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Abstract: We introduce the concept of mixdd, S)-monotone mappings and prove coupled coincidence point theorenssi¢h
mappings satisfying a nonlinear contraction involving altering distancdifune Presented theorems extend, improve and generalize
the recent results of Harjani,Opez and Sadarangani [J. Harjani, Bopez and K. Sadarangani, Fixed point theorems for mixed
monotone operators and applications to integral equations, Nonlinedr Zh&011) 1749-1760] and other existing results in the
literature. As application, we present an existence theorem for soluti@sytstem of nonlinear integral equations.
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1 Introduction and preliminaries and

Fixed point problems of contractive mappings in metric Y1 Y2 implies FX,y2) = F(x,y1) for all xe X.
spaces endowed with a partially order have been studied
by many authors (see 1F[17]). Bhaskar and
Lakshmikanthamd] introduced the concept of a couple
fixed point and studied the problems of a uniqueness of aheorem 11)(see Bhaskar and LakshmikanthaBj)[ Let
coupled fixed point in partially ordered metric spaces and(X, <) be a partially ordered set and suppose there is a
applied their theorems to problems of the existence ofmetric d on X such thaiX,d) is a complete metric space.
solution for a periodic boundary value problem. 8],] Let F: X xX — X be a mapping having the mixed
Lakshmikantham an@iri¢ established some coincidence monotone property on X. Assume that there exists
and common coupled fixed point theorems underk € [0,1) such that

nonlinear contractions in partially ordered metric spaces K

Very recently, Harjani, bpez and Sadarangani7][ d(F(x,y),F(u,v)) < 3[d(x u) +d(y,v)]

obtained some coupled fixed point theorems for a mixed for each u< x and y< v.

monotone operator in a complete metric space endowed

with a partial order by using altering distance functions. Suppose either F is continuous or X has the following
They applied their results to the study of the existence andgproperties:

uniqueness of a nonlinear integral equation. Now, We (j)if 3 non-decreasing sequencg % X, then x < x for

The main result obtained by Bhaskar and
d Lakshmikantham3] is the following.

briefly recall various basic definitions and facts. alln,
Definition 11(see Bhaskar and Lakshmikantha8j)[ Let (iif a non-increasing sequence, x> X, then x=< x, for
(X,=) be a partially ordered set and FX x X — X. all n.

Then the map F is said to have mixed monotone propertys there exist ¥, yo € X such that
if F(x,y) is monotone non-decreasing in x and is ’
monotone non-increasing in 'y, that is, X0 = F(xo0,Yo0) and F(yo,Xo) < Yo,

X1 X X2 implies FXxq,Yy) X F(xp,y) for allye X then F has a coupled fixed point.
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Inspired by Definitionl1, Lakshmikantham an@iric Recently, Harjani, bpez and Sadarangani7][
in [8] introduced the concept of g-mixed monotone established coupled fixed point theorems for a mixed
mapping. monotone operator satisfying contraction involving

o ) . altering distance functions in a complete partially ordere
Definition 12(see Lakshmikantham an@iri¢ [8]). Let  metric space.

(X,=) be a partially ordered set, EX x X — X and  penote by.Z the set of functions : [0,+w) — [0, +)
g: X — X. Then the map F is said to have mixed Satisfying the f0||owing properties:

g-monotone  property if fxy) is monotone (a)¢ is continuous and non-decreasing,
g-non-decreasing in x and is monotone g-non-increasingp) ¢ (t) = 0 if and only ift = 0.
iny, thatis, The functions¢ € .# satisfying these properties are

- implies F(x..y) < F(xz,y) for all X called altering distance functions.
X implies F(x1,y) < F(xz,y) for ally e T
oa=de imp LY 2. y Theorem 13Harjani, Lopez and Sadaranganir]). Let

and (X, =) be a partially ordered set and d be a metric on X
such that (X,d) is a complete metric space. Let
gyr = gy2 implies F(x,y2) < F(x,y;) for all x e X. F : X x X — X be a mapping having the mixed monotone

property on X and satisfying

Definition 13(Lakshmikantham an@iri¢ [8]). Let X be a S (d(F(xY),F(U,v) < d(max{d(x,u),d(y,\)})

non-empty set, and let FX x X — X, g: X — X be given

mappings. An elemerfk,y) € X x X is called a coupled —®(max{d(x,u),d(y,v)})

common fixed point of the mappings F and g (kFfy) = )

gx=x and F(y,x) = gy=y. for all x,y,u,v € X W|th u=xx and y=<v, where¢,y € _

An elementx,y) € X x X is called a coupled coincidence 7. Suppose either F is continuous or X has the following

point of the mappings F and g if(%,y) = gx and Fy,x) =  Properties:

ay. (hif a non-decreasing sequencg » X, then x < x for
- . . alln

Definition 14(Lakshmikantham an@iri€ [8]). Let X be a e ;

non-empty set. Then we say that the mapping& k X — (||)|;Iiannon increasing sequence, x» x, then x= x, for

X and g: X — X are commutative if for all yy € X
If there exist ¥,yo € X such that ¥ < F(xo,yo) and
g(F(x,y)) = F(gx gy). F (Yo, Xo) = Yo then F has a coupled fixed point.

In this paper, we introduce the concept of mixed
(G,9-monotone  mappings and prove coupled
coincidence point theorems for such mappings satisfying

Theorem 14Lakshmikantham an@iri¢ [8]). Let (X, <) a nonlinear contraction involving altering distance

be a partially ordered set and suppose there is a metric dfunctions. Presented theorems extend, improve and
on X such thatX,d) is a complete metric space. Assume generalize the results of Harjanippez and Sadarangani

there is a functiong : [0, +00) — [0, 4) with @(t) < t [7]. We end this paper by the stqdy of the exi;tence of
andlim, .+ @(r) < t for each t> 0 and also suppose F solutions to a system of nonlinear integral equations.

X x X —= X and g: X — X are such that F has the mixed
g-monotone property and

d(gx gu) +d(gy,gv)
2 First, we introduce the concept of mixé@, S)-monotone

roperty.
for all x,y,u,v € X with gx=< gu and gv= gy. Assume that P p ) .y )
F(X X X) - g(X)7 g is continuous and commutes with F Definition 21Let X be a non-empty set endowed with a

and also suppose either F is continuous or X has thepartial order <. Consider the mappings FX x X — X
following properties: and GS: X — X. We say that F has the mixed

(G, S)-monotone property on X if for ally € X,

The main result of Lakshmikantham airic [8] is the
following.

2 Main Results
d(F(xy),F(uv) <¢

()if a non-decreasing sequencg % X, then x < x for

alln X1, %2 € X, G(x1) 2 S(X) = F(x1,y) 2 F(x2,y),
(il)if a non-increasing sequence, xs x, then x< x, for X1, X2 € X, G(x1) = S(x2) = F(x1,y) = F(x2,Y),
all n. yi,¥2 € X, G(y1) 2 Sly2) = F(X,y1) = F(X,Y2),
yi,¥2 € X, G(y1) = S(y2) = F(x,y1) 2 F(X,Y2).

If there exist ¥,yo € X such that gx < F(xo,Yo) and
F(yo,X0) =< gyo then there exist y € X such that Remark Lif we take G= S, then F has the mixed
gx= F(x,y) and gy= F(y,x), that is, F and g have a (G,S)-monotone property implies that F has the mixed
coupled coincidence point. G-monotone property.
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Now, we state and prove our first result.

Theorem 21l et (X, <) be a partially ordered set and
suppose that there exists a metric d on X such (Kad)

is a complete metric space. Let,&: X — X and
F: Xx X — X be a mapping having the mixed
(G, S)-monotone property on X. Suppose that

¢ (d(F(xy),F(u,v))) < ¢(maxd(Gx Su,d(Gy, SV })
—@(max{d(Gx Su),d(Gy, S\O}zi)
for all x, y, u, v € X with G(x) < S(u) or G(x) = S(u) and
S(y) = G(v) or S(y) = G(v), whereg, p € #. Assume that
F(X x X) € G(X)NS(X) and assume also that,G and F
satisfy the following hypotheses:

(DF,G and S are continuous,
(INF commutes respectively with G and S.

If there exist ¥, Yo, X1 and y; such that

{ G(x0) = S(x1) = F(x0,Y0);
G(Yo) = S(y1) = F(Yo,%o),

then there exist ¥ € X such that

G(x) =S(x) =F(xy) and Qy)=Sy)=F(y,x),

that is, GS and F have a coupled coincidence point

(Xy) € Xx X.
Proof. Let Xg, Yo, X1, Y1 € X such that

G(%o) = S(x1) = F(Xo0,¥0) and G(Yo) = S(y1) = F (Yo, Xo)-

Since F(X x X) € G(X) N §(X), we can choose
X2, Y2, X3, Y3 € X such that

and

S(x3) = F(x1,y1) |

Slys) = F(y1,x)
Continuing this process we can construct sequefiges
and{yn} in X such that

{ G(X2n+2) = F(X2n7y2n) . {
G(Y2nt2) = F (Yan, Xon) ’

S(X2n+3) = F (Xen+1,Yzn+1)
S(Yont3) = F(Yon+1,Xon+1)

(2)

foralln> 0.
We shall show that for alh > 0,

G(X2n) = S(Xon+1) =< G(Xont2) 3)
and

G(yz2n) = S(Yon+1) = G(Yan+2)- (4)
As G(xo) = Sx1) = F(xo,Yo) = G(x2) and
G(yo) = S(y1) = F(Yo,%) = G(y2), our claim is satisfied
forn=0.

Suppose that3) and @) hold for some fixedh > 0. Since
G(Xn) = Seny1) = G(Xeni2) and
G(y2n) = S(Yont1) = G(Yani2), and asF has the mixed
(G, S)-monotone property, we have
G(Xant2) = F (Xan,Yon) = F(Xon+1,Y2n)
=< F(%n+1,Yon11) 2 F(Xeni2,Yoni1)
= F(Xont2,¥2n+2),

then
G(Xont2) <X S(Xon+3) = G(Xonta)-
On the other hand,

G(Yant2) = F(Yan,Xon) = F(Yan+1,%2n)
= F(Yant1, Xont1) = F (Yons2, Xon+1)
= F(Yant2, Xont2),

then
G(Yant2) = S(Yan+3) = G(Yanta)-

Thus by induction, we proved thad)(and @) hold for all
n>0.
We complete the proof in the following steps:

Step 1:We will prove that

limn_ 1o d(F (Xn,Yn), F(Xn4+1,Yn41)) =

. (5)
liMn—s 1 d(F (Y, Xn), F (Yn+1,%n+1)) = 0.
From @), (4) and (@), we have
¢ (d(F (X2n, Y2n), F (Xent1,Y2n+1)))
< ¢ (max{d(Gxn, S%n+1),d(Gyzn, Syen+1)}) ©)

—@(max{d(Gxen, S¥%n+1),d(Gyon, Syon+1)})
< ¢ (max{d(Gxen, S¥n+1),d(Gyon, Spn+1)})-

Since¢ is a non-decreasing function, we get that
d(F(X2n,Y2n), F (Xen+1,Y2n+1)) <

maX{d(GXZn, S>Qn+l)7 d(GVZna S)Qm—l)}-
Therefore

d(GXont2, S%nt3) < max{d(Gxen, S¥n+1), d(Gyon, Syni1) }-

(7)
Again, using 8), (4) and (), we have
¢ (d(F (y2n,Xen), F (Yant1,%2n+1)))

< ¢(max{d(Gyzn, Syon+1),d(GXen, S¥%n+1)}) ®)

—@(max{d(Gyzn, Syen+1), d(GXen, S%ni1)})
< ¢(max{d(Gyzn, S¥en+1),d(GXen, S¥n+1) })-
Since¢ is non-decreasing, we have

d(F (Yon,X2n), F (Yon+1, Xont1)) <
max{d(GyZna S»TH-].)? d(zeny S)Qn—&-l}-
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Therefore

d(GYani2, S¥n+3) <
max{d(GYzn, S¥n+1),
Combining ) and @), we obtain

d(Gxn,S%ni1)}. (9)

max{d(Gxeni2, S¥%n+3),d(Gyony2, Syoni3) }
< max{d(Gxn, S¥%n+1),d(GYan, S¥en+1) }-
is a

Then {max{d(GXZnaS)Qn+1)7d(GYZnaS)Qn+l)}}

positive non-increasing sequence. Hence there exists

r > 0 such that
Jim_max{d(Gxen, Sxn-1), d(Gyan, Sen+1)} =T-
Combining 6) and 8), we obtain

max{¢ (d(Gxen12,S%n13)), § (d(GYani2,S¥ny3))}
< ¢(max{d(Gxen, S¥%n+1),d(GYzn, S¥en+1) })
d(Gyzn, S¥ent1)})-

Since¢ is non-decreasing, we get

— @(max{d(Gxen, S¥n+1),

¢ (max{d (GX2n+27 S)Qn+3)v d (Gy2n+27 S)Qn+3) })
< ¢ (max{d(Gxn, S¥n+1),d(Gyon, Syoni1)})
— @(max{d(Gxn, S¥%n+1),d(Gyon, Spn+1) })-

Lettingn — +o0 in the above inequality, we get

¢(r) < ¢(r)—o(r),

which implies thatp(r) = 0 and then, since is an altering
distance function; = 0. Consequently

liMn—s 10 Max{d(F (Xon, Yon), F (Xon+1, Yon+1)),

(10)
d(F (Y2n,Xen), F (Y2n+1,%2n+1)) } = 0.

By the same way, we obtain

liMp o MmaX{d(F (Xon+1,Y2n+1), F (Xont2, Yont2)),

d(F (Yan+1,Xen+1), F (Yant2,Xen+2)) } = 0.
11)
Finally, (10) and (1) give the desired result, that i5)(
holds.

Step 2: We will prove thatF (xn,yn) and F(yn,

Cauchy sequences.

From (), it is sufficient to show thaf (xon,y2n) and
F (y2n, X2n) are Cauchy sequences.

Xn) are

d(F (Yan, Xan), F (Yam, Xom)) - 0 @asn,m — oo,

Consequently

(X2m, Y2m)),

F (Yom, Xom))} - 0, asn,m— +co.

max{d(F (Xzn,Y2n), F
d(F (y2n, X2n),
Then there exists > 0 for which we can find two

subsequences of positive integém(i)} and{n(i)} such
thatn(i) is the smallest index for which(i) > m(i) > i,

max{d(F (Xami)» Yam(i))» F (Xn(i)» Yan(i)))»

(12)
d(F(YZm X2m ) (y2n X2n ))}>£
This means that
max{d(F (Xomi)> Yam(i) ) F (Xan(i)—2, Yongi ,
{d(F (Xam(i), Yom(i))» F (Xan(i)—2, Yon(i)—2)) 19)

d(F (Yam(iys Xem(i))» F (Yan(i)—2 Xen(i)—2)) } < €.

From (12), (13) and using the triangular inequality, we get

& < max{d(F (Xam(i), Yam(i))> F (%an(i), Yan(i)))

d(F (Yam(iy» Xem(i))» F (Yn(iys Xen(i))) }

< max{d(F (Xam(i)» Yamii) ) F (Xon(i)—2: Yon(i)—2))

d(F (Yam(iy: Xem(i))> F (Yan(i)—2, Xen(i)—2)) }

+max{d(F (Xan(i)—2; Yon(i)—2) F (Xan(i)—1 Yon(i)—1) )

d(F (Yan(i)—2 Xan(i)—2) s F (Yan(i) -1, Xen(i)—1)) }

+max{d(F (Xan(i)—1, Yon(i)—1)» F (Xen(i)» Yon(i)))

d((F (Yan(i)—1: Xen(i)-1)s F (Yan(iy» Xen(i)))) }

1aYZn ))

< &+ max{d(F (Xon(i)—2; Yon(i)

) F (X2n

d(F (Yan(i)—2: Xan(i)—2): F (Yan(i) -1 Xen(i)-1)) }

+max{d(F (Xan(i)—1, Yan(i)—1), F (Xan(i)» Yan(i)))

d(F(YZn —1,X2n(i) ) (YZn » Xon( )))}
Letting i — +o0 in above inequality and using), we

obtain that

We proceed by negation and suppose that at least one o
the sequenceB (xon,Yon) Or F(yan,X2n) is not a Cauchy
sequence.

This implies that d(F (Xon,Yon), F

limi_ o max{d(F (X2m ) Yom(i ) (X2n )» Yon(i ))a (14)

(Xom, Y2m)) - O or d(F (Yam(iy, Xem(i))> F (Yan(i)» Xn(i))) } = €.
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Also, we have

€< max{d(F(XZm(i)v)IZm(i)) (X2n )5 Yon(i )))

d(F (Yam(i» Xem(i))» F (Yan(iy» Xen(i)))
< max{d(F (X2m s Yom(i )F(XZn —1,¥Y2n(i) ~1));
d(F(y2m(i

+max{d(F (Xan(i)—1, Yon(i)-1)»

s Xem(i))» F (Yan(i)—1, Xen(i)-1)) }
(X2n( )7y2n( )))
Xon(i))) }

(X2n aYZn( ))

d(F (Yan(i)—1, Xon(i)—1)» F (Yan(i)

< max{d(F (Xom(i), Yam(i))

d(F (Yami)s Xem(iy)s F (Yan(i)» Xen(i))) }

+max{d(F (Xan(iy» Yan(i))» F (Xn(i)—1: Yan(i)-1))
d(F (Yan(i)» Xen(iy) s F (Yan(i)—1, Xon(i)-1)) }
-+ max{d(F (Xn(i)—1,Yan(i)—1)> F (Xan(i)» Yan(i)))

d(F (Yam(iy> Xom(iy ) F (Yon(iys Xan(i))) }-

Using 6), (14) and lettingi — +oo in the above inequality,
we obtain

~1)), (19)

lim max{d(F (Xom(i), Yami))» F (Xen(i)—1 Yon(i

i—+00
d(F (YZm » Xom(i ) (YZn 1))} =¢&.

On other hand, we have

—1,Xon(i)—

max{d( (X2m 7YZm )
d(F (Yamii) F(Yan(i)» Xon(i))) }
< max{d(F (Xam(iy Yom(i))» F (Xem(i)+1> Yam(i)+1))s

d(F (YZm

(X2n ) YZn ))

) X2m( )

F (Yam(i)+1, Xem(i)+1)) }

+max{d(F (Xom(i)+1, Yam(i)+1) F (Xem(iy+2; Yam(i)+2) )

X2m( )
d(F (Yam(i)+1: Xem(i)+1) F (Yamii) +2: Xem(i +2))}
), F (Xan(iy +1: Yan(i)+1))
+1))}
(XZn 7)/2n ))

+max{d(F (Xam(i)+2, Yan(i)+1
d(F (Yam(i)+2: Xem(i)+2)s F (Yan(i)+1, Xen(i)
+max{d(F (Xan(i)+ 1, Yon(i)+1)»

d(F (Yan(i)+1, Xen(i)+1)» F (Yan(iys Xen(iy)) }-

Since¢ is a continuous non-decreasing function, usBjg ( Which implies that ¢(¢) = 0O,

in the above inequality, we get taking the upper limit
$(e) < ¢(|i,mSUI0maX{d(F(sz(i)+27Y2m<i)+2)7

F (Xen(i)+1: Yan(i)+1)) s (F (Yam(i)2: Xami)+2)

(yzn (i)+1sXen(i)+1)) })- (16)

Using the contractive conditiorl), on one hand we have

¢ (d(F (Xom(i) +2: Ym(i)+2), F (Xan(iy+ 1. Yon(i)+1))

< ¢ (max{d(CXom(i)+2, S%n(i)+1), d(GYam(i)+ 2, S¥en(i)+1) })
—@(max{d(GXem(i+2, S%n(i)+1) A(GYam(i)+2: S¥on(iy+1) })
= ¢ (max{d(F (Xam() Yom(i)): F (Xen(i)—1, Yan(i)-1))

d(F (Yam(iy> Xem(i))s F (Yan(i) -1, Xen(i)-1)) })

—@(max{d(F (Xam(i), Yam(i))> F (Xen(i)—1, Yan(i)—1))»

d(F (Yam(iy> Xem(iy) s F (Yan(i)—1, Xen(i)~1)) })-

On the other hand, we have

¢ (d(F (Yam(i)+2 Xem(i)+2)s F (Yan(i)+1: Xen(iy+1)))

< ¢ (max{d(GYam(i)+2, S¥n(i)+1)

d(GXem(i)+2, S%n(i)+1) })

—@(max{d(GYam(i)+2, S¥n(i)+1)

d(GXom(i)+2: S%n(i)+1) })

= ¢ (max{d(F (Yam()>Xem(i))» F (Yan(i)—1, Xen(i)~1))

d(F (Xem(i), Yam(i))» F (Xeni) -1, Yan(i)-1)) })

—@(max{d(F (Yam(i)» Xem(i)))s F (Yan(i)— 1, Xen(i)—1),

d(F (Xam(i Yam(i)))s F (Xen(i)—1: Yon(i)-1) })-
Therefore

¢ (max{d(F (Xam(i)+2, Yam(i)+2)s F (Xen(i)+1: Yan(i)+1))

d(F (Yom(i)+2: Xem(i)+2)s F (Yan(i)+1: Xen(i)+1)) })

< max{$ (d(F (Xam(i)42; Yom(i)+2)» F (Xen(i)+1: Yan(i)+1))

¢ (d(F (Yam(i)+2: Xem(i)+2) s F (Yan(i)+ 1, Xen(i)+1)) }
< ¢ (max{d(F (Xam(i), Yam(i))> F (Xen(i)—1: Y2n(i)-1))
d(F (Yam(iy> Xem(i))s F (Yan(i)—1, Xan(i)-1)) }
—@(max{d(F (Xam(i),Yamii))» F (Xen(i) - 1: Yan(i)~1))s
d(F (Yam(i)» Xom(i))s F (Yan(iy—1, Xon(i)—1)) })-

(17)

Finally, taking the limsup as— 4+ in (17), using (5),
(16) and the continuity ofp andg, we get

¢(e) < ¢(e) — o(e),

that is, e = 0, a
contradiction. Thus{F (Xzn,Y2n)} and {F(yon,X2n)} are
Cauchy sequences K, which give us that{F (xn,yn)}
and{F (yn,%n)} are also Cauchy sequences.

Step 3:Existence of a coupled coincidence point.
Since[F (X, Yn) } and{F (yn,%n)} are Cauchy sequences in
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the complete metric spade, d), there exista, a’ € X from the conditions (iii) and (iv) that

such that
¢ (d(G(F (X2n,Y2n)), S(F (Xen+1,Y2n+1))))

!

lim F(x,,yn)=0a and Iirp F(yn,xn) = a’.

e e = ¢(d(F(Gxen, Gyzn), F (S¥n+1,S¥en+1)))
Therefore, ' limG(xen:2) = a, M G(yzni2) = o', < ¢(max{d(G(Gxen), S(Skns1)), (18)
lim S(x2n+3) =a and I|m S(y2n+3) =a.
N+ d(G(Gyan), (S
Usmg the continuity and the commutativity 6f and G, (G(Gyen), S(Stent))})
we have _
@(max{d(G(Gxzn), S(S¥xn+1)),d(G(Gyzn), S(Syen+1)) })-
G(Gxen+2)) = G(F (3, Yon)) e e
= F(Gxgn, Gyzn) Similarly, we have
and
d(G(F , ,(F ,
G(G(y2n+2)) _ G(F(yZnaXZn)) ¢( ( ( (YZn XZI’I)) S( (YZn+1 X2n+l))))
= F(GYan, Gxen). = ¢ (d(F (Gyzn, GXen). F (Son 1, Sns 1))
Letti , t G(a) = F(a,da’ d
S P o e oot Bla) = Flaa) an < ¢ (max(d(G(Gyzn). S(S¥in-1)). (19)
Using also the continuity and the commutativityFofand d(G(G S
S, by the same way, we obtaif{(a) = F(a,a’) and (G(GXen), (Sn+1)) 1)
Sa') = F(a’,a). — @(max{d(G(Gyan), S(Syn1)),
Therefore,,
d(G(Gxen), S(S%n+1)) })-

G(a)=F(a,a’)=Sa) and G(a')=F(a’,a)=9a").
Combining (8), (19) and the fact that ma (a), ¢ (b)} =

Thus we proved thdr, a’) is a coupled coincidence point ¢ (max{a,b}) for a,b € [0,+), from (iii) and (iv), we
of G,SandF. u obtain

In the next result, we prove that the previous theorem
is still valid if we replace the continuity oF by some ¢ (max{d(G(F (Xan,Y2n)), S(F (Xen+1,Y2n+1))),
conditions. d(G(F (Yan, Xon), S(F (¥an 1, Xan+1)))})

Theorem 22f we replace the continuity hypothesis of F in < ¢ (max{d(G(Gxen), S(S¥%n+1)),
Theoren?1 by the following conditions: d(G(Gyan), (Syns1))})
(i)if (x) is a non-decreasing sequences with-x x then —@(max{d(G(Gxn), S(S¥%n+1)),

Xn = X for each ne N,

(ii)if (yn) is a non-increasing sequences with-y y then d(G(Gyzn), S(S¥en+1)) })-

y < yn for each ne N, i _ ) _ o
(ii)x,y € X, x=<y= Gx=< Sy, Lettingn — +o in the last expression, using the continuity
(iV)x,ye X, x=y=Gx= Sy. of G andS, we get
Then GS and F have a coupled coincidence point. ¢ (max{d(G(a),S(a)),d(G(a"),S(a’))})

!/ !
Proof. Following the proof of Theoren2l, we have that < ¢(max{d(G(a),S(a)),d(G(a"), S(a’))})
F(Xn,yn) and F(yn,xn) are Cauchy sequences in the —@(max{d(G(a),Sa)),d(G(a’),Sa"))}).
complete metric spacgX,d), there exista, a’ € X such
that This implies that
o(max{d(G(a),Sa)),d(G(a’),S(a’))}) = 0 and, since
lim F(Xn,¥n)=a and lim F(yn, %) =0’ @ is an altering distance function, then
n—+o N—-+o
/ 1 o
nirJrr\mF(yzn,XZn) = a’. Hence, rHIm G(xons2) = 0, Consequently
Jim G(yani2) = @', lim Skeniz) = @ and  G(a)=Sa) and G(a')=d’). (20)
nl_',T Syants) = a. Usmg the commutativity ofF,G} 14 finish the proof, we claim th&(a,a’) = G(a) = S(a)

and {F,S} and the contractive conditiortL), it follows  andF(a’,a)=G(a’) =Sa’).
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Indeed, using the contractive conditiah),((3) and @), it
follows from (i)-(iv) that

¢(d(F(Gxn, Gyzn),F(a,a')))
< ¢(max{d(G(Gxn),S(a)),d(G(Gyzn), S(a’))})
—p(max{d(G(Gxn), S(a)),d(G(Gyzn), S(a’)) })
< ¢(max{d(G(Gxn),S(a)),d(G(Gyzn), S(a"))}).-
Using the fact tha® is non-decreasing, we get
d(F (Gxn, Gyan),F(a,a’)) <
max{d(G(Gxn), S(a)),d(G(Gyzn), S(a'))}-
Similarly, we have
¢ (d(F (Gyzn, Gxen), F(a’, 1))
< $(max{d(G(Gyan), S(a")), d(G(Gxen), (1))}
—@(max{d(G(Gyzn), S(a")),d(G(Gxn), S(a)) }

< ¢ (max{d(G(Gyzn),S(ar")),d(G(Gxn), S(a))}).
Using the fact tha$ is non-decreasing, we see that

d(F(Gyan,Gxon),F(a’,a)) <
max{d(G(Gyzn), S(a’)),d(G(Gxen), S(a)) }-
Combining 1) and @2), we get
max{d(F (Gxn,Gyon),F(a,a’)),
d(F (GYzn, Gxen), F(a’, 1))
< max{d(G(Gxen), S(a)),d(G(Gyzn), S(a’)) }.
Using the commutativity oF andG, we write
max{d(G(F (xzn,yzn))),F(a,a’)),
d(G(F (yzn, %)), F (@', a))}
< max{d(G(Gxzn), S(a)),d(G(Gyzn), S(a’)) }-
Letting n — +o0, using the continuity o5, we obtain
max{d(G(a),F(a,a’)),d(G(a’),F(a’,a))} <
max{d(G(a),S(a)),d(G(a"),S(a’))}.
Looking at @0), we deduce that
max{d(G(a),F(a,a’)),d(G(a’),F(a’,a))} =0.
Therefore,
d(G(a),F(a,a’))=0 and d(G(a’),F(a’,a))=0.
Consequently
G(a)=F(a,a’) and G(a')=F(a’,a). (23)
By the same way, we get
Sa)=F(a,a’) and Sa')=F(a’,a). (24)

Finally, combining 20), (23) and @4), we deduce that
(a,a’) is a coupled coincidence point Bf GandS. W

(21)

)
)

(22)

Remark 2
Taking G= S= Ix (the identity mapping of X) in Theorem
21, we obtain [7, Theorem 2].
Taking G= S= Ix in Theoren22, we obtain [/, Theorem
3].

TakingS= G, we get the following:
Corollary 21Let (X, <) be a partially ordered set and
suppose that there exists a metric d on X such (Kad)
is a complete metric space. Let GX — X be a
continuous mapping and FX x X — X be a mapping

having the mixed G-monotone property on X. Suppose
that

¢(d(F(xy),F(u,v))) < ¢(max{d(Gx Gu),d(Gy,Gv)})

—@(max{d(Gx Gu),d(Gy,Gv)}),

(25)
forall x, y, u, v € X with G(x) < G(u) or G(x) > G(u) and
G(y) = G(v) or G(y) = G(v), where¢, ¢ € .Z. Assume
that F(X x X) C G(X) N G(X) and assume that

(DF is continuous or assumptiongi) — (ii) of
Theoren22 hold with G non-decreasing.
(INF commutes with G.

If there exist ¥, Yo such that

{ G(xo) = F(Xo,Y0);
G(yo) = F(yo, o),

then there exist,x € X such that

G(x)=F(xy) and Qy)=F(y,x),

3 Applications to nonlinear integral
equations

Let X = C([0, T],R) be the set of all continuous functions

u:[0,T] =R, T>0,andG : X — X is a given mapping.

We endowX with the metricd(u, v) = rrP(?%(] [u(t) —v(t)]
tel0,

foru,ve X.
This space can be equipped with a partial order given by

X, yeX, x=2y&xt)<yt), foranyte|0,T].
In X x X we define the following partial order
X Yy), (uv)eXxX, (XY =(uVv)ex=<uandyrv
In[10] itis proved that X, <) satisfies assumptioris and

(i) of Theorenm22.
Consider the system of integral equations:

)
Gu(t) = /0 K(t, ) (s, u(s), v(s))ds

T (26)
Gv(t) :/O K(t,$)f (s, v(s), u(s))ds
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where the functionsk : [0,T] x [0,T] — [0, 4| and
f: [0T] xR xR — [0,+ are two continuous
functions satisfying the following conditions:
(H1)
T

sup [ Kk(t,s)ds<1.

te[0,T]/0
(H2) Foralls,b € [0,T], u,v € X
Gu=< Gy, = f(s,u(s),b) < f(s,v(s),b)
Gu= Gy, = f(sb,u(s)) > f(s,b,v(s)).

(H3) For allx, y, u, v € X such thaGx < GuandGy = Gv
we have

[f(s,x(s),¥(s)) — f(s.u(s),v(s))| <
In[1+ (max{|Gx(s) — Gu(s)|, |Gy(s) — GV(s)[})?] .

(H4) There existo, B € X such that for alt € [0,T] we
have

/kts s,a(s),B(s))ds
/kts (s B(9).a(s)ds

Now, we shall prove the following result.

From (H1), we obtain
d(F(xy),F(u,v)) <
In[(max{d(Gx, Gu),d(Gy,GV)})? + 1]
which implies that
(d(F(x,y),F(uv)))? <
(In[(max{d(Gx Gu),d(Gy,Gv) })?+1])2.
Then,
(d(F(x,y),F(u,)))? < (max{d(Gx Gu),d(Gy,Gv) })?
— [(max{d(Gx, Gu),d(Gy.GV)})?
—(In[(max{d(Gx,Gu),d(Gy,GVv)})? +1])?].
Set¢(t) =t? and(t) = t2 —In(t? + 1). Clearly ¢ and @

are altering distance functions and from the above
inequality, we obtain

¢(d(F(xy),F(uv))) < ¢(max{d(Gx Gu),d(Gy,Gv)})
—@((max{d(Gx Gu),d(Gy,Gv)}))

forall x,y,u,v e X such thaG(x) < G(u) andG(y) = G(v).

Theorem 31Suppose that GX — X is a non-decreasing Now, leta, 3 € X be the functions given by (H4), then we
continuous mapping. Suppose also that (H1)-(H4) hold.have

Then @6) has a solution.

Proof. We introduce the operatdt : X x X — X defined
by

_ /OTk<t,s)[f<s,u(s>,v<s>>ds

forallu,ve X andt € [0, T].

From (H2) it follows directly thaF has the mixeds-
monotone property.
Letu, v e X such thaiG(x) < G(u) andG(y) = G(v). We
have

d(F(x,y),F(u,v)) = maxeor) |F (6 y) (1) — F(u,v) (1)

max/ k(t,s)|f(s,x(s),y(s)) — f(s,u(s),v(s)|ds

T te[o,T

Using (H3) we get
d(F(x,y),F <tm0a%</ k(t,s)
In[1+ (max{|Gx(s) - Gu(s)|, |Gy(s) — GV(s)[})?]ds <

[max /Jk(t,s) In[1+ (max{d(Gx Gu),d(Gy,Gv)})?]ds
< In[1+ (max{d(Gx, Gu),d(Gy,Gv)})?] x

7
max [ k(t,s)ds
te[0,T]Jo

G(a) xF(a,) and F(B,a)=G(B).

Thus, we proved that all the required hypotheses of
Corollary 21 are satisfied. Henc& andF have a coupled
coincidence point(u,v) € X x X, that is, (u,v) is a
solution of @6).
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