

(II)F commutes with G.

If there exist x0, y0 such that

{

G(x0)� F(x0,y0);
G(y0)� F(y0,x0),

then there exist x, y∈ X such that

G(x) = F(x,y) and G(y) = F(y,x),

3 Applications to nonlinear integral
equations

Let X =C([0,T],R) be the set of all continuous functions
u : [0,T]→R, T > 0, andG : X → X is a given mapping.
We endowX with the metricd(u, v) = max

t∈[0,T]
|u(t)− v(t)|

for u, v∈ X.
This space can be equipped with a partial order given by

x, y∈ X, x� y⇔ x(t)≤ y(t), for anyt ∈ [0,T].

In X×X we define the following partial order

(x, y), (u, v)∈X×X, (x, y)� (u, v)⇔ x� u andy� v.

In [10] it is proved that(X,�) satisfies assumptions(i) and
(ii) of Theorem22.

Consider the system of integral equations:










Gu(t) =
∫ T

0
k(t,s) f (s,u(s),v(s))ds

Gv(t) =
∫ T

0
k(t,s) f (s,v(s),u(s))ds

(26)
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where the functionsk : [0,T] × [0,T] → [0,+∞[ and
f : [0,T] × R × R → [0,+∞[ are two continuous
functions satisfying the following conditions:
(H1)

sup
t∈[0,T]

∫ T

0
k(t,s)ds≤ 1.

(H2) For alls, b ∈ [0,T], u, v ∈ X

Gu� Gv, ⇒ f (s,u(s),b)≤ f (s,v(s),b)

Gu� Gv, ⇒ f (s,b,u(s))≥ f (s,b,v(s)).

(H3) For allx, y, u, v ∈ X such thatGx� GuandGy� Gv
we have

| f (s,x(s),y(s))− f (s,u(s),v(s))| ≤

ln
[

1+(max{|Gx(s)−Gu(s)|, |Gy(s)−Gv(s)|})2
]

.

(H4) There existα, β ∈ X such that for allt ∈ [0,T] we
have










Gα(t)≤
∫ T

0
k(t,s) f (s,α(s),β (s))ds

Gβ (t)≤
∫ T

0
k(t,s) f (s,β (s),α(s))ds.

Now, we shall prove the following result.

Theorem 31Suppose that G: X → X is a non-decreasing
continuous mapping. Suppose also that (H1)-(H4) hold.
Then (26) has a solution.

Proof. We introduce the operatorF : X×X → X defined
by

F(u,v)(t) =
∫ T

0
k(t,s)[ f (s,u(s),v(s)) ds

for all u,v∈ X andt ∈ [0,T].
From (H2) it follows directly thatF has the mixedG-

monotone property.
Let u, v∈ X such thatG(x) � G(u) andG(y) � G(v). We
have

d(F(x,y),F(u,v)) = maxt∈[0,T] |F(x,y)(t)−F(u,v)(t)|

≤ max
t∈[0,T]

∫ T

0
k(t,s)| f (s,x(s),y(s))− f (s,u(s),v(s)|ds.

Using (H3) we get

d(F(x,y),F(u,v))≤ max
t∈[0,T]

∫ T

0
k(t,s)

ln[1+(max{|Gx(s)−Gu(s)|, |Gy(s)−Gv(s)|})2]ds≤

max
t∈[0,T]

∫ T

0
k(t,s) ln[1+(max{d(Gx,Gu),d(Gy,Gv)})2]ds

≤ ln[1+(max{d(Gx,Gu),d(Gy,Gv)})2]×

max
t∈[0,T]

∫ T

0
k(t,s)ds.

From (H1), we obtain

d(F(x,y),F(u,v))≤

ln[(max{d(Gx,Gu),d(Gy,Gv)})2+1]

which implies that

(d(F(x,y),F(u,v)))2 ≤

(ln[(max{d(Gx,Gu),d(Gy,Gv)})2+1])2.

Then,

(d(F(x,y),F(u,v)))2 ≤ (max{d(Gx,Gu),d(Gy,Gv)})2

−
[

(max{d(Gx,Gu),d(Gy,Gv)})2

−(ln[(max{d(Gx,Gu),d(Gy,Gv)})2+1])2
]

.

Setϕ(t) = t2 andφ(t) = t2− ln(t2+1). Clearlyϕ andφ
are altering distance functions and from the above
inequality, we obtain

ϕ(d(F(x,y),F(u,v)))≤ ϕ(max{d(Gx,Gu),d(Gy,Gv)})

−φ((max{d(Gx,Gu),d(Gy,Gv)}))

for all x,y,u,v∈X such thatG(x)�G(u) andG(y)�G(v).
Now, letα,β ∈ X be the functions given by (H4), then we
have

G(α)� F(α,β ) and F(β ,α)� G(β ).

Thus, we proved that all the required hypotheses of
Corollary21 are satisfied. Hence,G andF have a coupled
coincidence point(u,v) ∈ X × X, that is, (u,v) is a
solution of (26). �
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